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ON THE ROLE OF AN ABELIAN PHASE GROUP
IN RELATIVIZED PROBLEMS
IN TOPOLOGICAL DYNAMICS

DougrLas McMAHON

In this paper we are concerned with transformation groups
having compact Hausdorff phase space. This paper is an out-
growth of an example that answers negatively the well-known
question, must a proximally equicontinuous minimal set with
abelian phase group be locally almost periodic; see Examples 3.1
and 3.3.

In §2 we associate with each countable or finite group T a function F
from X XS onto T such that F(x,ss')= F(x,s)F(xs,s'), where X =
[I7 {0, 1} and S is the direct sum L5 {0, 1} given the discrete topology. And
we associate with each transformation group (Y, T) the extension
(X XY,S8) of (X,S) defined by (x, y)s = (xs, yF(x, s)). If (Y, T) is mini-
mal, then (X X Y, §) is minimal; and if in addition, ¢: (Y, T)— (W, T)is
a homomorphism, then ¢ =identityx ¢: (X X Y,S)—=> (XX W,S) is a
homomorphism and shares many of the dynamical and topological
properties of ¢. For example, ¢ is proximal iff ¢ is and ¢ is distal iff ¢
is. This indicates that for many relativized problems one may assume
that the phase group is abelian (or indeed LI{0,1}) without loss of
generality. There are a great many properties that ¢ and ¢ may share, we
study some of those properties that are of particular importance in the
structure of minimal sets and homomorphisms in general.

The association we use in §2 is developed in a more general setting in
§1. This general setting allows us to give an example of a proximally
equicontinuous minimal set with abelian phase group and connected
phase space that is not locally almost periodic, see Example 3.3.

I would like to thank T. S. Wu for his helpful suggestions.
This paper was announced in [4], where a slightly different point of
view is taken.

DEFINITIONS AND NOTATION. Suppose ¢:(X,T)—(Y,T) is a
homomorphism of minimal sets. Define R(¢)={(x,x): ¢(x)= ¢ (x)}.
The relativized regionally proximal relation is Q(¢) = {(x, x'): for some
nets (x, x,)€ R(¢) and ¢, in T, lim(x,, x.)t, = (x,x) and lim(x,, x,) =
(x, x")}; the relativized proximal relation is P(¢)= R(¢)N Py, where
Py = P ={(x,x’): for some net t, limxt, =lim x't,} is the proximal
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relation on X; the regionally proximal relation on X, Qx = Q equals
Q(¢) when Y is a singleton. The relativized distal structure relation,
Si(¢), and the relativized equicontinuous structure relation, S,(¢)=
S(¢), are the smallest closed invariant equivalence relations containing
P(¢) and Q(¢) respectively. We say ¢ is proximal iff R(¢)CPx. ¢ is
distal iff R(¢)N Px = P(¢) = A, the diagonal of X. A cldsed invariant
equivalence relation, R, on X is called proximal or distal if the induced
homomorphism (X, T)— (X/R, T) is; so R is a proximal equivalence
relation iff R C Py, and R is a distal equivalence relation iff R N Py = A.

1. The basic idea for the construction in this section is as follows.
Given homeomorphisms «a, B of a compact Hausdorft space Y, take two
copies of Y, (i.e. {0, 1} X Y), and define homeomorphism 6, and 6; on
{0, 1} x Y by (0, y)8. = (1, ya), (1,y)8. = (0, ya™"), (0, y)6, = (0, yB), and
(1,y)0, = (1, ya ' Ba). One can check that 6,6, = 6,6,.

One could take the more general approach of assuming 6, was
defined by (0,y)6., = (1, ya), (1,y)6. = (0, ya') for some homeomorph-
ism a'of Y. Now with 6, defined so that 6,(0, y) = (0, yB), in order that
0.0; = 6,6, one must define,

(1,y)6, = (1,y)6.'0:6, = (0, ya ")0,0,
=(0,ya'B)0. = (1, ya 'Ba).

