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WEIERSTRASS POINTS OF PRODUCTS
OF RIEMANN SURFACES

R. F. LAX

Ogawa has defined sets of Weierstrass points of a holomorphic
vector bundle on a compact complex manifold. We generate nontrivial
examples of such sets of Weierstrass points by considering the canonical
bundle on a product of Riemann surfaces.

In the first section, we review Ogawa's definition and some classical
facts about Weierstrass points on Riemann surfaces. In §2, we prove
our theorems and consider an example to illustrate the proofs. Finally,
we remark that a connection between Weierstrass points on a Riemann
surface and fixed points of a periodic automorphism does not seem to
extend to higher dimensions.

We wish to thank Pierre Conner for helpful conversations and Roy
Ogawa for useful communications.

1. Let M denote a connected, compact complex manifold of
(complex) dimension n. Let E denote a holomorphic vector bundle on
M of rank q. Let Jk{E), k — 0,1, , denote the holomorphic vector
bundle of /c-jets of £(cf. [7]). Put Rk = rank Jk(E) =
q - (n + k)\/n\k\. Suppose that Γ(E), the vector space of global
holomorphic sections of E, is of dimension d > 0. Consider the trivial
bundle M x Γ(E) and the map

]k:MxΓ(E)->Jk(E)

which at a point P E M takes a section to its /c-jet at P. Put μ =
min (d, Rk).

DEFINITION, (cf. [6,3]). For 1 ̂  r g μ, let Wr

k(E) denote the
reduced closed analytic subspace of M defined by the vanishing of the
exterior power Kμ~r+λjk.

The points of W[ (E) are those P E M such that the rank of j K P is at
most μ - r.

PROPOSITION 1. Either W[{E) is empty or each component has
codimension at most r(\ d — Rk | + r) in M.

Proof. [2, Proposition 4].

Next, we need to review some facts from the classical theory of
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Weierstrass points. We refer the reader to [1] for details. Let C
denote a compact Riemann surface of genus g > 1 and let P be a point on
C. Let t denote a local coordinate at P on C (so t(P) = 0). Suppose
the sequence of gaps at P is 1, s2, s3, , sg. Then we may choose a basis
ω b , ωg of holomorphic differentials on C such that, writing ω; =
/,(ί)df locally at P, we have that ^(0) = 1 and the order of /, at P is s, - 1
for / = 2, , g. We will call such a basis of holomorphic differentials
special with respect to P.

Let K denote the canonical bundle on C Then the matrix of the
map jk: C x Γ(JC)—> Jk(K) locally at P with respect to the above basis
{ojj} is

y χ > > K

where /y

0)(0 denotes the /th derivative of / with respect to t. Note that,
by our choice of basis, when we evaluate this matrix art P we get a lower
triangular matrix. The next proposition follows easily from the form of
this matrix and the choice of our basis {ω;}.

PROPOSITION 2. Suppose k ^ g - 1. Then P G W\(K) if and only
if Sj > j for some j = 2, 3, , k -f 1.

2. Let C, be a compact Riemann surface of genus g, > 1, i =
l, ,n. Denote by K, the canonical bundle on Q. Put X =
C, x C2 x x C and let K denote the canonical bundle on X. Then X
is a connected, compact complex manifold of dimension n and

Put Rk =mnk Jk(K).

THEOREM 1. Suppose k ^ min^^n {g, - 1}.
Lei P = (P b , Pn) E X. 77ι̂ n P G ΪVi(X) i/ and on/y if Pt G
/or some i = 1, , n.

Proof. The notation in the general case is very complicated. We
will prove the theorem for the case n = 2. It is not hard to see that the
general case may be demonstrated by a completely similar argument with
no new ideas necessary.

So, let C and D be compact Riemann surfaces of genera g > 1 and
h>\ respectively, and suppose, without loss of generality, that g is
greater than or equal to h. Let Kc (resp. KD) denote the canonical
bundle on C (resp. D). Put X=CxD and let (P,Q)<ΞX. Let t
(resp. u) denote a local coordinate at P on C (resp. at Q on D). Let
α, = φι(t)dt, i = 1, , g, denote the basis of holomorphic differentials on
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C special with respect to P and let βj = ψj(u)du, / = 1, , ft, denote the
basis of holomorphic differentials on D special with respect to Q.

