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SOME RESULTS ON NORMALITY
OF A GRADED RING

WEI-EIHN KuaN

Let R =@,-oR: be a graded domain and let p be a
homogeneous prime ideal in R. Let R, be be the localization of R
at pand R, ={r/s|rs; €ER: and s;&€p}. f R, N(R —p)# T,
then R, is a localization of a transcendental extension of R,.
Thus R, is normal (regular) if and only if R is normal
(regular). Let Proj(R) = {p|p is a homogeneous prime ideal and
PpS®i-oRi}. Under certain conditions a Noetherian graded
domain R is normal if R, is normal for each p € Proj(R). If
R =®.=0R; is reduced and Fo={r./u;|r,u; ER, and uw, €U
where U is the set of all nonzero divisors} is Noetherian, then the
integral closure of R in the total quotient ring of R is also
graded.

1. Introduction. Let R =@.; R, be a graded integral do-
main. Let Spec(R) be the set of all prime idealsin R. Let R, =@ R..
R, isanidealin R. Anideal 2 in R is said to be irrelevant if R, CV¥,
the radical of A. Let Proj(R) = {p € Spec(R)|p CR. is homogeneous
and nonirrelevant}. For each p € Spec(R), let R,={r/s|, s€ R and
s#Z p}, and for each homogeneous prime ideal p, let Ry, = {r./s;|r, s € R,
and s; & p}. (Note: Ry, in [1] is defined for p € Proj(R) only.) According
to the terminology of Seidenberg [9], R, is called the arithmetical local
ring of R at p and R, the geometrical local ring of R at p. I prove that
if R, N (R —p)#J then R, is the ring of quotients of a transcendental
extension of R, relative to a multiplicative set, R, is normal (regular) if
and only if R, is normal (regular); see Theorem 2. In the case of an
irreducible projective variety V over a field k in a projective n-space P;,
V/k is normal if the geometrical local ring of V at each p€E€ V, Op(p) is
integrally closed. V is arithmetically normal if the ring of strictly
homogeneous coordinates k[V] is integrally closed. The latter implies
the former. For the converse, various cohomological criteria are de-
veloped; see [3], [8], [9]. I attempt to study the normality of a graded
domain R if R, is normal for every p € Proj(R). In this paper, I also
obtain the following theorem: Let R be a Noetherian graded domain, say
R = Ry[x;, -+, x,] and x,,- - -, x, are of homogeneous degree 1. Assume
that R, contains a field k over which R, and k(x,,-- -, x,) are linearly
disjoint and separable. Let B be the kernel of the canonical map from the
polynomial ring R,[ X, - - -, X, ]. Then R is normal if R, is normal, R, is
normal for every p € Proj(R) and coh.d.8B - K[X,,- -+, X,]<n — 1, where
K is the quotient field of R,.
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In the §4, we prove that under certain conditions on a graded ring R
(not necessarily integral domain) the integral closure R of R in the total
quotient ring of R is also graded; see Theorem 6.

Our references on the elementary well known facts about graded
rings can be found in [1] and [10].

I would like to thank Professor A. Seidenberg for many valuable
discussions and suggestions during preparation of the research, while I
was on sabbatical leave visiting Berkeley.

I would like also to thank the referee for his comments.

2. Normality and regularity of local domains. Let R be
a commutative ring with identity 1. Let p be a prime ideal in R. By
height of p, we mean the supremum of the length of chains of prime
ideals pozZ p, Zp: Z - £p. with p, =p and denote it by ht(p). Let
R = @iz R: be a graded integral domain. Let K be the quotient field of
R. Wesay that R is integrally closed if R is integrally closed in K. Let
K, ={flgli—j=q;f ER, g ER;}. K, is afield, =, K, is a subring of
K and the sum is direct, where Z stands for the set of integers. Elements
in K, are known as homogeneous elements of K of degree q. The
following theorem was originally proved in [9] for projective varieties.
We observe that the same holds true for non-Noetherian graded domain
also.

THEOREM 1. Let R = @~ R, be a graded domain. Let p € Spec(R)
be nonhomogeneous. If ht(p)=1 then R, is integrally closed.