Then (1,y)6,0.'=(1,y)6.'6,. .Also

0,y)0:0.'= (0,yB)6." = (1, yBa"™")

while (0,y)0.'6; = (1, ya"")6; = (1, ya'"'a 'Ba). So 6.0, = 6,0, iff
Ba'"'=a"'a'Ba iff Baa' = aa'B. So aa’' =y in a homeomorphism of
Y that commutes with B, that is, a'= a 'y differs from «™' by a
homeomorphism that commutes with B. Conversely if y is a
homeomorphism of Y that commutes with B, define (0, y)8, = (0, yy),
(1,y)6, =(1,y), define (0,y)6% = (1, ya), (1,y)8% = (1, ya '), and define
0,9)0, = (0,yB), (1,y)0; = (1,ya'Ba), then 6,075 =076, 6, =070,
and 6,0, = 0,60%6, = 6% 6,0, = 6%6,0, = 0,6, Thus the general, 0, is
easily derived from the more special, 6%; we will not consider this
particular generalization in what follows.

To generalize from two homeomorphisms to a countable number,
consider a countable set {a,}7 of homeomorphisms of Y and let
X =117{0,1}. Define 6:XxY—->XxY by (0,L-),y)0 =
(14, L, L, -+ +), yay) and ((1, L, - -+), y)0,=((0, L, - - ), yai'). Then define
6, by
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(0,0,15,-++),y)0:= (0,1, L5, - - -), yar2)
(0,1,5,--+),y)0:= (0,0, I, - - -), ya3')

(1,0, L, -+ ), y)0,=((1,1, 5, - ), yai ' araxy)
(1,1,0,--4), )6, = ((1,0, 5, - - ), yai' a7 ' ay).

One would define 6; similarly, for example

((0,0,0,1,,--+),y)0,=((0,0,1, 1, - - - ), yas)
((0,0,1,L,---),y)6:=((0,0,0, L, - - - ), ya5")
((1,0,0,0,---), y)0:= ((1,0,1, I, - - - ), ya i azaxy)

(1, 1,0,0,---), y)0:= (1, 1,1, L, - - -), yai'a; asasa;).

For each n, 6, could be defined similarly and one could check that
6.0,, = 6,,0.,.

To generalize it one step further, for n =1,2,---, let G, be a
compact Hausdorff topological group and for each n let (G, X Y, G,) be
a transformation group such that (g, y)h = (gh, ¥.(g, y,h)) where
g8 h€G,y€EY,and ¢, is the projection onto Y of (g, y)h. (To insure
the continuity of the action of each s in § on X defined below, the phase
group G, must retain its topology in the above.) Let e denote the identity
of G, for all n, let X =1I;_, G,, and let x: € X be defined by xi(n)=nh
and x3(i)= e if i# n. Extend the action of G, on G, X Y to X X Y by
(x, y)h = (xx}, (g y, h)) where g, is the nth coordinate of x and
h € G..

Now define (x,y)6,=(x,y)g:'g:' "~ g, 1hg.,1 -8 where x=
(g1, 8»-+) and h € G,. Note the projection of (x,y)8% onto X is xx.

If we let G, =Z, and the action of (G, x Y, G,) is defined by
0,y)0=(0,), (1,y)=(Ly), (0,y)1=(1,ya), and (1, y)1=(0,ya"),
then we have the more specific construction mentioned above for a
countable number of homeomorphisms with 6, = 6,,.

We now show that 0.6/, = 0/,6, where f€ G,, h € G,, and m # n.
Let m > n, then

((x, y)00)00 = ((x, )08 " -~ gtk )" -+ gl fgm-1 - (8:h)8ar -~ &1
= (6, y)g' galihga i gigi gl li(gah)!
8w [ (8ah) 8 8
=(6y)git  gatiga g fgmr  (8ah)gnr 8
= (x’ )’)g?l e g"nl_lfgmﬂ SRR SRR g]gl—l . g;l]hgnil e gy
=(x,y)0,0,.



