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AMALGAMATED SUMS OF ABELIAN /-GROUPS

KEITH R. PIERCE

A class 3F of algebraic structures is said to have the
amalgamation property if, whenever G, Hl9 and H2 are in
^Γand a^G-^Hx and σ2:G->H2 are embeddings, then for
some L in ^f there are embeddings τλ: H1-^L and r2: H2^>L
such that σ1τ1 = σ2τ2. Since this property has important
universal-algebraic implications, this author has attempted
to determine which well-known classes of abelian lattice-
ordered groups (Z-groups) have the amalgamation property.
Theorem 1 lists those that do, and Theorem 2 lists those
that do not. Finally, we focus our attention on one important
class — Archimedian Z-groups — in which the amalgamation
property fails, and derive some sufficient conditions on (?, Hl9

and H2 for amalgamation to occur.

Unless otherwise stated, all Z-groups are abelian. For the basic
theory of ^-groups, see [3]. We write A 0 * B for the sum, lexicog-
raphically ordered from the right, of an i-group A and an o-group
B, while we write A © 5 , IL Ai9 ΣtAt for the cardinal sum or product
of Z-groups, ordered componentwise. For the o-groups of reals and
integers we reserve the letters R and Z. ^(G) and ^(G) denote
respectively the poset of convex ϊ-subgroups and the complete Boolean
algebra of polar subgroups of G. If S Q G then G(S) denotes the
convex Z-subgroup of G generated by S.

Referring to the definition in the first paragraph, we call (G, Hlf

H2, σιy σ2) an amalgam and say that τ1 and τ2 embed the amalgam
in L. We shall occasionally simplify the notation by assuming that
σγ and σ2 are inclusion maps.

THEOREM 1. The following classes have the amalgamation pro-
perty:

(a) all (abelian) l-groups
(b) o-groups
(c) l-groups with a finite basis
(d) l-groups with ACC on
(e) l-groups with DCC on
(f) l-groups with ACC and DCC on
(g) direct sums of subgroups of R, that is, Archimedian l-groups

with property (F).

A universal-algebraic proof of (a) and (b) can be found in [6],
and a constructive proof of (b), via Hahn embeddings, is found in
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[7]. We gain a little more by examining the following constructive
proof of (a). First we need some preliminary results about prime
subgroups, which have the flavor of the theory of prime ideals in
rings. A proof of Lemma 1, for the abelian case, is contained in
[5]. We include a proof here in which this hypothesis is eliminated.

LEMMA 1. Let G be a (not necessarily abelian) l-group and let
S £ G+ be closed under finite meets. If C e W(G) is maximal with
respect to being disjoint from S, then C is prime.

Proof. Let a A b = 0. If neither a nor b is in C then G(C, a)
and G{C, b), properly containing C, contain elements s and t respec-
tively of S. But then s ΛteSf) G(C, a) n G{C, b) = S n G(C, aAb) =
S Π C, a contradiction. Thus one of a and b is in C, and therefore
C is prime.

LEMMA 2. // G is an l-subgroup of the (not necessarily abelian)
l-group H, then for every prime subgroup P of G there is a prime
subgroup Q of H such that Q Π G = P (ϊ-groups have "going up").
Furthermore, if P is a minimal prime subgroup then Q can be chosen
as a minimal prime subgroup of H.

Proof. Since G Π H{P) = P, we can extend H{P) to an ί-subgroup
Q of maximal with respect to missing G+\P. By Lemma 1, Q is
prime, and Q must intersect G exactly in P. If P is a minimal
prime then let Qf be a minimal prime subgroup contained in Q.
Since Q' Π G is a prime of G inside P, then Q' Π G = P.