Proof. Let p* be the ideal generated by all the homogeneous
elements of p. By [10, Lemma 3, p. 153] p* is a prime ideal and
pZp* =0. Since ht(p)=1, p* = 0. Therefore p contains no homogene-
ous element. Thus every nonzero homogeneous element u isin R —p. It
follows therefore P,c» K, CR,. Let f € K be integral over R,. Then
there exists h € R — p such that fh is integral over R. It follows from
[10, Theorem 11, p. 157] that each of the homogeneous components is
integral over R. By the preceeding, each homogeneous component of
f-h is in R,. Therefore f-h € R, and f € R,. Thus R, is integrally
closed.

Let y € K, be any nonzero element. If £ € K, then §/y? € K,.
Moreover R CKy[y], K = K,(y), y is transcendental over K,, K, = Kyy*
and @, K, = K,[y,1/y]. We have the following theorem.

THEOREM 2." Let R =20 R with that R,#0. Let p be a
homogeneous prime ideal such that there exists an element r; € R, —p.
Then

* Professor A. Seidenberg remarks that the present Theorem 2 strengthens Lemma 2 of [9; p.
618] and corrects its proof.
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(@) K, is the quotient field of Ry, and K, N R, = R,.

(b) Ry, is integrally closed in K, implies that R, is integrally closed
in K.

() R,=(Ry[n])s, where S = R — p; r, is transcendental over R,

(d) R, isintegrally closed in K if and only if R, is integrally closed
in K,.

() Ry, is regular if and only if R, is regular.

Proof. By definition R CK, Let x €K, x=f/g for some
f» & €ER; and g #0. Then x = f;/g = (fi/r\)/(g/r}), since f,/r; and f;/r}
are both in R,. Therefore x is in the quotient field of R,. Thus K, is
the quotient field of R,. For the second part of (a) we need only to
prove that K, N R,CR,. Let x € K, N R,. Then x = f;/g; for some f,
g ER with g#0. On the other hand x=(r,+r,, + -+ r..)/
(St + Sy + -+ Sm) With s+ 5, +--+ 5., Zp. Then there exists an
index I+t such that sn&p. fir(si+s ot Sum)=
g(ri+r.,+ - +r.)implies that I =j, m =k and f; - s,.. = & - n... Thus
X = filg = hulsu. i.e. x € Ry,. Therefore K, N R, = Ry,.

(b) If R, is integrally closed in K,, then, since K = K,(r;) and r, is
transcendental over K, as noted in the preceeding, K, is algebraically
closed in K and Ry, is thus integrally closed in K.

(c) Asnoted in (b), r, is transcendental over R,. Let f € R be an
element. Then f = f, + f.., + - - - + f, where f; € R; for some nonnegative
integers r and n. But f = (f,/r)ri+ (fd/ v+ - -+ (fu/rDri€ R[n ]
Therefore R CR)[r,].- Thus S = R — p is a multiplicative set in Rg)[r,].
Now let f/g € R,, g € R — p. Then for some nonnegative integer ¢ and
m’

1

bbb (e ()

g g rr rt+1 m

Therefore f/g € (Rp[r])s i.e. R,C[Ry)|r])ss The other inclusion is
obvious. Thus R, = (Ry)[r])s

(d) Now, if R, is integrally closed in K, then clearly R,=
(R@lr])s, being a localization of transcendental extension of an inte-
grally closed domain, is integrally closed. Conversely if R, is integrally
closed in K, let f € K, be an integral element over R,. Then f € R,.
Thus f € R,N K, = R, and R, is integrally closed.

(e) Recall that aring A is said to be regular if A, is a regular local
ring for each maximal ideal m in A. It follows from Serre’s theorem [5;
p. 139] that A is regular if and only if A, is regular for every p € Spec(A).

If R, is a regular local ring, then by [5; Theorem 40, p. 126] the
polynomial ring R [r,] is regular. Since localization of a regular ring is
regular therefore R, = (R)[r:])s is a regular local ring.
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Conversely assume that R, = (R)[r;])s is a regular local ring. Since
Rylr] is a polynomial ring over Ry, therefore Rg[r] is R-flat.
(R Ds is Ry)lr)-flat therefore R, is Ry flat. Thus Ry, is Noetherian.
The inclusion map R, — R, is obviously a local homomorphism. There-
fore it follows from [1; 1V, 17.3.3 (i), p. 48] that R, is a regular local ring.