496 DOUGLAS McMAHON

Now clearly 0% is a homeomorphism of X X Y, 6,0/, = 0%, 6: is the
identity, and (0%)'= 6! . The group generated by the {07} is group
isomorphic to the direct sum G, ={x € X: x =(g,85""), g&.=¢€
except for finitely many n’s}. Let S$=1IG, be given the discrete
topology, then (X X Y, S) is a transformation group, where s € S acts on
(x,y) by (x,y)s = (x,y)8% - - - 0% where s = x5 .- x&,

Note the projection Il of X X Y onto X is an open homomorphism
of (X X Y, S)onto (X, S); (X, S)is an equicontinuous minimal set; and if
G, is abelian for all n, then S is abelian. Also for fixed x and s,
F(x,s): Y=Y defined by the equality (xs, yF(x,s))=(x,y)s is a
homeomorphism of Y and for s,s' € S, F(x, s)F(xs,s") = F(x, ss') as it
must for (X X Y, S) to be a transformation group.

2. From 2.2 onward, we are considering minimal transformation
groups only.

Let (Y, T) be a transformation group with T countable or finite. Let
{t.}.en be an enumeration of the elements of T with each ¢ in T repeated
an infinite number of times, i.e. {n: t, = t} is infinite for each ¢ in
T. Now let G,=2Z,={0,1}, 1+1=0, and let the action of G, on
G, XY be (0,y)0=(0,y), (1,y)0=(1,y), O, y)1=(1yt), (I,y)1=
(0, yt."). Define (X X Y, S) as in §1 and note that the action is (x, y)s =
(xs, yF(x,s)) and F(x,s)€ T. This is clear since if x = (x(1),x(2),---)
and x, is the element of S defined by x,(i)=0 if i# n, x,(n) =1, then
(x, y)xn=(xxp, yt;7*O g, 50 0% D 5 ®) where 1% =1, if x(n)=0,
tr=1t,"if x(n)=1. (Clearly F is independent of Y.)

Now let (W, T) be a transformation group and form (X X W, S) in
the same manner as (X X Y, S) was formed (i.e. take {z,} to be the same
enumeration — take the same F). If ¢: (Y, T)—=(W,T) is a
homomorphism, then it is easy to show that ¢: (X X Y,S)—= (X X W, S)
defined by ¢(x,y)=(x,¢(Y)) is a homomorphism. Note for x € X,
(v, ¥)E R(¢)iff ((x,y),(x,y") € R(¥). We will show that there is a very
close relationship between ¢ and .

Suppose x € S and x(n) =0 for n > M, then for n > M the action of
X, €S on (x,y)is (x,y)x,= (xx,, yi't.f) where { = t;{* -+ - ;2. Sup-
pose in addition that ¢t € T, and consider fti™', since ftf™' = t, for some
increasing sequence of n’s in N with n > M, it is clear that for y € Y,
(x, yt) E cls[(x, y)S]. Thus we have the following lemma.

LeEMMA 2.1. Letx € S, t € T, then for some net s, in S, and for all y
in'Y, (x,yt)=lim(x, y)s,.

Note from this it is clear that (X X Y, S)is minimal, if (Y, T)is. For
the remainder of this section we are considering only minimal sets.
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ProrosITION 2.2.
(I) For x, x’€X, if ((x,y),(x'y")E Pxxvs) then x =x' and

(y, y’)ue Py
(ii) For x €S, if (y,y')E Pyv.ry, then ((x,y),(x,y) € Pxxv.s).

Proof. If (x5, 9),(x",¥) € Pxxvy.s) then (x,x")=
ITxII((x,y),(x',y") € Pixs,= A and thus x = x'. And since action by s
in S$ has the effect on the Y-coordinate of an action by some ¢ in T, we
have that (y,y') € Py. 1.

The second statement for x € S follows from Lemma 2.1.

CoRrOLLARY 2.3. ¢ is a distal homomorphism iff ¢ is.
PrROPOSITION 2.4. ¢ is a proximal homomorphism iff i is.

