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NONOSCILLATION THEORY OF ELLIPTIC
EQUATIONS OF ORDER In

W. ALLEGRETTO

Several nonoscillation theorems are obtained for elliptic
equations of order In. These results extend several well known
nonoscillation theorems for elliptic equations of order 2 and 4,
and for ordinary differential equations of higher order.

Introduction. Several authors have considered the problem of
establishing oscillation and nonoscillation criteria for elliptic equations.
We refer the reader to the books by C. A. Swanson [15] and K. Kreith [8]
where extensive bibliographies can be found.

Most of the interest has so far centered on second order equations,
with some results also established for fourth order equations. In this
paper we establish several nonoscillation theorems for elliptic equations
of order In. These theorems extend in particular, results of Swanson
[14], Piepenbrink [12], Headley and Swanson [5] and Yoshida [16].

Our proofs make extensive use of variational arguments, of ex-
tended Sobolev-type inequalities and of estimates on quadratic forms
associated with elliptic equations.

The first part of the paper discusses some preliminary comparison
theorems and lower estimates on quadratic forms. The second part
deals with the nonoscillation of operations defined in subdorcteins of Em

for m ^ 2 . In the next part, some results are established for operations
defined in subdomains of E2. The final part deals with extensions to
more general cases.

Definitions and notations. Let Ω be an unbounded domain
of m-dimensional Euclidean space Em. Without loss of generality, we

may assume 0 g: Ω. Points of Em are denoted by x = (jcb , xm) and

differentiation with respect to JC, by D t , ΐ = 1, '- ,m. Let L be the

differential expression given by:

Lu = ( - ΐ)n Σ Da(aaβD
βu)~aoou, aaβ = aβa

\a\=\β\=n

whose coefficients are real defined in Ω and sufficiently regular so that all
derivatives involved in L exist and are at least continuous in the closure
of Ω - R for some sphere R. As is usual, we set Dau = D?(1) DaJm)u,
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a = (α:(l), , α(m)), | a | = ΣHi <*(/), α ! = α ( l ) ! α ( r a ) ! , where each
α(i)? ' = 1> * * *, wt> is a nonnegative integer.

For any subdomain F of Ω, we denote by H°n(F) the completion of

Co(F) in the Sobolev norm: fae,Sn f |D α u frfx}1*; by || \\P(F) the L'(F)

norm; and by ( , ) the L2(F) inner product. If F is obvious from the
context, we write || ||p for || | |P(F), etc. L is assumed to be uniformly
strongly elliptic in any bounded subdomain F, i.e. for any such F there
exists a positive scalar d(F) such that:

for all xEF and ξ = (ξu , ξm)E Em. It follows that by the usual
means, see for example [3], L can be used to define an operator, denoted
by cS7, whose domain is contained in H°n(F).

A bounded domain F C Ω is a nodal domain for L iff there exists a
nontrivial function u E H°n(F) such that ££u = 0 . L is nonoscillatory in
Ω iff there exists a sphere i?, centered at the origin, such that L has no
nodal domains in Ω — R.

Preliminary theorems and reduction to simpler form. We begin by
recalling the following result:

LEMMA 0. Let F denote a bounded subdomain of Ω. Then the
smallest eigenvalue of 5£ is given by:

i n f

Lemma 0 is a well known consequence of the Courant min-max
theory of eigenvalues. We next employ the procedure of [1], [10] to
associate a symmetric matrix (A(/Xi = 1.. <N with any symmetric expression
(flα,p)iαi=i/3i=n, as follows: let σ denote a bijection from the first N =
(n + m - l)!//t !(m - 1)! integers to the set of m -tuples whose sum is
n. We define A{] by Λf/ = aσ{ι)σ{j). Clearly the specific choice of the map
σ does not affect the smallest eigenvalue of (AI; ).

LEMMA 1. Let ίu = ( - ί)n\ΣlaHβl=nD
a(baβD

βu) denote a symmet-
ric elliptic operation with constant coefficients. Assume that:

(i) the symmetric matrix associated with (aaβ(x)- baβ) is nonnega-
tive for all x E Ω.
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Then the inequality:

is valid for all φ E Co (Ω) where μ0 denotes the ellipticity constant off, and
Δn denotes the n-times iterated Laplacian.