There are graded rings in which there are homogeneous prime ideals
p such that pN R, # R,. For example: (1) graded rings which are
homogeneous coordinate rings of projective varieties. In this case
pNR,# R, for pE€Proj(R). 2) R = R,[R,], a graded ring generated
over Ry by R;; (3) Let k[X, Y] be a polynomial ring in two indeter-
minantes over a field k. Let R=k[Y]+(X-Y)-k[X Y]. R has a
graded structure R =R, R, R, D ---withRy=k,R, =k -Y; R, =
kY?+k(X-Y), Ri=kY’+kX?’Y + kXY? etc. It follows from the
observation that (X'-Y/))’€Ry if j=1 that pN R, =0 for every
p € Proj(R).

3. Normality of a graded domain. In this section, a graded
domain R is normal if it is integrally closed in its field of fractions.

Recall [6; Theorem 8, p. 400]: Let © and £’ be two normal rings
which contain a field k. If © and £’ are separably generated over k and
if © Qi L' is an integral domain, then O ®, £’ is a normal ring.

THEOREM 3. Let R, be a normal integral domain containing a field k
such that R, is separable over k. Let R = R,[x]= Ry[x,, -, x.] be an
integral domain finitely generated over R, as an R,-algebra such that the
quotient field K of R, and the quotient field k(x) of k[x; -, x.] are
linearly disjoint over k, and k (x) separable over k. Then k|[x] is normal if
and only if R is normal.

Proof. Let X,,---, X, be n indeterminantes over R,. Let % be the
prime ideal in k[X]=k[X, -, X,] such that k[x, - -, x,]=
k[Xi, -, X,)/% and let B be the prime ideal in R,[X]= Ry[X, -, X,]
such that R = R,[X]/B. Then B-K[X]|]NR,|X]=PB and A=
B N k[X]. Since K and k(x) are linearly disjoint over k, it is well known
that A - K[X] =B - K[X]and A - R,[X] =B, [4; Corollary 1, p. 67]. We
shall use B in both R,[X] and K[X] as the prime ideal determined by
(x)=(xp--*,x.). Since R, QRuk[X]=R,[X], it follows that
Ry ®k[x]= Ro[x], i.e. Ry @:k[x] is an integral domain. It follows
from [6; Theorem 8, p. 400] that R,[x] is normal. Conversely if R,[x] is
normal, then R,[x], is normal for each p& Spec(R,[x]). Let p° =
pNk[x] for p&ESpec(R,[x]) and pN R, ={0}. Then k[x], is also
normal. Indeed let £ € k(x) be integral over k[x],. Since k[x], C
R,[x],, therefore £ € R,[x],. Thus ¢ € Ry[x], N k(x). It is sufficient to
show that Ry[x],N k(x)Ck[x],. Let S = R, —{0}. K[x] = S"'R,[x] and
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S~'p is a prime ideal in K[x]. S™'pN k[x]=p N k[x]. Since K and k(x)
are linearly disjoint over k, it follows from [4; Proposition 6, p. 92] that
K[x]sNk(x)=k[x],. Thus k[x];- D Re[x],Nk(x), and k[x], =
Ro[x],Nk(x). So &£ € k[x],- and k[x],- is therefore normal.

We shall finish the proof by showing that Spec(k[x])=
{pN k[x]|p € Spec(R,[x]) and pN R,=0}. Let q» be a prime ideal.
There exists a prime ideal Qg in K[X] such that Qx N k[ X] = qs. Indeed,
using Zariski’s terminology [10; pp. 21-22 and pp. 161-176], we consider
an algebraically closed field ) containing K and 2 is of infinite
transcendence degree over K. Let A7 be the n dimensional affine
space, i.e. AY={(as, ", a.)|a, -, a, EQ}. Every prime ideal P in
K[X] defines an irreducible algebraic variety V over K in Af. Every
irreducible algebraic variety V over K carries a generic point (§)=
(-, &)E AL over K, and P ={g(X)E€ K[X]|g(£)=0}. Let (n)=
(,-,m)E AL be a generic point of qy over k, ie. qz=
{f(X)€ k[X]|f(n)=0}. Let Q. = {F(X) € K[X]|F(n) = 0}. Then Qxis
a prime ideal and Qy N k[X]=qs Let Q2= Qy N Ry[X], Q2N R, =0
and Q;Nk[X]=qs Since ACqy © B-K[X]COr © BCQ Let
Q'= Q#BCR,[x]. Then Q' N k[x] = q. Thus each prime ideal in k[x]
is the contraction of a prime ideal in R,[x] intersecting R, at 0.