Proof. Suppose R(¢)= P(¢). If ((x,y),(x’,y") € R(¥), then x =
x' and so we may take a net s, with ((x,y),(x',y"))s, = (e, ¥),(e,y") E
R(¢) for some y,y'€ Y. Now (y,y)E R(¢)=P(¢) and e €S, so
((e, ¥),(ey")) € P(y). This implies ((x,y),(x',y") € P(¥), (x = x'), and
thus R(¢)= P(¢) and ¢ is a proximal homomorphism.

Now suppose R (#) = P(#) and (y,y) € R (). Then (e, y), (e, y)) €
R(#)= P(#). Then by 2.2, (y.y) € P(e).

ProrosiTioN 2.5. For  each x € X, (v, y)E Q(¢) iff
((x, ), (x,y)) € Q).

Proof. If (y,y") € Q(¢), then for any neighborhoods U of x, V of
y, and V' of y’ there exists x’€ SN U, (y,y )€ VX V'NR(¢), and
t € T such that yt € V and y't € V. Now by 2.1 there exists s € S with
((x", 9), (x",3)s € (U X V)x(U X V) while ((x,9), (x",y) €
(U V)X(Ux V)N R (&), thus ((x,y),(x,y) € Q&)

If ((x,y),(x,y") € O(¢), then since an action by an s in S has the
effect on the Y-coordinate of an action by some ¢ in T, it is clear that

(y,y)E Q(e).

ProPoSITION 2.6.
(1) FOI’ X in X’ (yv y’) € Sd(‘P) ’ﬁ: ((X, )’), (X, y’)) € Sd(d/)
(ii) For x in X, (y,y") € S.(¢) iff ((x,y),(x,y) E S.(¥).

Proof.

(i) S.(¢) is generated by letting Ci(¢)=clsP(¢), E(¢)=
E(C\(¢)), where E(C) is the smallest equivalence relation containing
C, Cyi¢)=clSE,, E,(¢)=E(Cy¢)), and in general for any ordinal
A, Ci(@)=cls(U{E,(¢): u <A}), E,(¢)= E(C.(¢)). This gives a chain
of sets which ends when C,(¢)= E,(¢)= S,(¢).

First note that if ((x, y), (x', y")) € S.(¢¥), then x = x'. By 2.2, for all x
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in X, (y,y)Ecls P(¢) iff ((x,y),(x,y")) Ecls P(¢); that is for all x in X,
(v, y)E Ci(¢) iff ((x,y),(x,y")) € Ci(¢¥). Suppose that for u <A we have,
for all x in X, (y,y") € C.(¢) iff (x,¥),(x,¥") € C,(¢). It follows easily
that for w < A and forall x in X, (y,y") € E,(¢)iff (x,y),(x,y") € E.(¥)
and then for all x in X, (y,y') € C\(¢)iff ((x,y),(x, y") € C,(¥). Thus (i)
follows.

(i) Is proved in a similar manner.

CoroLLARY 2.7. S(¢)=R(¢) iff S(¥)= RW).

ProrosiTiON 2.8. For x € X, (y,y') is an almost periodic point in
(YXY,T) iff (x,y),(x,y’)) is an almost periodic point in ((X X Y)X
(X XY)S).

Proof. Suppose (y, y’) is an almost periodic point in R (¢). First we
show that ((e, y), (e, y')) is an almost periodic point. If ((x, y),(x, y")) €
cls(((e,y), (e, ¥"))S), let s, be a net in S with ((e y), (e y'))=
lim((x, ¥), (x, y'))s, for some y, y' in Y, then (y, y’) € cls((y, y")T), since S
acts on the Y-coordinate by elementsof T.  So (y, y') € cls((y, y)T). Let
U, V, V' be neighborhoods of e, y, y’ respectively. Then by 2.1 for some
sES, ((6y)(6,y)s€(UxV)X(Ux V') and so for some A,
(. $), (x, 95 € (U X V)X (UX V). So ((ey)(ey)E
cIs(((x, ), (x, ¥))S) and is therefore an almost periodic point.

