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INTEGRAL BASES FOR BICYCLIC BIQUADRATIC
FIELDS OVER QUADRATIC SUBFIELDS

RoBERT H. BIRD AND CHARLES J. PARRY

Explicit conditions are given for a bicyclic biquadratic
number field to have an integral basis over a quadratic subfield.

A classical question of algebraic number theory is, “When does an
algebraic number field K have an integral basis over a subfield k?”

A complete and explicit answer to the above question is given here
when K is a bicyclic biquadratic number field and k is a quadratic
subfield. Moreover, an explicit integral basis is given for K/k whenever
one exists. In the cases where k is imaginary or k is real and has a unit
of norm — 1, the conditions involve only rational congruences. When k
is real and the fundamental unit of € has norm + 1, the conditions
sometimes involve e.

1. Notation and preliminary remarks. Throughout this
article the following notation shall be used:
Q: field of rational numbers.

Z: rational integers.

m, n: square free integers.

[=(m,n)>0, m=m,l, n=nl and d = mn,.
K = Q(\/_rn,\/71): bicyclic biquadratic field.
k=0Q(Vm).

O.m: different of an extension L/M.

N(e): norm of the unit e.

p, q: odd prime numbers.

An integral basis for K over Q has been determined in [1, 3,
6]. Here an integral basis for K over k = Q(V m) will be determined
whenever it exists. In these considerations the roles of n and d are
interchangeable so it will only be necessary to consider seven pairs of
congruence classes for (m, n) modulo 4; namely (1, 1), (1,2), (1,3), (2, 1),
(2,3),(3,1) and (3,2).

It follows immediately from [5] that K has an integral basis over k if
and only if K = k(D?) where (D) is the discriminant of K over k. Since
K is a quadratic extension of k the discriminant is the square of the
different 6. 1In [3, 6] the different of K over Q is explicitly determined
by:
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(Imyn;) when (m,n) = (1,1) (mod 4).
k0= 1 (4lm,n,) when exactly one of m and n is 1 (mod 4).
(8Im,n,) when (m,n) is (2,3) or (3,2) (mod 4).

Since 8x;0 = Oku * Okjo and 8,0 = (\/E) or (2 \/E) according as m =
1 (mod 4) or not, the following useful result is obtained:

LEMMA 1. The different 8 = 8¢, is determined (and hence the
discriminant) by:

(n,) when n =1 (mod 4).
8°=14 (4n,) when m =1 and n# 1 (mod 4).
(2n,) when m #1 and n # 1 (mod 4).

2. Imaginary subfield k. Although some of our results here
will also apply to the real case we shall be primarily concerned with the
case where k is an imaginary quadratic field. The main result of this
section is:

THEOREM L. If k = Q(V'm) is an imaginary quadratic field then K
has an integral basis over k if and only if one of the following conditions
hold:

(a) At least one of m or nis 1 (mod 4) and I =1 or —m.

(b) (m,n)=(2,3) (mod 4) and m = =21

(c) m=—-1.

Furthermore, when an integral basis exists, it can be determined by the
following table:

TABLE I
Basis (m,n) (mod 4) Conditions
LA+ VnapR .1 I=1
L(Vm+Var (,1 I=+m
1,V=£n, (1,n), n# 1 (mod 4) I=1or =m
L(Vm+ Va2 2,3) I=+m/2.
L(Vn+V=np (3,2) m=-1

The proof will follow from a series of lemmas. First, even when m
is positive, it is easily seen that the conditions of Theorem I are sufficient
for the existence of an integral basis.
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LEmMMA II.  Whenever the conditions of any line of Table I are ful-
filled, even when m is positive, then K has the stated integral basis over k.

Proof. In each case it is a simple matter to check that the given
basis is a basis of integers with discriminant equal to that given by
Lemma [

Our attention will now be directed to proving that the eonditions of
Theorem I are necessary for the existence of an integral basis when m is

negative.

LemMmAa III.  If m is negative and at least one of m or nis 1 (mod 4)
then an integral basis exists if and only if [ =1 or —m.

Proof. From Lemma I and Mann’s criteria the existence of an
integral basis is seen to be equivalent to the condition

K =k(Ven,)
where € is a unit of k. When m# — 1 or — 3 the only units of k are *1
so the above condition implies that Q(V % n,) is a quadratic subfield of
K. Thusn,=n=Inor —n,=d=mn,soeitherl =1lorl=-m. If

m = —1 or —3 then ! = (n, m) must necessarily be 1 or — m.

LeEMMA IV. If m is negative and (m,n) = (2,3) (mod 4) then an
integral basis exists if and only if m = —21.

Proof. Here Mann’s criteria is equivalent to

K =k(V £2n,)
so that Q(V +2n,)is a quadratic subfield of K. Since n = 3 (mod 4)
this implies that d = m,n, = *2n,so that m,= *2. Since m is negative

m,=—2and so m = — 2L

LemMMA V. When m is negative and (m,n) = (3,2) (mod 4) then
an integral basis exists if and only if m = —1.

