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AMALGAMATED SUMS OF ABELIAN /-GROUPS

Keita R. PIERCE

A class 7 of algebraic structures is said to have the
amalgamation property if, whenever G, H;,, and H, are in
2% and ¢,: G— H, and o0,: G —» H, are embeddings, then for
some L in % there are embeddings r,: H, > L and 7,: H, » L
such that o,7, = 0,7;. Since this property has important
universal-algebraic implications, this author has attempted
to determine which well-known classes of abelian lattice-
ordered groups (l-groups) have the amalgamation property.
Theorem 1 lists those that do, and Theorem 2 lists those
that do not. Finally, we focus our attention on one important
class — Archimedian [/-groups —in which the amalgamation
property fails, and derive some sufficient conditions on G, H;,
and H, for amalgamation to cccur.

Unless otherwise stated, all l-groups are abelian. For the basic
theory of I-groups, see [3]. We write A @* B for the sum, lexicog-
raphically ordered from the right, of an l-group A and an o-group
B, while we write A® B, []; 4,, ¥, A, for the cardinal sum or product
of l-groups, ordered componentwise. For the o-groups of reals and
integers we reserve the letters R and Z. Z(G) and Z(G) denote
respectively the poset of convex l-subgroups and the complete Boolean
algebra of polar subgroups of G. If S G then G(S) denotes the
convex l-subgroup of G generated by S.

Referring to the definition in the first paragraph, we call (G, H,
H,, 0, 0,) an amalgam and say that 7, and 7, embed the amalgam
in L. We shall occasionally simplify the notation by assuming that
o, and o, are inclusion maps.

THEOREM 1. The following classes have the amalgamation pro-
perty:

(a) all (abelian) l-groups

(b) o-groups

(e) Il-groups with a finite basis

(d) l-groups with ACC on (&)

(e) l-groups with DCC on & (G)

(£) l-groups with ACC and DCC on = (G).

(g) direct sums of subgroups of R, that is, Archimedian l-groups
with property (F).

A universal-algebraic proof of (a) and (b) can be found in [6],
and a constructive proof of (b), via Hahn embeddings, is found in
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[7]. We gain a little more by examining the following constructive
proof of (a). First we need some preliminary results about prime
subgroups, which have the flavor of the theory of prime ideals in
rings. A proof of Lemma 1, for the abelian case, is contained in
[5]. We include a proof here in which this hypothesis is eliminated.

LEMMA 1. Let G be o (not necessarily abelian) I-group and let
S S G* be closed under finite meets. If Ce&(G) is maximal with
respect to being disjoint from S, then C is prime.

Proof. Let a A b=0. If neither a nor b is in C then G(C, a)
and G(C, b), properly containing C, contain elements s and ¢ respec-
tively of S. But thens Ate SN G(C, a) N G(C, b) = SN G(C, a A b) =
SN C, a contradiction. Thus one of @ and b is in C, and therefore
C is prime.

LEMMA 2. If G ts an l-subgroup of the (not necessarily abelian)
l-group H, then for every prime subgroup P of G there is a prime
subgroup Q of H such that @ N G = P (l-groups have “going up”).
Furthemore, if P is a minimal prime subgroup then Q can be chosen
as o minimal prime subgroup of H.

Proof. Since G N H(P) = P, we can extend H(P) to an [-subgroup
@ of maximal with respect to missing G'\P. By Lemma 1, @ is
prime, and @ must intersect G exactly in P. If P is a minimal
prime then let @ be a minimal prime subgroup contained in @.
Since @' NG is a prime of G inside P, then Q N G = P.