Now ford € SC X andany y*E€ Y, (e,y*)d =(d,y*t) where t € T
depends on d. By 2.1, ((e,yt '), (e, y't ")) E cls(((e, ¥), (e, y'))S) and so
((d,y).(d,y)=((e,y't7), (e, y't ))d E cIs(((e, y), (e, y"))S). And since S
is dense in X, ((x, y),(x, y") € cls(((e, y), (e, ¥"))S) for x € X and so is an
almost periodic point.

Now suppose ((x, y),(x, y')) is an almost periodic point in R(¢). We
will first show ((e, y), (e, y")) € cls(((x, y),(x,y"))S) and so is an almost
periodic point in R ().

For some y,y" in Y, ((e,¥),(e,y") Ecls(((x,y),(x,¥"))S). Then
(6, ), (x, y)) E cls(((e, ¥), (e, ¥))S). Now let U, V, V' be neighborhoods
of e, y,y' respectively. Then for some s € S, ((e,¥), (e, ¥"))s € (X X V)X
(X x V') and ((e, y), (e, ¥'))s = ((s, yt*), (s, y't*)) for some t* in T. For
some integer M, x,€ U for n>M, so take n>M with ¢, =%
then (e, 9). (e NXLEUX V)X (UX V). So  ((e,y),(ey)E
cls(((x, y),(x,¥"))S) and so is an almost periodic point.

Now suppose ((e, y), (e, y)) is an almost periodic point and (y, y') €
cIs((y,y)T). Then by 2.1, ((e9). (e )€ cls(((e,y). (e y)S). So

((e,y), (e, y)) Ecls(((e, ¥), (e, §))S) and therefore (y,y") € cls((y, y)T)
Thus (y, y’) is an almost periodic point.

COROLLARY 2.9. The almost periodic points in (R(¢), T) are dense
in R(¢) iff the almost periodic points in (R(¢),S) are dense in R(¥).
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We note that the restriction in 2.2 (ii) that x be an element of S is
necessary. For example let (Y, T') be a minimal set with T = integers and
for some (y,y') € P and for some index @ on Y, the set of negative
integers is contained in the set {t: (y, y')tZ a} (see [6] for an example of
such a space). Now define x by

0 if ¢t,=0
|
1 if ¢,>0.

Then ((x,y),(x,¥")) & P xxvy.s, since the effect on the Y-coordinate is only
that of negative integers. Note that in view of 2.4, the smallest invariant
closed equivalence relation on (Y, T) containing (y, y') is not proximal
(i.e. is not contained in P, p).

Up to now we have looked at a homomorphism ¢: (Y, T)— (W, T)
and the corresponding homomorphism Y =id X ¢:
(X XY,S)—= (X x W,S). Now we will consider a minimal set (Z, S) such
that the diagram

(X% Y,8) -1 (X x W, 5)
a\ /B
(Z,5)

commutes. Now R(¢)={(y,y"): ¢(y)=¢(y)}, R¥)={((xy)(x,y)):
x€ X, (y,y)E R(¢)}, and R(a) C R(¢). This situation is treated in the
following proposition, note (W, T) is isomorphic to (Y/R(¢), T) and
(X X W, 8) is isomorphic to (X X Y/R(¥), S).

ProposiTION 2.10.  Suppose R is a closed invariant equivalence
relation contained in R (¢). Then the set R’ ={(y, y'): ((¢,y),(e,¥")) €E R}
is a closed invariant equivalence relation contained in R(¢) and the
associated equivalence relation R* ={((x,y),(x,¥"): ((e,y),(e,¥y") ER
(i.e. (y,y") € R")} equals {((x,y),(x,y"): (x",y),(x", y")) € R for every x’
in X} and the natural homomorphism of X X Y/R*— X X Y/R is such
that the fiber over (e,y)/R is a singleton, for y in Y. Moreover for s
in S, R'={(y,y): (s y)(sy)ER} and R*={((x,y),(xy):
((s,y),(s5,y)) € R}.