Let πx\X->C and π2:X-*D denote the respective projection
maps. Put

/ = 1 σ
ωl} = π ? α , Λ7rf jS y = <\'... L

Then the ω/y are a basis of holomorphic 2-forms on X and locally at
(P, O) we may write ωιy = φ,(ί)ψ;(w)dί Λ du.

Let K denote the canonical bundle on X and suppose 0 ^ k ^
ft-1. (Note then that Rk<h2^gh.) Consider the map jk:Xx
T(K)-*Jk(K). Denote by Dlm the differential operator
dι+m/dtιdum. The entries of the matrix of jk locally at (P, Q) are then
Dlm(φι(t)φJ(u)), where 1 '^ ί ^ g, 1 ̂ / ^ ft, and where /, m are nonnega-
tive integers such that / + m ^ k. It is not hard to see that after suitably
ordering the basis elements of Γ(K) and J*PtQ)(K) the matrix of jk when
evaluated at (P, Q) is a lower triangular matrix with diagonal entries

More precisely, we order the operators D / m "lexicographically in each
degree"; i.e. Dlm comes before D / m if / + m < Γ + m' or if / + m =
Γ + mf and / > /'. Similarly, ω,, comes before ωI7 if i +/ < /' + /' or if
/ + / = ί; + / ; and / > /'.

Now, the rank of this matrix at (P, Q) is less than Rk (the maximum
possible rank) if and only if φ/+i(0) = 0 for some / = 0, l, ,fe or
Ψ{mlι(0) = 0 for some m = 0,1, , k. But, by Proposition 2, φ(/+U0) = 0
for some /, 0 ^ / ̂  fc, if and only if P E Wk(Kc) and ψ{™}}(0) = 0 for some
m, 0 ^ m ^ fc, if and only if Q E W\(KD). Hence (P, O) E W[(X) if and
only if P E W\{KC) or Q E

THEOREM 2. Mίft ίfte notation of Theorem 1, suppose k >
?fc ^ Π?=1 g, Tften Wi(lC) = X.

Proof. Again, we will prove this only for n = 2. With notation as
in the proof of Theorem 1, we have that the matrix of jk when evaluated
at (P, Q) will be a lower triangular matrix with a term of the form

with / > 1, as the last entry on the diagonal. But φ,(0) = 0 for / > 1, so
the mapping jk fails to have maximal rank at every point of X. Hence

wi(κ) = x.
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To illustrate the proofs of the above theorems, we consider the
following example. With notation as in Theorem 1, we suppose g = h =
4. We order the basis {ωη} of holomorphic 2-forms on X as follows: ωιu

ω2U ω12, ω31, ω22, ω13, ω41, ω32, ω23, ω14, ω42, ω33, ω24, ω43, ω34, ω44. The
matrix of /4 evaluated at (P, Q) is a 15 x 16 lower triangular matrix with
diagonal entries: 1, φ£0), ψ'2(0), <p'3'(0), ^ ( 0 ) ^ ( 0 ) , <A2(0), <p"lQ\
φ 5(0)^(0), «pί(<W(0), ψϊ(0),0, 0, 0, 0, 0.

It is then clear that the conclusions of Theorems 1 and 2 hold.

3 . Let C be a compact Riemann suface of genus g > 1. Let σ be
a periodic automorphism (conformal homeomorphism) of C of order
n. Put C*=C/(σ) and let g* denote the genus of C*. In [8],
Schoeneberg proves the following theorem (also cf. [4]):

THEOREM. Let P denote a fixed point of σ. Then P is a Weierstrass
point of C if g* ^ [gin], where [x] denotes the greatest integer in x.

We remark here that this result does not seem to generalize to
higher dimensions. Indeed, consider C x C, an algebraic manifold of
geometric genus g2. Let C(2) denote the second symmetric product of
C with itself; i.e. C(2) = Cx C/S2. Then C(2) is an algebraic manifold
of geometric genus g(g - l)/2 [5]. Note that g(g - l)/2 < [g2/2]. Now,
the set of fixed points of C x C under the action of 52 is the diagonal,
while, by Theorem 1, the nontrivial set of Weierstrass points of the
canonical bundle on C x C, the set Wj-^Xcxc), consists of all points
(P, Q) such that either P or Q is a Weierstrass point of C. Thus not all
fixed points are Weierstrass points in this case. We do not see any good
way of generalizing Schoeneberg's Theorem to higher dimensions.
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