As the assertion in the last part of the proof of the above theorem
will be referred later, we would like to state it as a corollary.

COROLLARY. Let R, be an integral domain containing a field k. Let
R = Ry[x1, ", x,] be an integral domain finitely generated over R, as an
algebra such that the quotient field K of R, and the quotient field k (x) of
k{x]=k[x,- -, x,] are linearly disjoint over k. Then Spec(k[x])=
{pN k[x]|p € Spec(R,[x]) and p N R, = 0}. Moreover if R is graded with
R, as the component of homogeneous degree 0, then Proj(k[x])=
{p N k[x]|p € Proj(Ro[x])} = {p N k[x]|p € Proj K[x]}.

Proof (of the last part). Let %, %8, q,qe, and Qy be the same as those
in the proof of Theorem 3. If R is a graded domain, then both % and B
are homogeneous ideals. If q is a nonirrelevant and homogeneous
prime ideal in k[x], then so is q» Let QF be the ideal in K[x]
generated by the homogeneous elements belonging to Q. Then, by
[10; Lemma 3, p. 153], Q7 is a prime ideal and clearly QF N k[X] = qs.
Since qg is nonirrelevant, QF is also nonirrelevant, and Q7 D*B. Let
Q*=QF/®B. We have Q*Nk[x]=q. Therefore Projk[x])=
{pN k[x]|p € Proj(R) and pN R, = 0}.

Let us recall some definitions and facts: Let R = P,z R; be a graded
integral domain. R is Noetherian if and only if R, is Noetherian and R
is an R,-algebra of finite type. Let R be the integral closure of R in its
field of quotients K. Let K; be the homogeneous component of K of
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degree i as defined in §2. Then R is graded with R, = R N K,. Thus if R
is normal then R, must be normal.

Corresponding to Krull’s characterization of a Noetherian domain
being normal [7; (12.9), p. 41], we have the following theorem for
normality of a Noetherian graded domain.

THEOREM 4. Let R be a graded Noetherian domain such that

—p # D for each homogeneous prime ideal p of ht 1 in R. If (1) R, is

normal for every homogeneous prime ideal p of height 1 and (2) the

associated prime ideals of every nonzero homogeneous ideal are of height
1, then R is normal.

Proof. We first note that it follows from condition (1), Theorem 1
and Theorem 2 that R, is normal for every p€ Spec(R) and ht(p) = 1.
Let K,R and R; be the same as defined in the preceeding. Let @ € R,
a =2 ,a for some nonnegative integers m and n and « € R. Let
a; = b;/a; where j —1 =1, b; ER; and a; € R. If a, is a unitin R then
a; ER. If a; is a nonunit, then the nonzero homogeneous principal
ideal (a;)R has a primary decomposition M« q, with p,,---,p. as the
associated prime ideals. In view of [10; Theorem 9 and Corollary;
pp. 153-154] we may assume that q,’s and p,’s are homogeneous, (2)
implies that ht(p,)=1 for t=1,2,---,u. Thus R, is normal for ¢ =
1,2, -, u. o is integral over R implies that «; is integral over R, for
t=1,2,---,u. Hence o €R, for t=1,2,---,u. Therefore b;€E
N ((a)R,, NR)=MN“,q = (a;)R. Thus a; =b;/a;ER and a=
2 .a € R. R is therefore normal.

Let A = K[X,, -+, X,] be a polynomial ring over a field K. The
smallest integer d such that any chain of syzygies of the A-module M
terminates at (d + 1)th step is called the cohomological dimension of M
and is denoted by coh.d.(M). Let A C A be a homogeneous ideal such
that A # (0), # (1). coh.d.(A)=n and it is n if and only if (X, - -, X,)A
is an associated prime ideal of 2. Let [ be a form in A, and IZ K. If
: 1 =9 then coh.d.(U, ) =1+ coh.d.(¥).

THEOREM 5. Let R = .o R be a Noetherian graded integral do-

main generated over R, by nonzero homogeneous elements x,,- - -, x, of
degree 1. Assume that R, contains a subfield k over which R, and
k(x)=k(x,---,x,) are linearly disjoint and R, is normal. Assume

tr.deg,k(x)>0. Let Ry[X] = Ro[X,, -+, X.] be the polynomial ring over
R, in indeterminantes X, ---,X, and let B be the ideal such that
Ro[x]=R,[X]/B. Let A =B Nk[X], and let S = R, —{0}.