We turn now to the proof of Theorem 1, part (a): Let {Pa: aeA}
and {Qβ: β e B} be collections of prime subgroups of Hί and H2 respec-
tively which intersect trivially. By Lemma 2, for each a in A there
is a prime subgroup Q of H2 such that Qa Π G = Pa Π (?, and for
each β in there is a prime subgroup Pβ of H1 such that Pβ f] G =
Qβ Π G. For each 7 in A U B, G/Pr Π G is canonically an o-subgroup
of the o-groups HJPr and H2/Qr, whence by part (b) there exists an
o-group Lr and embeddings τir: HJPr—+Lr and τ2r:HJQr—+Lr which
agree on G/Pr Π G. Let L = ΐ[rLr and define Z-embeddings τx\ H1-^L
and r2: H2-+L by setting hτ^Ί) — {h + P r)τ i r and Aτ2(7) = (k + Qr)τ2r.
τx and τ2 evidently agree on G, and L is therefore the desired
amalgamation.

Parts (c) through (f) involve classes of i-groups which can be
represented as subdirect products of finitely many o-groups, each of
which has the corresponding chain conditions on its convex subgroups.
If one inspects the proof of (b) found in [7], one finds that these
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properties of o-groups can be preserved under amalgamation. There-
fore the above construction will not lead out of these classes.

For (g), suppose G ^ 11,= Σ α e A Hla and G^H2 = ΣβeB H2β, where
Hia, H2β <Ξ R. Let {g^. i e 1} be a basis for G. Since each element
of G is a real linear combination of basis elements, then every l-
homomorphism on G is uniquely determined by its action on the
basis, and therefore it suffices to find embeddings of H, and H2 into
a direct sum of reals which agree on the basis for G. For each
iel let A, = {ae A: g^ά) > 0} and let Bt = {βeB: gt(β) > 0}. Let
Γ = [Uie/Λ x B<] U [AWJi.iB,] U [BWJierB,] and let U = I W ^ r ,
Where Rγ = R. Define the embeddings τx\ Hx —+ U and τ2: H2 —•> L ; com-
ponentwise as follows: For 7 = (α, /S) G At x 5, define Λτ̂ T) = h(a)/gi(a)
and &τ2(7) = k(β)/gι(β); for 7 = α: G A\(Ji -A* define feτ1(7) = λ(α) and
fcτ2(7) = 0; and f or 7 = β e B\\Jt B, define hτx{Ί) = 0 and &τ2(7) = k(β).
Evidently Hιτι + H2τ2 ^ L = ^ r Rr and the embeddings agree on the
basis for G. Thus the amalgam has been embedded in L.

REMARK. There are classes 3ίΓ for which the amalgamation
property is a trivial consequence of (a), for reason that any abelian
i-group is embeddable in a member of 3ίΓ. Two rather trivial
examples are

(a) i-groups with basis (take for L the direct product of o-
groups), and

(b) compactly generated Z-groups (see [2] for a proof that
every abelian ί-group is embeddable in such a group).

THEOREM 2. The following classes do not have the amalgamation
property:

(a) l-groups with property (F)
(b) direct sums of o-groups
(c) Archimedian l-groups
(d) Archimedian l-groups with basis
(e) subdirect products of subgroups of R
(f) hyper-archimedian l-groups.

Proof For (a) and (b) let G be the o-group (a,) ©* <α2> ®*
<α3>θ* , let ff^GφGφGeee . . , and let H2 = G®*(c).
Let σ2: G—>H2 be the natural inclusion map, and embed G in Hx by
defining

γ = (α2, α2, 0, 0, ) ,

sf α 3 , α 3 , 0, ' β ) >

and so on. Suppose that this amalgam is embedded in L via the
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maps τι and τ2. For each natural number i let lfiizH1 have ith

component at and zeros elsewhere. Then hiτi ^ aiσ1τι — aίσ2τ2 ^ cr2,
which implies that cτ2 bounds an infinite set of mutually orthogonal
elements. Thus L could neither have property (F) nor be a sum of
o-groups.

