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RINGS WHOSE PROPER CYCLIC MODULES
ARE QUASI-INJECTIVE

S. K. JAIN, SURJEET SINGH, AND R. G. SYMONDS

A ring R with identity is a right PCQI-ring (PCI-ring)
if every cyclic right R-module C # R is quasi-injective (in-
jective). Left PCQI-rings (PCI-rings) are similarly defined.
Among others the following results are proved: (1) A right
PCQI-ring is either prime or semi-perfect. (2) A nonprime
nonlocal ring is a right PCQI-ring iff every cyclic right R-
module is quasi-injective or R = ((l)) 3), where D is a divi-
sion ring. In particular, a nonprime nonlocal right PCQI-
ring is also a left PCQI-ring. (3) A local right PCQI-ring
with maximal ideal M is a right valuation ring or M2 = (0).
(4) A prime local right PCQI-ring is a right valuation
domain. (5) A right PCQI-domain is a right Ore-domain.
Faith proved (5) for right PCI-domains. If R is commuta-
tive then some of the main results of Klatt and Levy on
pre-self-injective rings follow as a special case of these
results.

Since, in a commutative Dedekind domain D, for each nonzero
ideal A4, D/A is a self-injective ring, or equivalently D/A is a quasi-
injective D-module, every commutative Dedekind domain is a PCQI-
ring. An example of a PCQI-ring which is not a Dedekind domain
is given in Levy [14]. Commutative PCQI-rings are precisely the
pre-self-injective rings characterized by Klatt and Levy [11]. PCI-
rings have recently been investigated by Faith [4]. Right self-
injective right PCQI-rings are gc-rings which have been studied
by Ahsan [1] and Koehler [13].

1. Definitions and preliminaries. Throughout all modules are
unitary and right unless specified. An R-module X is called injective
relative to an R-module M if for each short exact sequence 0 — N —
M— M/N—0 the sequence 0-—Homg(M/N, X)— Hom, (M, X)—
Hom, (N, X)— 0 is exact. X is called quasi-injective if X is injec-
tive relative to itself. Any R-module injective relative to all R-
modules is called injective. Relative projectivity is defined dually.

A ring R is called a right g¢-ring if each of its right ideals is
quasi-injective (see Jain, Mohamed, and Singh [9]). For more results,
see [7], [8], [13], [15]. Dually, a ring R is called a right g¢*-ring
if each cyclic right R-module is quasi-projective (see Koehler [12]).

A ring R is right gc-ring if each cyclic right R-module is quasi-
injective (see Ahsan [1]). A well-known result of Osofsky [16] states
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that R is semisimple artinian iff each cyclic R-module is injective.
Koehler [13] showed that R is a right gec-ring iff R is a finite direct
sum of rings each of which is semisimple artinian or a rank o duo
maximal valuation ring. As a consequence, every g¢c-ring is both
a ¢-ring and g*-ring.

In this paper the classes of rings initially called ¢-rings, ¢*-rings,
and gc-rings have been called Q-rings, Q*-rings, and QC-rings re-
spectively.

Let J(R) denote the radical of a ring R. R is called semiperfect
if R/J(R) is semisimple artinian and idempotents modulo J(R) can be
lifted to R. If R is semiperfect, then there exists a finite maximal
family of primitive orthogonal idempotents {e},<;<. such that
R=¢& Z?:l e.R.

R is called a local ring if it has a unique maximal right ideal
which must be the radical J(R).

R is a right valuation ring if the set of all right ideals is linearly
ordered. R is a maximal valuation ring if every family of pairwise
solvable congruences of the form z = x,(mod A,) has a simultaneous
solution where x,e€ R and each A, is an ideal in R. R is called an
almost maximal valuation ring if each of its proper homomorphic
images is a maximal valuation ring.

A ring is right duo if every right ideal is two-sided. A ring R
has rank O if every prime ideal is a maximal ideal. By duo rings
or valuation rings, we shall mean both right and left.

3. General results.

SUBLEMMA 1. Let I be a right ideal in a ring R such that R/I= R.
Then R = I @ J, where J is a right ideal, and thus I = eR, e = € R.

Proof. R/I = R implies R/I is projective, and hence I is a direct
summand of R.

PROPOSITION 2. Let R be a right PCQI-ring. If I is a right
ideal of R such that R/I = R, then I is contained in every nonzero
two-sided ideal of R.

Proof. Let S be a nonzero two-sided ideal of R. Then R/S is
a g¢c-ring, hence is semiperfect. Let f: R/I— R be an isomorphism.
Since 1+ I generates R/I, R = xR, where 2 =jf(1+ I). Then
I=annx = {reR|xr =0}. So there exists y € R such that zy = 1.
Since R/S is semiperfect, (x + S)(y +S) =1+ S=(y + S)(x + S).
Then1l—yxeS. Letacl, ie., xa =0. Then (1—yx)a =a —yra = a,
hence ae€S. So IC S.
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PRrROPOSITION 3. Let R be a right PCQI-ring. Then either R is
a prime ring or R 1s semiperfect with nil radical.

Proof. Suppose R is not prime, and P+ 0 is a prime ideal.
Then R/P is a qc-ring, and hence a ¢-ring. So R/P is simple
artinian [9]. Thus P is maximal, hence primitive. So the Jacobson
radical is nil.

Since R is not prime, there exist nonzero ideals A, B such that
AB = 0. Since R is a right PCQI-ring, R/A and R/B are semiperfect,
hence each of them has finitely many prime ideals. Since every
prime ideal of R contains A or B, it follows that R has finitely
many prime ideals as well. Thus R/J(R) is semisimple artinian, and
since J(R) is nil, R is semiperfect.