Proof. Again Mann’s criteria gives

K = k(V2en))
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with € aunitof k. Whenm# —1thene = =1s0 Q(\/th,)is again a
quadratic subfield of K. Thus [ =2 or m,= —2 both of which are
impossible with m = 3 (mod 4). Hence K has no integral basis over k
unless m = — 1.

The next result is a stronger version of Theorem 4 of [5] for our
special case.

CorOLLARY 1. If m is negative then k has odd class number if and
only if K = k(V'n) has an integral basis over k for every square free integer
n.

Proof. It is well known that k has odd class number if and only if
m= —1, —2or —p withp =3 (mod 4). If m is one of these values it
is immediate from Theorem I that an integral basis exists. Conversely if
m has two distinct prime divisors p and p’ then it follows from Theorem I
that K = k(Vap) has no integral basis over k when a is integer
satisfying (a,m)=1 and ap =1 (mod 4). Finally if m = —p with
p = 1 (mod 4) then m = 3 (mod 4) so no integral basis exists for any
n =2 (mod 4).

IH Il

3. Real subfield k. When k is a real subfield it follows from
Mann’s criteria and Lemma I that K will have an integral basis over k if
and only if K = k(\/2‘en ) where ¢ =0 or 1 and € is a unit of k. Now
every unit € of k has the form € = * €} where ¢, is a fundamental unit
and j is an integer, For any field k it is easily seen that ;= b, + ¢,
with by, ¢, € Z. Since only the parity of j is important we shall assume
that j =0, 1 or 3 with the latter choice being made to insure that
€ =b+cVmwith b,c € Z. Furthermore when €, has norm —1 it is
easily seen that j = 0 and whenever j = 0 the conditions of Theorem I are
necessary and sufficient for K to have an integral basis over k.

From now on we shall only be concerned with fields k where ¢, and
hence € has norm +1. The following results on units will be very
useful.

LeEMMA VI. Let € = ¢, or €} have the form b+ ¢ V'm with bc € Z
and let the norm of € be +1. If m =1 or 2 (mod 4) then (b,c) =
(1,0) (mod 2) and ¢ = 0 (mod 4) whenever m =1 (mod 4). Further-
more

09 Ve=sVu+tVo

with (u,v)=1 and uv=m. If m =3 (mod 4) then ceither ¢ =
0 (mod 4) and equation (1) holds or (b,c) = (0,1) (mod 2) and
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_ s\/ﬁ+t\/ﬁ

@ Ve
2

with the above conditions on u and v.

Proof. The congruence conditions are easy to verify. By [4]

VN(E+1)+V -N(e—-1)

Ve= 2

_M2(b+1)+V2(b—1)
> )

When b is odd set 4s’u =2(b+1) and 4t’v =2(b —1) with u and v
square free. It is easily seen that (u,v)=1. Also ¢’m =b’-1=
4s*t’uv so uv = m. When b is even set s’u = b + 1 and t°v = b — 1 with
u and v square free. As above (u,v)=1 and uv = m.

Our main objective of this section is to prove the following result:

TueoreM II.  Ifk = Q(V'm) is a real quadratic field then K has an
integral basis over k if and only if one of the following conditions hold :

(a) Atleastone of m,nis 1 (mod 4) and either | =1, m, u, or v with
u and v determined by equation (1).

(b) (m,n) = (2,3) (mod 4) and 2l =m, u or v.

(c) (myn)=(3,2) (mod4) and I =u or v where u and v are
determined by equation (2).

Furthermore, when | = 1, m[2 or m an integral basis is given by Table
I and when | =u, v, u/2, v/2 an integral basis is given by Table II
below. For this table we set \e=(s\ru+t\'ru)/r where r=1 or
2. Unless otherwise stated it will be assumed thatr = 1 and | = uorv.

TABLE 11

Basis (m, n) (mod 4) Conditions
L1+ Ven)2 (.1 bn, =1, ¢ =0 (mod 4)
1L, (Vm+Ven,)2 (3,1) bn, =3, ¢ =0 (mod 4)
LA+ Vm+Ven))2 2,1) bn, =3, ¢ =2 (mod 4)
1,Ven, 1,3) or (1,2)
1,V2en,/2 3,2) r=2
1,(Vm+V2en)2 2,3) 20=uorv

Proof. 1In our preliminary remarks it was observed that we need
only consider fields K satisfying K = k(V2%n,) where € = €} (j = 1 or 3)
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has norm +1. When one of m or n is 1 (mod 4) we wish to show that
K =k(Ven,) exactly when [ = u or v. Since

s \/run1 +tVron,

r

©®) Ven, =

we see that k(\/ZrTl)‘= K if and only if run,=n =In, and ron,=d =
m,n, or vice-versa. In the first case-this reduces to / = ru and m, = ry,
but m = Im, = r’uv is square free so r =1 and / = u. Similarly in the
second case [ = v. Thus (a) is proven. According to Mann [S, p. 170]
an integral basis for K over k, when it exists, will be given by

“4) 1, (a + V2en)2

where a is an integer of k satisfying

%) a’> = 2en, = 2/(bn, + cn, Vm) (mod 4)
and f =0 or 2 according as n = 1 (mod 4) or not.