Proof. Let φ E Co (ft), and let σ be a bijection from the first N
integers to the m-tuples whose sum is n. It follows that:

(φ,Lφ)-(φ,€φ) + (amφ,φ) = j E m Σ n(aaβ-baβ)D"φD'φdx

N

Σ (a σ(o«ro )"" b σii)σ(j))Dσ(ι)φDσ(i)φ dx.
N

^

E"

The integral on the right hand side is nonnegative by assumption
(i). Next, let φ denote the Fourier Transform of φ. It follows that

s^Φ)= ί Σ baβD
aφDβφdx

j E m \a\ = \β\=n

= ί IΦI2 Σ baβξ
aξ^dξ

JEm \a\ = \β\=n

We will say that L majorizes € whenever condition (i) of the Lemma
holds.

The conditions of Lemma 1 are clearly satisfied by any L whose
leading part has constant coefficients, or in case n = 1 and L is uniformly
elliptic in the whole of Ω. Similar arguments also show the validity of
the following Corollary which gives another condition on (aaβ) which is
sufficient for an inequality analogous to that of Lemma 1 to hold.

COROLLARY 1. Let μ(x) denote the least eigenvalue of
(aσ(i)<r<j)(x))i,j=\,.;N> Assume that there exists a constant k such that
μ(x)^k>OforallxEίl. Then, L majorises k Σ M = n ( - l)nD2au and for
any φ E Co(Ω) the following inequality holds:

where χ = i n f H = n (a \/n ! ) .
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The next Lemma represents an extension of a lemma of Rellich [13]
(where only the case a = 0 was considered). Since the proof of Lemma
2 parallels that given in [13], and in view of the lengthy calculations
involved, the proof is only sketched.

LEMMA 2. Let φ G C;{Em -{0}), a E E\ a ^ 0 . Then the follow-
ing inequality is valid:

ί \x\a{Δφ)2dx^K(a) \ \x\a~Aφ2dx,
J Em JEm

where: K(a) = ( 4 - a - mf(m - a)2/l6+ τ(α),

ι ^ 2 ~ 4m +4α -

Proo/. Let ψ6Co(£m-{O}). Introducing polar coordinates, we
obtain

ί rβ(Δφ)2dx = ί ί (Aφ)2dwra+mldr,
JEm JO Jφ

where Φ denotes the full range of the angular variables and dw denotes
the angular component of the volume element. Let {y,}Γ=o denote a
complete orthonormal system of spherical harmonics. Then,

f (Δφfdw = Σ c],
JΦ £=0

where c, = (Δφ)Ytdw. Let the order of Y, be k = k(i). It follows
JΦ

that:

C | " U r 2 +
r 2 + r dr r

where: ft = Ytφdw. Hence:
JΦ

(1) ί r(AφYdx = Σ Γ ''α+m"1 (/"
J π m o Jo V

Following the reasoning of the discussion preceding the Proof of
Theorem 1 of [13, p. 93], we introduce new functions g, = r~βft, with
β = ( 4 - α - m)/2, and integrate by parts repeatedly to reduce the right
hand side of (1) to:
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V1 f°° ί +7«+ 1/ ,,Vz / ,\2 +2fl + m ^ / ( ^ + « ~ 4 ) ( m

o Jo I

Since α ^ O , the coefficient of (gί)2 is nonnegative for / = 0,1, •""•
Consequently:

ί r'^φfdx * Σ Γ 8U~»+"> ( ( 4 " α ~ " ) 2 ( m ' α ) 2 + τ(α)) <ir

o Jo

= K(a) ί φ2r°-*dx.
jEm

COROLLARY 2. K(a) ^ 0 and = 0 iff for some triplet a, fc and m we
have:

(2) (k)(k + m - 2 ) = -Km2-4m 4-4a - a2).

Proof. If we set z = ( m 2 - 4 m +4a -a 2)/2, η(fe) = fc(fe + m -2),

then

τ ( a ) = inf

Since ^[η-f z] has a single minimum at η= — z/2 it follows that
τ ( α ) S -z 2 /4, and at a minimum,

K(a) = 1/16{(4- α - m)(m - α ) - ( m 2 - 4m + 4 α - α2)}.

• {(4 - a - m)(m - a) + (m2 - Am +4a - a2}

= 0.

Finally, the minimum is achieved only if η = - z/2, i.e. if for some α, fe,
m equation (2) is satisfied.