We turn now to the proof of Theorem 1, part (a): Let {P,: @€ A}
and {Q;: 8 € B} be collections of prime subgroups of H, and H, respec-
tively which intersect trivially. By Lemma 2, for each « in A there
is a prime subgroup @ of H, such that @, NG = P,NG, and for
each B in there is a prime subgroup P, of H, such that P,NG =
QsNG. For each ¥ in AU B, G/P, N G is canonically an o-subgroup
of the o-groups H,/P, and H,/Q,, whence by part (b) there exists an
o-group L, and embeddings 7,,: H,/P, — L, and 7,: H,/Q,— L, which
agree on G/P, N G. Let L = [], L, and define l-embeddings 7,: H,— L
and 7,: H,— L by setting hz,(7) = (b + P,)7,; and kz.(7) = (k + @;)Ty-
7, and 7, evidently agree on G, and L is therefore the desired
amalgamation.

Parts (c) through (f) involve classes of [-groups which can be
represented as subdirect products of finitely many o-groups, each of
which has the corresponding chain conditions on its convex subgroups.
If one inspects the proof of (b) found in [7], one finds that these
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properties of o-groups can be preserved under amalgamation. There-
fore the above construction will not lead out of these classes.

For (g), suppose G < H, = D\,cs H,o and G < H, = D5 5 Hyp, Where
H, H,; < R. Let {g;:1¢I} be a basis for G. Since each element
of G is a real linear combination of basis elements, then every I[-
homomorphism on G is uniquely determined by its action on the
basis, and therefore it suffices to find embeddings of H, and H, into
a direct sum of reals which agree on the basis for G. For each
1el let A, ={acA:g (a) >0} and let B, = {BeB:g,(B) > 0}. Let
I' =[Uier A X BJU[A\Uier BJ U [B\Uc; B;] and let L' = Il;er By,
Where R, = R. Define the embeddings z,: H,— L' and 7,: H,— L' com-
ponentwise as follows: For 7= (a, 8) € 4, X B; define hz,(7) = h(a)/g.(x)
and kc(7) = k(B)/g.(B); for ¥ = ac A\U,; A, define hr(7) = h(a) and
kt(7) = 0; and for v = B e B\lJ, B, define hz,(7) = 0 and kz,(7) = k().
Evidently Hiz, + Hyz, < L = >, R, and the embeddings agree on the
basis for G. Thus the amalgam has been embedded in L.

REMARK. There are classes .9 for which the amalgamation
property is a trivial consequence of (a), for reason that any abelian
l-group is embeddable in a member of .27 Two rather trivial
examples are

(a) l-groups with basis (take for L the direct product of o-
groups), and

(b) compactly generated I-groups (see [2] for a proof that
every abelian l-group is embeddable in such a group).

THEOREM 2. The following classes do not have the amalgamation
property:

(a) l-groups with property (F')

(b) direct sums of o-groups

(¢) Archimedian l-groups

(d) Archimedian l-groups with basis

(e) subdirect products of subgroups of R

(f) hyper-archimedian l-groups.

Proof. For (a) and (b) let G be the o-group (a,> @* {(a, B*
{agy @ -+, let H=GPHGHGPHGPH ---, and let H,= GH*{c).
Let 0,: G— H, be the natural inclusion map, and embed G in H, by
defining

a0, =(a, 0,0 --),
a0, = (@, a,, 0,0, --+),
@s0,(as, @5, @3, 0, =+ +)

and so on. Suppose that this amalgam is embedded in L via the
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maps 7, and z,. For each natural number 7 let %,e H, have ™
component @, and zeros elsewhere. Then h,7, < @,0,7, = @,0,T, < €T,
which implies that ¢z, bounds an infinite set of mutually orthogonal
elements. Thus L could neither have property (F') nor be a sum of
0-groups.

For (c), (d) and (e), let H, = [];co Z;, let G be the I-subgroup of
H, consisting of all sequences which are eventually constant, and
let H,=G@® Z. Embed G in H, and H, be letting o, be inclusion
and setting go, = (g, ¢.), where g, = lim,_., g(¢). Suppose that this
amalgam is embedded in L. Let x=(1,23,4,---)eH,z=(,1,
1, ---)eG, and ¥y = ((0,0, ---), 1) e H,, We will show that, in L, 2z,
exceeds every multiple of yz,, and thus L cannot be Archimedian.
By Lemma 2.17 of [3] it suffices to show that n(yz,) < xr(mod P)
for every prime P of L. Now if yr,e P this is obvious. If yz,¢ P
then Mo,z, & P, where M = 3, Z, < G, since every element of Mo,
is orthogonal to . Since n(z0,) < x(mod Mo,), and since y < 20,
then w(yt,) < n(z0,7,) = n(z0,7,) < xr, modulo Moz, = Mo,7, and hence
also modulo P.