(1) If, for each pEProj(Ry[x]), Ro[x]e is normal and
coh.d.S™B < n — 1, then k[x] is normal.

(2) IfRyand k(x) are both separable over k, and if R,[x], is normal
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for all p € Proj(R,[x]), and coh.d.S™'"B < n —1 then R,[x] is normal.
3) If Ry, is normal for each p€eEProj(R) and if
coh.d.B-S'R,[X] = n—1 then R,[x] is not normal.

Proof. (1) Both A and B are homogeneous ideals, k[x] is graded.
As projective scheme Proj(R,[x]) = Proj((S 'R,)[x]) [1, Prop. (2.4.7), p.
30]. Therefore (S 'R,)[x] is locally normal, i.e. (S 'R,)[x]) is normal for
each p € Proj(S'R,[x]). Since tr.deg.S'R,[x]>0. If coh.d.S'B<
n—1, by [9, Theorem 3, p. 619], S'R,[x] is normal. Therefore
S™'R,[x], is normal for every p € Spec(S 'R,[x]). Since (S'R,)[x],N
k(x)=k[x],- as shown in the preceeding, where p° = p N k[x]. k[x], is
normal. By the Corollary to Theorem 3, Spec(k[x])=
{p°| € Spec(S'Ry)[x]}, we have that k[x], is normal for every q€
Spec(k[x]). Therefore k[x] is normal.

(2) By (1), k[x]is normal. R, is normal. It follows from Theorem
3, Ry[x] is normal.

(3) If coh.d.®B-S'R,[X]=n—1, then it is well known that for a
form [ in R,[X] prime to B i.e. B: [ =B, coh.d.(B,[):- S'Ry[X]=n.
Therefore (B,1)- S 'R,[X] has (X)- S 'R,[X] as an associated prime
ideal. Since.dim®-S'R,[X]>0, (B,])S'R,[X] has an embedded
associated prime. On the other hand, it is easy to see that
(X)ST'Ry[X]N Ry[X] = (X)R,[X]. Therefore it follows from [5,
Lemma 7c, p. 50] that (B,!/)R,[X] has (X)R,[X] as an embedded
associated prime ideal. Let (I)R,[X]=(B,1)R,[X]/B. Therefore
(I)R,[x] is a principal homogeneous ideal having (x)- R,[x] as an
embedded associated prime ideal. It follows from Theorem 4 that R is
not normal.

4. Integral closure of a graded ring. In this section, we
study a general graded ring, R = @~ R,,. Let F be the total quotient ring
of R, and let R be the integral closure of R in F. In case of a graded
domain, the integral closure R of R in its quotient field K is again graded
and R, = RN K, fori Z0. We investigate R when R is not an integral
domain. A ring R is normal if R, is an integral domain and integrally
closed in its quotient field for each p € Spec(R).

Let R=@.-. R. Let U be the set of all nonzero divisors of
R. Let F be the total quotient ring and let F, ={n/u|nE€R,
u, €ER; N U, I —j=i} These are the notations going to be used in the
sequel.

THEOREM 6. Assume U N R, # & and letu, € U N R,. Then (1) the
ring 2.c-F, is a direct sum, and @, F, = Fylu,,1/u)], F = Fylu;]v, u, is
algebraically independent over F,, and F;, = F, -u' forall i€ Z. If F, is
Noetherian then so is F. (2) F, is reduced, i.e. F, has no nonzero nilpotent
element, if and only if R is reduced. (3) If R is reduced and F, is
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Noetherian, then Fy[u,] is integrally closed in F. (4) If R is reduced and
F, is Noetherian, then R is a graded subring of .. F.