COROLLARY 3.# If a^O and m ^ 1 + V ( 3 - α)(l - a) then τ(a)
g θ , and, consequently, it follows that:
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K(a) ^ * 77 L (m - a)2.
16

Proof. Set h(k)= τj(fe)[τ/(fc)+z].Then ft(fc)is a quarticin fc, with
zeros at η(fc) = 0 and η(k)+ z = 0. The first condition gives roots of
h(k) at k = 0, /c = 2 — m. The second condition gives possible roots at:

_ 2 - m ± V ( m - 2 ) 2 - 4 z
* " 2

The larger of the possible roots will exceed 1 iff:

(m -2) 2 -4z >m 2 ,

i.e., (m - l ) 2 < ( α - 3 ) ( α - l ) .

Since this violates the condition of the Corollary, we conclude that all
roots of h(k) do not exceed 1. Consequently h(k) is nonnegative for
fc = l , .

The next Lemma was established as a consequence of a more
general result by J. Piepenbrink [11], by considerations involving Picone
type identities. We give a much shorter direct proof, which will also be
useful in the sequel.

LEMMA 3 [11]. Let ψ G Q ( Ω ) , a<ΞEι. Then the following in-
equality is valid:

(3) ί \x\aΣψ,Φfdx^π(a) f \x\"~2φ2dx,
jEm i = \ jEm

where

= ( 2 - m - α ) 2

4

Proof Let φ = \x \βφ, with β = (2 - m - a)/2. Substituting into the
left hand side of (3) and using Green's formula we find

ί I* \a Σ (D.φfdx ^ ί \x\a+2β Σ (D.φYdx
J Em i = l jEm i

+ {-β2+β(2-m-a))ί \x\a+2l3-2ψ2dx,
JEm

and the result follows.
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COROLLARY 4. Let α ^ O , ψ G C o ( Ω ) . Then the following ine-
qualities are valid:

(i) f |jc|«(Δ'φ)2dx ^ ft K(a-4i) I \x\a~4tφ2dx,
J Em ι=0 J Em

Cm t-\ Γ

(ii) \x\"Σ[Di{Δ'Φ)]2dx^7r{a)X\K(ot-Ai-2)\ \x\"-A"2φ2dx.
J Em i - l ι=0 JEm

Proof. Consider inequality (i). We observe that for t = 1, this is
precisely Lemma 2. Assume next that the inequality is valid for t = T,
then:

f |JC \«(Δτ+ιφ)2dx = f Ix | α ( Δ ( Δ τ φ ) ) 2 d x g K ( α ) f |JC | α - 4 ( Δ τ φ ) 2 d x
j E m J £ m JEm

= Π K(a-4i) I \x \"-A(T+i)φ2dx.
ι=0 JEm

The result then follows by induction. The proof of (ii) is identical,
except we first employ Lemma 3.

The inequalities of Corollary 4 are clearly also valid for any function
in H02t(F) and Hlt+iiF) respectively where F denotes a bounded domain
of Ω.

Nonoscillation Criteria (m ̂  2). We first consider the case m ̂  2.
The case m = 2 will be considered in the next section. We begin with a
Kneser-type theorem:

THEOREM 1. Let L majorize an elliptic expression with constant
coefficients and ellipticity constant μ0. Assume that:

lim sup {I x \2naOo(x)} < ω
\x |-»°°

where

(4) ω = μofί K(-4i) (n even),

(5) - μ0τ7(0) ("ff K(- 4i - 2) (n odd, ^ 1),
i=0

T/ien L is nonoscillatory.
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Proof. If we assume the contrary, then given any sphere R there
exists a bounded domain F C ί l - J ? and a function u E H°n(F) such that
(u,J£u) = 0. By Lemma 1 it follows that:

μo(- ί)n(u,Anu)- (aoou, κ)=iθ.

Estimating the first inner product by Corollary 4 leads to the desired
contradiction.

We observe that examples involving Schrodinger equations can easily
be constructed both for the cases n = 1 and n = 2 to show that in general
the constants in Theorem 1 cannot be improved upon.

COROLLARY 5. If m >2rc, or 2n ̂  m and m is odd, then the
constant ω of Theorem 1 is positive. If m g 1 -f V(2n - l)(2n - 3) or
m = 1, then:

ω

n — i

= μo4~n Π ( m + 4 / - 2 M ) 2 .

Proof. Assume first that n is even. By Corollary 2, K(-4i) will
be positive for / = 0, , n/2- 1 unless for some integer fc^O the
following relations are valid:

(fc)(fc + m - 2 ) = - i ( m 2 - 4 m — 16/ — 16i2),

ra2-4ra -16/ - 16/2<0.