When m =n =1 (mod 4), a=h +jo with @ =(1+Vm)/2 and
h,j € Z. Thus (5) becomes

m—1

(6) a’ = h2+< >j2+(2hj+j2)w = bn, (mod 4)

with the last congruence following from Lemma VI. Thus j =

0 (mod 2) and bn, = h?> = 1 (mod 4) since bn, is odd. Thus we take

a =1 here and an integral basis is given by the first line of Table II.
When m # 1 and n = 1 (mod 4) then a=h +jVm so

) a*=h>+j’m+2hjVm = bn,+cn,Vm (mod 4).
]

Thus ¢ =0 and b =1 (mod 2). When ¢ =0 (mod 4) congruence (7)
reduces to

®) h*+ j?m = bn,, 2hj =0 (mod 4).

Either j =0 (mod2) and bn,=h’=1 (mod4) or j=1, h=
0 (mod 2)so bn, = j?’m = m =3 (mod 4). The last congruence holds
because bn, is odd and m # 1 (mod 4). Thus when ¢ = 0 (mod 4) an
integral basis is given by one of the first two lines of Table II. When
¢ =2 (mod 4) (7) becomes
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9) =j =1 (mod2)

and bn, = h’+j’m =1+ m =3 (mod 4) with the last congruence fol-
lowing because bn; is odd. Thus a =1+ V'm and an integral basis is
given by the third line of Table II.

Finally when m =1, n # 1 (mod 4) congruence (5) becomes a’ =
0 (mod 4) so a =0 and an integral basis is given by the fourth line of
Table II.

Suppose now (m,n) = (3,2) (mod 4). Here K =k(V2en,) is
equivalent to 2run, = 2*In, (e = 0 or 1) and 2rvn, = 2¥m,n, (f =0or 1) or
vice versa. Thus 2*/ = 2ru and hence | = u and r = 2 (since both ! and
u are odd) orelse / = v and r =2. Here {1, V2en,/2} forms an integral
basis.

Finally consider the case (m,n) = (2,3) (mod 4). Here K =
k(V2en,)if and only if 2un, = 4In, and 2vn, = m,n, or vice versa. Thus
2l =u or 2l=v. Here an integral basis is given by the last line of
Table II.

CoRrOLLARY 1. If m is positive, then K = k(\V n) has an integral
basis over k for every n if and only if one of the following holds:

@ m=2orp.

(b) m =2p or pq with p =q (mod 4) and N(e)=1.

Proof. When m =2 or p then I =1 or m so it is clear from (a), (b),
and (c) of Theorem II that an integral basis exists. When m =2p and
N(e)=1then!=1or p since n isodd. But Ve=sV2+tVpsou=2
and v =p, thus Theorem II is satisfied. When m =pq with p =
q (mod 4) and N(e)=1 then it follows from Lemma VI that Ve=
sVp+tVq Thus u=p and v =gq so (a) of Theorem II is always
satisfied.

To prove the converse first note that if m has 3 or more odd prime
divisors then there are at least 8 choices for [, all of which can occur for
suitably chosen values of n. But, on the other hand, there are only 4
values of / for which Theorem II is satisfied. When m = 2pq there are
four possible values of [ which can occur, namely /=1, p, q or
pq. However, it is seen from Theorem II (a) and (b) that there are less
than four possible values of /| where an integral basis does exist. If
m = pq with p#q (mod 4) and r = 1 then when n is even no integral
basis exists. If r =2, then no integral basis exists when | =p and n
odd. Finally when m =2p or pg with N(e)= —1 then if /| =p and
n =1 (mod 4) no integral basis exists.

CoroLrLAry II.  If k has odd class number then K = k(\/;) has an
integral basis over k for every integer n.
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Proof. Thefield k = Q(V'm)has odd class number if and only if

m =2, p, 2p, or p\p,

with p, = p, = 3 (mod 4). It is easy to see that when m has a prime
divisor ¢ =3 (mod 4) that € has positive norm. Hence this is an
immediate result of Corollary L.

CoroLrary III.  If k is a quadratic number field either every bicyclic
biquadratic extension field K has an integral basis over k or there exist
infinitely many such K which do (and don’t) have an integral basis over k.

Proof. Immediate from Theorems I and II and their corollaries.
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