Proof. Fix s in S, we first show that

{(Ce, y), (6, y)): (5, ), (s, y) € R}
={((%y),(x,y): (x', ), (x",y") € R for every x" in X}.
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(Note both of these sets are closed.) Let ((s,y),(s,y")) € R. Then for
S'ES, ((s,¥),(sy)s"=((ss', yt),(ss’,y't)) ERS =R for some ¢t in T
and by 2.1

((ss’,y),(ss’,y))=((ss',ytt "), (s,s',ytt™")Ecls R = R.

Since § = sS isdense in X, ((x’,y),(x’,y') € R for x"in X. So they are
equal. Also for fixed s in S, the set

{(»y): (5 9), (s yNERI={(y,y"): ((x, ¥),(x,¥")
€ R for every x in X}.

To show that R’ is invariant, let t € T and suppose t, =t"". If
(»y)ER’, then ((ey),(e,y)ER, so ((x.y),(x»y))ER and
((xm ¥), (X0 yNx2=((e,y1),(e,y"t)) E R; thus (yt,y't)ER" and R’ is
invariant. Clearly then R’ is a closed invariant equivalence relation.

Clearly R * is a closed invariant equivalence relation on X X Y and
R*CR. Now for s in S, ((s,y),(s,¥") € R* iff ((s,y),(s,y')}E R, so the
homomorphism X X Y/R*— X X Y/R has the fiber over (s, y)/R equal
to {(s, y)/R*}.

CoroLLARrY 2.11. If R is a distal (closed invariant) equivalence
relation, then R = R *.

Now suppose R, C R,C R(¥) and consider the diagram

XXY— XX Y/Rl——é—)XX Y/R,

N I

XXY/RT—— XX Y/R}

where a, 3, 6, 8* are the homomorphisms induced by the equivalence
relations. Note that if ¢ is a distal homomorphism, then R, and R, are
distal equivalence relations and so R,= R}, R,= R% and § = §*. Also
clearly 6 is a proximal homomorphism iff §* is. Considering S as a subset
of X and any closed invariant equivalence relation R C R(¢), we see
that the restriction of the induced map to (§ X Y/R*,S)— (S X Y/R, S)
is an isomorphism and for s in S the map from {s}X Y/R — Y/R’
defined by (s,y)/R — y/R’ is a homeomorphism of topological spaces.
Now suppose 6* is open and let &' be the induced homomorphism
from (Y/R{, T) onto (Y/R}, T), then &’ is open and so id X §": X X
(Y/R})— X X (Y/R}) is open, where id is the identity on X. We may
identify &* with id x &', since for R C R(¢) the map ¢ of X X (Y/R')
onto (X X Y)/R defined by (x, y/R')+» (x, y)/R is an isomorphism. Then
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&* is open. This illustrates one approach to studying the topological
properties of 6* in comparison with 8. Note that for the purpose of
studying the relationship between 6 and 6* we may assume that
(X XY, S)isisomorphic to (X X Y/R*,S), (since ¢ is an isomorphism).
We now compare some of the dynamical properties of § and &*.

ProrosiTioN 2.12.  If & is distal, then &% is distal.
Proof. Note 6 is distal iff R,N P C R,.

Now suppose ((x, y),(x', y)) € R% N P. Then by definition of R ¥ and
by 2.2, ((e,y),(e,y"))E R,NPCR, and so ((x,y),(x,y )€ R¥. Then
R¥NPCR?* and 6* is distal.

ProposITION 2.13. If the almost periodic points in (R(8),S) are
dense, then the almost periodic points in (R(8%),S) are dense.