For (f), let G = >\,c. Z;, and embed G in H, and H,, the hyper-
Archimedian [l-subgroups of [];.. Z; generated respectively by G and
h=(@,1,---)and Gand K= (1, 2, 3,---). Assume that this amalgam
were embedded in L. For each natural number m let P,,, = {x € H;:
x(m + 1) = 0}, and by Lemma 2 let Q,., be a prime of L such that
Qu.NH7,=P,,7.. Now (Q,., NH,,)r;" is a prime subgroup of H,, in
fact, an elementary argument shows that it is the prime R, ,,={x € H,:
2(m + 1) = 0}. Let g be the element of G whose (m + 1)-coordinate
is 1 and whose other coordinates are 0. Since mh = mg(mod P,,.,)
and mg < k{mod R,,.,) then 0 < m(ht) < kry(mod Q,,.,). Thus there
is no natural number m for which [kz, — (mht, A kT)] A kT, = 0,
and hence L cannot be hyper-Archimedian.

ARCHIMEDIAN AMALGAMATIONS. Our first construction makes use
of Bernau’s representation of Archimedian l-groups, found in [1],
which we summarize here; if B is a maximal set of mutually orthogonal
positive elements of G and X is the Stone space (compact Hausdorft
and extremally disconnected space) associated with Z°((), then there
is an l-embedding 7 of G into D(X), the I-group of almost finite
continuous extended-real-valued functions on X, with the properties

(a) G7 is a large subgroup of D(X) (i.e., if 0 < f e D(x) then
0 < gy <nf for some g G and some natural number =),

(b) B7 is a set of characteristic functions of a family of mutually
disjoint clopen subsets of X whose union is dense in X, and

(c) for each ge @G, S(g97), the support of g7, is the clopen subset
of X corresponding to the polar subgroup {g}".
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Moreover, there is the following uniqueness: If Y is a Stone
space and if 7’ is an l-embedding of G into D(Y) having properties
(a) and (b), then there is a homeomorphism # from X to Y such
that (g7)(x) = (g7')(«0) for all ge G and all zc X.

One consequence of (c) which we shall use is the following: If
Me . Z(G) and if Y is the clopen subset of X corresponding to M,
then, under the natural association, Y is the Stone space of (M),
every element of M is zero outside Y, and ' = n| M is an l-embedding
of M into D(Y) satisfying (a) and (b). Furthermore, if BN M is a
maximal orthogonal subset of M, then (c) will also be satisfied.

THEOREM 3. If (G, H,, H,, 0, 0;) 18 an amalgam of Archimedian
l-groups in which Go, is a large subgroup of a polar M, of H,(1=1, 2).
then the amalgam 1is embeddable in an Archimedian l-group.

Proof. First pick a maximal orthogonal subset A of G, and
then extend Ag, to a maximal orthogonal subset B, of H,. Let X,
be the Stone space of Z(H;) and, via B,, let 7, be the l-embedding
of H, into D(X,) satisfying (a)-(c) above. Because “largeness” is a
transitive relation (c¢f [4]), it follows from the above remarks that
0.7; is an l-embedding of G into D(Y,) satisfying (a) and (b), where
Y, is the clopen subset of X, corresponding to M,. Thus by unique-
ness, Y, and Y, are homeomorphic, and, if we actually identify Y,
and Y,, .9, and 0,7, are identical on Y, =Y, and zero elsewhere. We
now form the disjoint union Z =Y, U (X,\Y)) U (X;\Y,) and let 7, and
7, be the natural embedding of H, and H, respectively into D(Z).
Since 0,7, = 0,7,, this finishes the proof of the theorem.