From the first equation we obtain the only possible value:

, _ 4(1 + / ) - m
K - 2

If m is odd, this equation cannot be satisfied by any integer k. If m is
even, then this equation again cannot be satisfied by a nonnegative
integer if m>2n. A similar argument shows the conclusion for n
odd. If m ^ l + V ( 2 n - l ) ( 2 n - 3 ) , then by Corollary 3, K(-4i)^
(4 + 4/ - m ) 2 ( m +4/)2/16. We thus obtain, for n even:

= 4 - "fl" (m + 4ί - 2n)2 "fj (m + Ai - In)2

i = π/2

( m + 4 i - 2 n ) 2 .

/ = 0

Π
i = 0
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Similarity, for n odd, it follows that:

(n-3)/2 (n-3)/2 / £ _|_ Λ / — W V

^(0) Π K{-Ai-2)^τrφ) Π IA (m+4/ + 2)2

ί=0 ί=0 Iθ

= (m - 2)24~" (f l / 2 (m + 4/ - 2n)2

ι = 0

n-1

x Π (m+4i-2n)2

i=(π-3)/2+2

n-ί

= 4'n Π O +4/ -2n)2.
1=0

Finally the result can be shown for the case m = 1 by a simple iteration
procedure using inequality (3) of Lemma 3.

Theorem 1 and Corollary 5 reduce in special cases to several known
criteria. If n = m = 1, then we obtain Kneser's classical result [6]; if
n = 2, m = 1 then we have a result of Leighton and Nehari [9]; if n = 1,
then we have a theorem of Headley and Swanson [5]; if n = 2 and m > 4
then we have a result of Yoshida [16]; if m = 1 then we have a criterion of
Glazman [4, p. 96].

As can be observed, Theorem 1 and Corollary 5 leave unanswered
the following question: What is a Kneser-type theorem for m ̂  2n and m
even? This appears to be an open question.

We next establish an integral theorem which does not involve
pointwise estimates on a00.

THEOREM 2. Let L majorize an elliptic expression with constant
coefficients and ellipticity constant μ0. Assume that m > In and that for
some €o, 0 ^ 60< 1, there exists a sphere R such that:

e L" / 2"(Ω- R).
J -

Then L is nonoscillatory.

Proof. If we assume to the contrary that L is oscillatory, then given
any sphere Rλ there exists a bounded domain F C Ω - R{ and a function
uEH°n(F) such that:

Then, by Corollary 4,

( U , ( - 1 ) » Δ - U ) = ( 1 - € O ) ( I I , ( - 1 ) - Δ - I I ) + € O ( U , ( - 1 ) - Δ - M )

i= (1 - €0)(M, ( - l)nΔni0 + μόιωe0(\x \~2nu, u).
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Consequently,

(w, (— l)nΔnw) — ̂ ~— ((\x \'2nω€Q— αoo)-M, M) = 0.

We observe that, by Holder's Inequality and generalization of Sobolev's
Estimates [3, p. 24], it follows that for some constant C and any
φ E CQ(Ω- Ri)7 the following inequality holds:

((ω€0|jc Y2n - aw).φ9 φ) g ([\\(eoω\x\-2n - αOo)-IU»(Ω-

m
L,(m-2n)

A simple limit argument shows that this inequality is also valid for w,
hence:

iι) ίl - r ^0 ^ (iι, ( - l)"Δ»iι) ί l - r ^ - ||(eoω

Choosing R} sufficiently large gives a contradiction.
As a corollary of Theorem 2, we obtain an extension of a theorem of

[12], where the case M = 1 was considered. We recall that L is uncondi-
tionally nonoscillatory if for any constant A > 0 the operation:

(-1)" Σ Da{aaβD
βu)-λ{aOoXu=0

| α | = | / 3 | = n

is nonoscillatory.

COROLLARY 6. // 2n < m and (aoo)+ E L m / 2 π (Ω- R) for some
sphere JR, then L is unconditionally nonoscillatory.

Proof. We observe that, for all e > 0 , λ > 0 :

\\{eω \x \-2n - λ(α O o)4-IUn(Ω- R) g |λ | | | (α O o) + |U,(Ω- / ? ) < « .