Proof. Note R(6°a)= R,and R(6*)= R} because of our identifi-
cation of (X X Y, S) with (X X Y/R%,S). Let ((¢,y),(e,y')) €E R(8°a),
o (a(e,y),a(e,y)ER(S). Now (axa)'(axa((ey)(ey))=
{((e,¥),(e,¥")} and since a X a is a closed map we have for any open
neighborhood U of ((e, y), (e, y')) there exists a neighborhood V* of
aXa((ey)(ey)) with V=(aXa)'V*CU. Now there exists an
almost periodic point in V* N R(8) and so there exists an almost peri-
odic point, ((x,y),(x,y")), in VN R(°a) CUNR(S°a)=UNR,. As
shown in the proof of 2.8, ((e, y), (e, ¥")) € cls(((x, ¥), (x, ¥"))S) and so is
an element of R,. Thus ((x,y),(x,y")) € R5= R(6*) and the almost
periodic points are dense.

In working with the results of this section one should keep in mind
that even if (Y, T) and (W, T) are not isomorphic, (X X Y,S) and
(XX W,S) may be isomorphic. For example suppose « is a
homeomorphism of Y = W and for T = integers, (Y, T) is defined by
yn =a"(y) and (W, T) by wn = a "(w). Then the map (x,y) P (xx*,y)
is an isomorphism of (X X Y, S) onto (X X W, S) where x* € X defined
by x*(n)=1 for all n. See [3] for an example in which (Y, T) and
(W, T) are not isomorphic.

Now suppose (X X Y, S), (X X W, S) are minimal sets, (X and S as
usual) the first projections 7 of (X X Y, S) onto (X, S) and of (X X W, §)
onto (X, S) are homomorphisms, and a: (X X Y, S)—=> (X X W,S) is a
homomorphism. Then there is an isomorphism a *: (X, §)— (X, S) such
that the diagram

XXY -2, XX W
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commutes, and «a *(x) equals the product of a *(e) and x, where e is the
identity of X. We define a* as a*(x)=moa o7 '(x). To show a* is
well defined consider (x, y) and (x, y') in 77 '(x) and let s, be a net with
(x,y)s, = (x,y'). Then xs, = w((x,y)s,)— 7(x,y') = x and since S is a
subgroup of X acting by right multiplication, x’s, — x' for every x’ in
X. Then

m(a(x,y)) = lim[(7 °a(x, y))s\]

=moa(lim(x,y)s,)=moa(x,y’).

So a* is well-defined and is clearly a homomorphism. Now for x € X,
x =lims, for some net in S, so a*(x)=a*(lims,)=Ilima*(s,)=
lim(a*(e))s. = a*(e) x, where e is the identity of X. That is the effect
of @* on x is simply to multiply x by a*(e).

Note however this difficulty might be overcome by working with
pointed transformation groups (y,, Y, T), y, € Y, and associating it with
((e, o), X X Y, S); in this case a * is the identity map on X and the map
a': Y — W defined by a'(y) = ma(e, y) where 7, is the projection onto
the second coordinate, is a homomorphism of (Y, T') onto (W, T) since

(e,a’(yt)) = a(e, yt) = a(lim(e, y)x,)
=lim((a(e, y))x.) = (e, (moa(e, y))t)
= (e, a'(y)1),

where x, is a sequence in S converging to e and ¢, = ¢ for all x,.

We have showed the close relationship between the homomorphism
¢: (Y, T)—= (W, T) and the homomorphism ¢:(XXY,S)— (W X
W, T) for some basic properties of homomorphisms. Below we mention
some other properties that might be investigated. First we note that if
(Y, T) is a regular minimal set, then 6: (X X Y, S)— (X, S) is a regular
homomorphism (see [8] and [9]). Also if ¢ is a regular homomorphism,
so is . One might also define a 7-topology on (Y, T') and on the fibers
of 8 and define a group, g(w,), for factors (W, T) of (Y, T) as {y €
Yu: ¢(y)= w,}, where u is an idempotent in the semigroup Y, such a
group may correspond to a similarly defined group of (X X W, S) as a
factor of (X X Y, S), [2]. One may also look at p-universal minimal set
relative to a fixed minimal set and a property p or at questions of relative
disjointness [9].

Section 3.