Our second construction requires a modification of Bernau’s embed-
ding. Let X be a topological space and let F*(X) be the set of all
real-valued functions which are defined and continuous on a dense
open subset of z. If lattice and group operations are defined pointwise,
with domain of the resultant being the intersection of the domains
of the operands, then F*(X) is an abelian lattice-ordered semigroup
with zero. Saying that f and g are equivalent if they agree on a
dense open subset of X defines a congruence relation on F*(X), and
the quotient structure, which we denote by F(X), is an Archimedian
l-group.

An Archimedian l-group G is said to be amalgamable (in Archi-
median Il-groups) if every amalgam (G, H, H,) of Archimedian [-
groups is embeddable in an Archimedian I-group.

THEOREM 4. Direct sums of subgroups of the reals are amal-
gamable in Archimedian l-groups.
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Proof. We divide the proof into two parts, the sum of which
proves something stronger than the theorem.

(A) Subgroups of the reals are amalgamable. Let g be a positive
element of G, let B; be a maximal orthogonal subset of H, containing
g, and, via B,, embed H; in D(X,) in the manner described above.
Let Y, denote the support of g in X,, and let Z be the disjoint union
of the sets Y, x Y, X\\X,, and X,\X,, topologized in the obvious
manner. Define an embedding z,: H, — D(Z) by

n(x) if either z = (x, w) or z = 2 X,\Y,

ht (2) =
@ 0 otherwise

and define z,; H,— D(Z) in an analogous fashion. Clearly 7, and 7z,
agree on G since gz, and gz, are both the characteristic function of
Y, x Y,. But Z may not be a Stone space, since products of Stone
spaces are not necessarily Stone spaces, and thus H,z,U H,r, may not
generate a group in D(Z). However, the natural map from D(Z)
to F(Z) embeds the amalgam in an Archimedian Il-group.

(B) Direct sums of amalgamable l-groups are amalgamabdle.
Let G=3,.G, each G, being amalgamable. If M, = (G0)),
then H,/M,, is Archimedian, since quotients of Archimedian /-groups
by polar subgroups are Archimedian, and G, is naturally /-embedded
in H,/M,,. Suppose that z,, and z,, embed the amalgam (G,, H,/M,,,
H,/M,,) in the Archimedian I-group L, Let M, = (U,G.0;)"’, let
L=H|M®H/M,PTIl.L, and define maps from H, and H, into
L as

th = (h + M19 0’ ] (h + Mla)z-lou ° ”) ’
hfz = (0’ h + M29 Tty (h + Mza)fzcu : ") .

Since M; N (N.M,.,) = 0, then 7z, and 7, are l-embeddings. Further-
more, G.0,7, = G,0,7, for each a, and so they must agree on the
direct sum.

REFERENCES

1. 8. J. Bernau, Unique representation of Archimedian lattice groups and mormal
Archimedian lattice rings, Proc. London Math. Soc., 15 (1965), 599-631.

2. A. Bigard, P. Conrad and S. Wolfenstein, Compactly generated lattice-ordered groups,
Math. Zeitschrift, 107 (1968), 201-211.

3. P. Conrad, Lattice Ordered Groups, Tulane University Lecture Notes, New Orleans,
La., 1970.

4. , The essential closure of an Archimedian lattice-ordered group, Duke Math.
J., 38 (1971), 151-160.

5. D. G. Johnson and J. E. Kist, Prime ideals in vector lattices, Canad. Math. J. 14
(1962), 517-528.




AMALGAMATED SUMS OF ABELIAN I-GROUPS 173

6. K. R. Pierce, Amalgamations of lattice ordered groups, Trans. Amer. Math. Soc.,
172 (1972), 249-260.

7. , Amalgamating Abelian ordered groups, Pacific J. Math., 43 (1972), 711-723.

Received March 5, 1975.

UNIVERSITY OF MISSOURI—COLUMBIA