For (c), (d) and (e), let H1= ]JieωZif let G be the Z-subgroup of
jfiΓi consisting of all sequences which are eventually constant, and
let H2 = G 0 Z. Embed G in H1 and H2 be letting σ1 be inclusion
and setting gσ2 = (g, gj), where g^ = lim^oo g(i). Suppose that this
amalgam is embedded in L. Let x = (1, 2, 3, 4, •) eHu z = (1, 1,
1, •) e G, and y = ((0, 0, •), 1) e H2. We will show that, in L, a?ri
exceeds every multiple of yτ2, and thus L cannot be Archimedian.
By Lemma 2.17 of [3] it suffices to show that n(yτ2) <ί xτ^moά P)
for every prime P of L. Now if yτ2 e P this is obvious. If yτ2 £ P
then Mσ2τ2 Q P, where M = Σ Zt ^ G, since every element of Mσ2

is orthogonal to ?/. Since n{zσ^) ̂  α?(mod Mbi), and since y ^ ^σ2,
then n{yτ2) ^ n{zσ2τ2) = n(zσ{c^) ^ scrj. modulo ilίo^Γi = Mσ2τ2 and hence
also modulo P.

For (f), let G = Σ<e«#i, and embed G in i ^ and iϊ2, the hyper-
Archimedian i-subgroups of Π ϊ e ω ^ generated respectively by G and
h = (1, 1, •) and G and iΓ = (1, 2, 3, •)• Assume that this amalgam
were embedded in L. For each natural number m let Pm + 1 = {xeH^.
x(m + 1) = 0}, and by Lemma 2 let Qm+ί be a prime of L such that
Qm+ιΠJϊ1τ1 = Pm+1τ1. Now (Qw41 ΠΉ.2τ2)τ2

γ is a prime subgroup of JHΓ2, in
fact, an elementary argument shows that it is the prime Rm+1 = {x eH2:
x(m + 1) = 0}. Let g be the element of G whose (m + Incoordinate
is 1 and whose other coordinates are 0. Since mh = mg(moά Pm+1)
and mg < k(moά Rm+1) then 0 < m(hτ^) < &r2(mod Qw+1). Thus there
is no natural number m for which [&τ2 — (mhτι Λ ^τ2)] Λ hτί = 0,
and hence L cannot be hyper-Archimedian.

ARCHIMEDIAN AMALGAMATIONS. Our first construction makes use
of Bernau's representation of Archimedian Z-groups, found in [1],
which we summarize here; if B is a maximal set of mutually orthogonal
positive elements of G and X is the Stone space (compact Hausdorff
and extremally disconnected space) associated with ^ ( G ) , then there
is an ^-embedding η of G into D(X), the Z-group of almost finite
continuous extended-real-valued functions on X, with the properties

(a) Gη is a large subgroup of D(X) (i.e., if 0 < f e D(x) then
0 < gr) < nf for some g e G and some natural number n),

(b) Bη is a set of characteristic functions of a family of mutually
disjoint clopen subsets of X whose union is dense in X, and

(c) for each g eG, S(gη), the support of grj, is the clopen subset
of X corresponding to the polar subgroup {g}".
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Moreover, there is the following uniqueness: If Y is a Stone
space and if rf is an Z-embedding of G into D(Y) having properties
(a) and (b), then there is a homeomorphism θ from X to Y such
that (gη)(x) = (gη')(xθ) for all g e G and all x e X.

One consequence of (c) which we shall use is the following: If
Me^(G) and if Y is the clopen subset of X corresponding to M,
then, under the natural association, Y is the Stone space of &*(M),
every element of M is zero outside Y, and rf = η \ M is an Z-embedding
of M into D(Y) satisfying (a) and (b). Furthermore, if B Π M is a
maximal orthogonal subset of M, then (c) will also be satisfied.

THEOREM 3. If (G, Hl9 H2, σ19 σ2) is an amalgam of Archimedian
l-groups in which Gσt is a large subgroup of a polar Mt of Ht(i = 1, 2).
then the amalgam is embeddable in an Archimedian l-group.