ExampLE 3.1. Proposition 2.4 permits us to give an example to a
well known question. Let W be a singleton and Y be the circle acted on
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by two homeomorphisms, one an irrational rotation, «, so (Y, T) will be
minimal, and the other, B, the map y — >, where y = ¢*™, so (Y, T)
will be proximal (i.e. ¢: (Y, T)— (W, T) is proximal), T is the subgroup
of the group of homeomorphisms of Y generated by the two
homeomorphisms above. Then ¢: (X X Y,S)—=(X,S)=(X X W,S) is
proximal. So (X X Y, §) is proximally equicontinuous, S is abelian, but
(X XY, S) is not locally almost periodic since it contains no distal points

[S].

ExampLE 3.2. In this example (Y, T) is equicontinuous but (X X
Y, S), as defined in §2, is not equicontinuous.

Let Y = Z,, T = Z and the action be defined by (z,t)— z + ¢t mod 3.
Let the enumeration of

0 if n=0mod3
T={t};., be t, = {1 if n=1mod3
2 if n=2mod3
With (X X Y, S) as in §2, note
(e,0)x},.1— (e, 1)
and
(e’ 1)(x;n+1)_I = (e, 1)X;n+1_) (e, 2),

we see (e,0) and (e, 1)x},., are moved near (e, 1) by xi,., € S, and so (e, 0)
and (e, 2) are regionally proximal.

Note that the fibers of the projection 7: (X X Y,§)— (X, S) are
finite, so this example shows that a finite-to-one extension of an
equicontinuous minimal set may be distal without being equicontinuous
even when the phase group is abelian. For the details involved in this
question and for previous examples see [8] and [6]. In [11] Wu has shown
that if a minimal set (Y, T) is a finite-to-one extension of an equicontinu-
ous minimal set with connected phase space, then (Y, T) is equicontinu-
ous (he proves this under some additional restrictions which are unneces-
sary).

In light of the role that connectedness plays in the above, the
question occurs whether a proximally equicontinuous minimal set with
abelian phase group and connected phase space would have to be locally
almost periodic. To answer this question and to illustrate further the
ideas of §1, we provide the following example.

ExampLE 3.3. Assuming the notation of §1 let G, =Y = unit
circle in the complex plane and let «, 8 be as in Example 3.1. Define an
action of G, on G, X Y by (g',y)g =(g'g, yt.gt.'), where

a if n iseven
t, =

B if n isodd
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Form (X X Y, S) as in §1 and note that by taking g € G, = Y such that
a(y)= gy (multiplication) for every y, we see lim[(e, y)x5.] = (e, a(y))
and so (e, a"(y)) E cls((e, y)S) for every n; thus (X X Y, S) is minimal
since the projection 7 of (X X Y, S) onto (X, S) is open. Now to show
that 7 is a proximal homomorphism, we need only show that for y, y’ in
Y, (e, y) and (e, y') are proximal. Fix y, y' € Y with r'>r where y = >,
y'=e’™; i.e. y' is on the arc going clockwise from y to 1.

Now B fixes 1 and moves all other points counter-clockwise while 8
fixes 1 and moves all other points clockwise. Take g such that gB(y) =1,
then B moves y clockwise toward 1 with y’ in between; g rotates B(y)
and 1 to gB(y) =1 and g with gB(y’) on the counter-clockwise arc from g
to 1; and B! moves g counter-clockwise toward gB(y) with gB(y’) in

between; in effect, B7'(g(B(y))) and B'(g(B(y"))) are closer than B(y)
and B Now (e, y)xt...— (e, B7(8(B(¥))) and
(e, y)x3,.1— (e, B7'(2(B(y"))). Since the y and y’ were fixed but arbit-
rary (i.e. g depends on y and y’), it is clear that (e, y) and (e, y') are
proximal.

Added in proof. B. Weiss and H. Furstenberg now have an example
of a minimal set with X metric and T the integers that is proximally
equicontinuous but not locally almost periodic (personal communication).
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