Proof. (1) It follows from the definition of F;’s that each F; is an
additive group and F; - F; CF,,. Z,c F isaring. Let fy +-- -+ f, EZ,., F.
Suppose f,+---+f, =0. Let f, =n./u, where [, —j,=m and m =
k,---,s. Let u=1II;,_u;,. Then ufi +---+uf, =0 in R, and uf,, - - -, uf.
are homogeneous elements of distinct degrees. Therefore uf, =---=
uf, =0. Thus f, =--- = f, =0, and the sum X F; is therefore a direct sum.
Let f, EF, Then f,/u*EF, Therefore f, €EF, - u* and F, =F, - u*
Hence @ic, F; = Fy[u,, 1/u,]. For any f € F,

f=(fk+-..+ﬁ)/u=%<£L,;ui;+...+,l%us]>'

Therefore F = F,[u;, 1/u;)v = Fo[us]v- u, is algebraically independent
over F, Indeed, let qu}+ aui;'+---+a, =0, where a; € F, and
a,#0. Writing a; = r,/u; with [, — j, = i, we have au}' € F,_,. Therefore
aui'=0, and a, =0 for i =0,1,---, n. Therefore u, is algebraically
independent over F,.

If F, is Noetherian, then so is F,[u,]. Now F = F,[u,]y. Therefore F
is also Noetherian.

(2) It is obvious that R is reduced implies that F, is reduced.
Conversely, we note if (x,/u7)" =0, then x,, =0. Also if y, € R, such
that y»=0 then (y,./u7)=0. Thus y, =0. Now let y be a nilpotent
element in R. Write y =y, +---+y,. For some positive integer b,
y'=(y+:--+y,) =0. Thus yt=0 and then (yi.y +---+y,)’ =0 and
so on we get yb=yb, ,=---=y?=0, so y. =---=y, =0. Therefore
y =0 and R is reduced.

(3) F, isreduced. It follows from that F = Fy[u,]y and that u, is
transcendental over F,, the nonzero divisors of F, are the same as the
nonzero divisors of R in F,. Let U, be the set of all nonzero divisors of
F,. Let u, € U,, then u, = r,/u,, where u, € U and r,, € R,. Moreover
r. € U also. Thus u, is a unit i.e. U, is a multiplicative group in
F,. Hence the total quotient ring (F,)y, = F,. Since F, is Noetherian and
reduced, therefore, F, = P}, G: where G;’s are fields. It follows from
[2; Proposition (6.5.2), p. 146] that F, is normal.

It follows from [5; Proposition (1.7.8), p. 116] that F,[u,] is normal.
Since F,|u,]is a polynomial ring in u,, and F, is reduced, therefore F,[u, |
is also reduced. F, is Noetherian implies that F is Noetherian. Then
F =@r, H;, where H,’s are fields. Thus it follows from [2; Proposition
(6.5.2), p. 146] that F,[u,] is integrally closed.

Note: Let A = Z/(4)[X], the polynomial ring in X over Z/(4). Z/(4)
is integrally closed, while A is not. Indeed, let y = (x+1)/(x — 1),
y:=1=0, y& A.
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(4) Let x €R. Since R CR,[u,], x is integral over Fy[u,]. By
(3), R CF,[u,]. The rest of the proof is practically the same argument
used in the proof of [10; Theorem 11, p. 157]. We summarize the proof:
Let xER, x=x,+---+x, k=s, x,#0 is called the initial homogene-
ous term. We want to show that each x,, i = k, - - -, 5, is integral over R
also. Since xERCZ F,, there exists u, € R, N U for some positive
integer m, such that u,x € R. Case (a), if R is Noetherian, then R[x]is
a finite R-module. There exists an integer A > 0 such that u,x' € R for
all integer i =0. Let d = u,. Then dR[x]CR. The initial homogene-
ous term dx' is dx}. dx' € R implies dx € R. Therefore x; € (1/d)R, a
Noetherian R-module. Therefore R[x,]CR -1/d is a Noetherian R-
submodule. Therefore x, is integral over R. Repeating that argument
to X — X, = X,y + - - + X,, we conclude that x;, € R for i = k, - - -, 5. There-
fore R is graded in this case. Next we look at case (b): R is not
Noetherian. Let x€R, and x"+ax"'+---+a,=0 where
a, -, a, € R. As in case (a), there is a homogeneous nonzero divisor
d € R such that dx;€ R. Let {y,, -, y+} = {d, dx,, and homogeneous
components of a,’s}. Let A =k[y,---,ys], where k =Z or Z/(n)
according to whether R is of characteristic 0 or n >0. A CR. Let
A, =ANR, Then A =X A, is a graded subring of R. U N A contains
d. Therefore Ayna, the total quotient ring of A, contains x,, and hence
contains x also. Thus the above integral relation takes place in Ayna.
Since A is Noetherian, therefore case (a) is applicable. Therefore x, is
integral over A. hence x, is integral over R.
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