Proof. First pick a maximal orthogonal subset A of (?, and
then extend Aσt to a maximal orthogonal subset Bt of H^ Let Xi

be the Stone space of ^(Ht) and, via Bu let ηi be the i-embedding
of Hi into D(Xi) satisfying (a)-(c) above. Because "largeness" is a
transitive relation (cf [4]), it follows from the above remarks that
σfli is an ϊ-embedding of G into D(F<) satisfying (a) and (b), where
Yt is the clopen subset of Xt corresponding to Mt. Thus by unique-
ness, Y1 and Y2 are homeomorphic, and, if we actually identify Yx

and Y29 σ1rj1 and σ2η2 are identical on Yt = Y2 and zero elsewhere. We
now form the disjoint union Z = Γi U (^AΓ;) U (^1^) and let τx and
τ2 be the natural embedding of Ht and ίί2 respectively into D(Z).
Since α^! = σ2τ21 this finishes the proof of the theorem.

Our second construction requires a modification of Bernau's embed-
ding. Let X be a topological space and let F*(X) be the set of all
real-valued functions which are defined and continuous on a dense
open subset of x. If lattice and group operations are defined pointwise,
with domain of the resultant being the intersection of the domains
of the operands, then F*{X) is an abelian lattice-ordered semigroup
with zero. Saying that / and g are equivalent if they agree on a
dense open subset of X defines a congruence relation on F*(X), and
the quotient structure, which we denote by F(X), is an Archimedian
ϊ-group.

An Archimedian ί-group G is said to be amalgamable (in Archi-
median ϋ-groups) if every amalgam (G, Hί9 H2) of Archimedian l-
groups is embeddable in an Archimedian Z-group.

THEOREM 4. Direct sums of subgroups of the reals are amal-
gamate in Archimedian l-groups.
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Proof. We divide the proof into two parts, the sum of which
proves something stronger than the theorem.

(A) Subgroups of the reals are amalgamable. Let g be a positive
element of G, let Bt be a maximal orthogonal subset of Ht containing
g, and, via Bi9 embed Hi in D(X%) in the manner described above.
Let Yt denote the support of g in Xif and let Z be the disjoint union
of the sets Y1 x Y2, X\Xί9 and X2\X2, topologized in the obvious
manner. Define an embedding τγ\ H1 —> D(Z) by

h(x) if either z = (x, w) or z = x e -X"Λ Yi

0 otherwise

and define τ2: iϊ 2 —> -D(Z) in an analogous fashion. Clearly τx and τ2

agree on G since ^r^ and gτ2 are both the characteristic function of
Γi x Y2. But Z may not be a Stone space, since products of Stone
spaces are not necessarily Stone spaces, and thus H1τ1 U H2τ2 may not
generate a group in D(Z). However, the natural map from D(Z)
to F(Z) embeds the amalgam in an Archimedian Z-group.

(B) Direct sums of amalgamable l-groups are amalgamable.
Let G = Σ«e^G«, each Ga being amalgamable. If Mia = (Gaσi)

r,
then HJMia is Archimedian, since quotients of Archimedian ^-groups
by polar subgroups are Archimedian, and Ga is naturally ^-embedded
in Hi/Mia. Suppose that r lα and τ2a embed the amalgam (Ga, HJMla,
H2/M2a) in the Archimedian ϊ-group La. Let Mt = (\Ja G ^ ) " , let
L = HJM^ HJM2φΐ[aLa9 and define maps from Hλ and H2 into
L as

hτx = (h + Mlf 0, , (h + Mlβ)rlα, •) ,

hτ2 = (0,h + M21 , (h + ikQr2α, •) .

Since Mi Π (Πα -M*a) = 0> then τx and τ2 are Z-embeddings. Further-
more, Gaσ1τι = Gaσ2τ2 for each a, and so they must agree on the
direct sum.
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