The result follows from Theorem 2.
We observe that as a consequence of the above results it follows that

if (αOo)+ is bounded and the measure of Ω is finite then L is nonoscillatory.
We conclude this section with a brief heuristic reference to an

alternate method which, although less general, is considerably simpler
than the one we have followed. The arguments now introduced will also
be useful for the case m = 2 discussed in the next section. The basic
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ideas are contained in the following Lemmas. The proof of the first
Lemma is immediate from the Courant min-max theory of eigenvalues.

LEMMA 4. // ( - l)nΔnu - (am)+u is oscillatory in {x/\x\> R}, then
it will also be oscillatory if with a nodal domain we associate the boundary
conditions: u = Δw = = Δ n l w = 0 instead of the standard null condi-
tions.

LEMMA 5. Let 3F = {u\ u E C°°(- R), u positive and (-l)'Δ'w ^ 0
in - R for t = 1, , n] for some sphere R. Assume L majorizes an
operation with constant coefficients and ellipticity constant μ0 and that, for
some u E 3F and all x E - R, the following inequality holds:

f*\ t w ί(-l)nΔnu(x
(6) * ( x ) S i μ ( l > K

Then L is nonoscillatory.

Proof. Without loss of generality we may assume that equality
holds in (6). If L is oscillatory, then by Lemma 4 there exists a bounded
domain F'C — R and a nontrivial function υ such that:

( - l ) n A n υ ( x ) - μ ό ι a o o ( x ) v ( x ) = 0 , x E F

( - I)'Δ'U(JC) = 0, x E dF', t = 0, , n - 1.

Let e be chosen so that inίx&F(u(x)- ev(x)) = 0. In view of the
boundary conditions, there exists a point J C 0 E F ' such that:

u(xo)-ev(xo) = O.

We observe that:

= ^(u- ev) ^ 0.

It follows that ( - l)nlΔn-ι(u -ev)^0 in F'. By induction, it follows
that -Δ(u - eυ)^0 in F'. Since u-evψ^O, then it cannot have a
minimum of zero [7], and the contradiction establishes the Lemma.

The proof of Lemma 5, for n even, can also be based on integral
identities similar to those of Diaz and Dunninger [2]. Our procedure
appears simpler, since only a form of the maximum principle is em-
ployed, and with slight modifications it also leads directly to the
establishment of Sturmian theorems similar to those given in [2].
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It seems reasonable to establish nonoscillation criteria by substitut-
ing functions of the type u = \x \a into Lemma 5 and choosing a so that
αOo can be taken as large as possible. After a simple but lengthy
calculation, this procedure leads to some of the results of Corollary 5, but
only for the case m § In + 1. If m ^ In this procedure appears to fail
as the following example illustrates. Consider the operation Lu =
A2u - (9/16)I x |~4w, defined in the complement of a sphere in E3. From
Corollary 4 it follows that L is nonoscillatory. Yet there is no value of a
such that u = |JC |α substituted into Lemma 5 will give this result.

Nonoscillation Criteria (m = 2). The methods of the previous sec-
tion appear to fail for the case m = 2. Our considerations are restricted
to the case m = 2, n = 1.

THEOREM 3. Let m = 2, n = 1. Assume that L majorizes an ellip-
tic operator with ellipticity constant μ0 and that for all \x\ sufficiently large,

(7)

Then L is nonoscillatory.

Proof Set u = (In \x \f then - Δw - (1/(41 JC \\ln \x \f))u =0. The
result now follows by Lemma 5.

The theorem may also be established by the simple variable change:
φ = (In \x \)1/2φ, and the use of Lemma 3. This and other radial results
can also be obtained by the methods of [14]. Simple radial examples can
be constructed to show that this is the best possible result in the sense
that the constant μ{)4~] cannot be improved upon.

THEOREM 4. Let the conditions of Theorem 3 hold except for
inequality (7). Assume that a00 E C2(Ω) and that for some e > 0, there
exists a sphere R such that: [aoo]+\x |4e/(1+€)E L 1 + e ( Ω - i?). Then L is
nonoscillatory.

Proof It suffices to show that - Δw - aooμόιu = 0 is nonoscillatory.
Assuming the contrary we find that given any sphere R{ there exists a
bounded domain F C ί l - i ? , and a function φ E Co(F) such that:

ί ί Σ (AΦ) 2 - μΛaoo)+Φ2} dx <0.

B y i n t r o d u c i n g t h e c h a n g e of v a r i a b l e y = x / \ x |2, w e c o n c l u d e t h a t t h e r e
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exists a deleted annular neighborhood N of 0, with diameter ^ 1, and a
function ψ E C%(N) such that:

JN ii=ι \yi

where ψ(y) = φ(x(y)) and c(y) = (aoo(x(y)))+'q(y)'μό\ where
^ ! and:

rl, y GsuppιA(y)

If we set Nγ = NU {0} it follows that there exists a function w
which is positive in N} and satisfies:

- -p^f M ̂  0 y E: Nu u = 0 on the boundary of

Without loss of generality, we may assume w(y)= 1 with w(yo)= 1 for
some y 0 E N i . Let G(y, ^) denote Green's function for the
Laplacian. It follows that:

for some constant K. Choosing Rλ sufficiently large leads to the desired
contradition.

It is interesting to note that we cannot take e = 0 in the previous
result so that the result of Corollary 6 cannot be extended to this case, as
the following example shows. Consider - Δw - (l/\x |2log21x \)u = 0 on
the outside of the sphere R = {x 11 x | > 2}. Then

I
J

(1/1 JC |2log2|jc \)dx < oo but by the arguments following Theorem 3

this equation is oscillatory.

More General Cases. We conclude by considering some extensions
of the previous results to more general operators.
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The above discussion dealt only with self-adjoint operators defined
by operations such as L. The results however are immediately applic-
able to the wider class of nonselfadjoint elliptic operators for which we
can conclude that if F is a nodal domain for the arbitrary operator i?
then for some nontrivial function u we have 0 = (j£w, u) =
(((i? + £*)/2)u, u\ where S£* denotes the adjoint of S£. Consequently,
conditions which are sufficient for the nonoscillation of the selfadjoint
operator (β + i?*)/2 are also sufficient to guarantee the nonoscillation of
S£. We illustrate these remarks with the following example:

COROLLARY 7. The nonselfadjoint uniformly elliptic operator for-
mally defined by.

m m

Lu = - Σ D< (aijDjU) + 2 Σ b,Dsu - amu = 0, a ή = aμ

is nonoscillatory if b} G CJ(Ω) for j = 1, , m, m > 2, and

for some sphere R and 1 > e g 0, where μ0 denotes the ellipticity constant
of L.

Proof We observe that if L is oscillatory then given any sphere Rλ

there exists a domain F CΩ-J? , and a function u E Ho

r(F) such that:

0 = ί
JF

= ί
JF

S (AM) 2 - ( Σ A (6.)+ βoo) u2) dx.
i = l \i = l / /

Consequently the selfadjoint expression:

-ΔM - (ΣDi(bt)+aΔ—u=0
\i = l / Mθ

is oscillatory. A contradiction now follows from Theorem 2.
Corollary 7 extends a pointwise theorem first established by Swan-

son [14].
Finally, we consider some possible extensions to selfadjoint

operators of a more general type, specifically to those generated by
expressions of type:
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Lu = Σ ( " l ) ' Σ D'(aaβD"u).
ί=0 | α | = | β | = t

Assumptions can be made on the coefficients of the lower order
derivatives which lead to the previously considered situations. As an
illustrative example we consider the following:

COROLLARY 8. The operator formally defined by:

m

Lu = Δ2M - Σ D i(α ί/DyM)-αoow,

is nonoscillatory ifm>4 and for some nonpositive function - μ0 we have:
(i) (αl7 (x))= ~ μo(x)I for all \x\ sufficiently large where I denotes

the identity matrix and,
(ii) for some sphere R, μo£ Lm / 2(Ω- R); (αo o)+e Lm / 4(Ω- R),

Proof If L is oscillatory, then given any sphere Ru there exists a
domain F CΩ- Rx and a function u G H°2(F) such that

0= ί ί(Δw)2+ Σ a.D^D^-aooU2} dx
JF I ι,/=i J

M ) 2 - μ0 Σ (D,uf-

But, by Sobolev's inequality [3],

f μ0 Σ Ψiu)2 fk C| |μo |U(Ω-Λ,) ί {Au)2dx
JF ι=ι JF

for some constant C. Consequently,

The result now follows from Theorem 2.

Added in proof. The nonoscillation theory of elliptic equations of
higher order has also been recently considered in the paper "Nonoscilla-
tion criteria for elliptic equations of order 2m" (submitted for publica-
tion) by E. Noussair and N. Yoshida. There is a small overlap between
their results and ours.
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In conclusion, the author wishes to thank the referee for his
comments and suggestions.
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