4. Nonlocal semiperfect PCQI-rings. By Proposition 3, all
nonprime right PCQI-rings are semiperfect, so the results of this
section hold for the class of nonprime nonlocal right PCQI-rings.
The case of local right PCQI-rings is discussed in the next section.

LEMMA 4. Let R be a semiperfect ring. Then R/A is a proper
cyclic right R-module, for all nonzero right ideals A.

Proof. There exists a positive integer n such that R is a direct
sum of » indecomposable right R-modules, and R cannot be express-
ed as a direct sum of more than % right R-modules. Now, if
R/A = R, then, by Lemma 1, R=A@ B and B=Z R. So A = (0),
proving the lemma.

Let R be a nonlocal semiperfect ring, and let {e}.<;<. be a
maximal set of primitive orthogonal idempotents in R. Then
R=@>" r ¢Rand n = 2. Throughout this section, ¢,’s will denote
primitive idempotents. We shall often use a well-known fact that
if A& Bis a quasi-injective module then any monomorphism A — B
splits.

LEMMA 5. Let R be a semiperfect monlocal right PCQI-ring.
If o cHomy (e;R, ¢;R) such that o + 0, where 1 + j, then ker o = (0).

Proof. Suppose ker ¢ + (0), where 0+ ¢ € Hom, (¢,R, ¢;R), 1+ j.
Then R/ker o= GBZ,M e, R xIm o, and R/ker ¢ is quasi-injective. Since
Im o C ¢;R, the mclusmn map i: Im o — P 37, ¢, R is a monomorphism.
Since R/ker ¢ is quasi-injective, the 1nclus:)n map splits. So Imeo

is a direct summand of e¢;R, hence Im o = ¢;R. Since ¢;R is projec-
tive, 0:¢,R —¢;R splits. Thus ker ¢ = (0).
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LEMMA 6. Let R be a semiperfect monlocal right PCQI-ring
with decomposition @ S~ ¢;R, where n >2. Then Homy(¢;R, ¢;R)# 0
if e¢,R = e;R,i.e., ¢;Re; + 0 1ff e,R = ¢;R.

Proof. Let o€ Hompg(¢,R, ¢;R) such that ¢ = 0. By Lemma 5,
kerg = 0. Since n > 2, ¢;RPe¢;R = R/PD Zk 1 ¢, R is quasi-injective.

Then o splits, and 0 #Im o is a direct summand "of ¢;R. SoImo=¢;R,
and o is an isomorphism. The converse is trivial.

PROPOSITION 7. Let R be a semiperfect monlocal right PCQI-
ring with decomposition R = @ D\, e;R, where n > 2. Then R s
a qc-ring.

Proof. For each 4, ¢,R = R/P Zk 1ekR So ¢, R is quasi-injec-

tive, for each 7. Let A, be the sum of all those ¢,R which are
isomorphic to each other. Then R =& D2, A,. We claim that A,
is a two-sided ideal of R, for each 7. Clearly A, is a right ideal.
Consider ¢;R such that ¢;R &£ A,. Define f: ¢,R — ¢;R, where ¢,R C A,,
by fle;r) = e;xe,r, for e R. Then feHom,(¢,R,¢;R). Since ¢,R
and ¢;R are not isomorphic, f = 0 by Lemma 6. So, for ¢;R < 4,,
¢;RA; = 0. So RA,CA,. Since A, is a finite direct sum of isomorphic
quasi-injective right ideals, A, is quasi-injective, hence a qc¢-ring.
Thus, by Koehler [13], R is a gc-ring.

PROPOSITION 8. Let R be a semiperfect right PCQI-ring such
that R = e R@ e,R. If ¢,R = ¢,R, then R is a qc-ring.

Proof. Now ¢ R = e¢,R and R/e,R = R/e,R, hence ¢,R and ¢ R
are quasi-injective. Since ¢,R = ¢,R, R = ¢,R P ¢, R is quasi-injective,
hence right self-injective. So R is a gc-ring.

PROPOSITION 9. Let R be a semiperfect right PCQI-ring such
that R = e, R @ ¢,R. If e.Re, = 0 and e,Re, = 0, then R is a qc-ring.

Proof. If eRe, =0 and ¢,Re, = 0, then ¢ R and ¢,R are two-
sided ideals of R. Thus ¢,R = R/e,R and e¢,R = R/e,R are qc-rings.
Then R = ¢,R P ¢,R is a qc-ring.

PROPOSITION 10. Let R be a semiperfect right PCQI-ring such
that R = e R P e,R. If ¢,Re, + 0 and e,Re, + 0, then R is a gc-ring.

Proof. eRe, # 0 and e,Re, = 0 imply that there exist nonzero
homomorphisms, hence monomorphisms by Lemma 5, from ¢, R to
¢,R and from e,R to ¢,R. Thus, by Bumby [2], ¢,R =¢R, and
Proposition 8 yields the result.
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PrOPOSITION 11. Let R=¢,R@e,R be a semiperfect right
PCQI-ring where e,R % ¢,R and exactly one of e,Re, or e,Re, is zero.
Then R is monprime with nil radical.

Proof. It follows from that the fact that if ¢,Re, == 0, then ¢ Re,
is a nilpotent ideal.

THEOREM 12. Let R be a nonlocal right PCQI-ring. Then R is
semiperfect iff R is nonprime or simple artinian.

Proof. Necessity follows by Proposition 3, and sufficiency follows
from Proposition 7-11 and Koehler’s characterization of qc-rings [13]
(cf. definitions and preliminaries).

THEOREM 13. Let R be a semiperfect nonlocal ring. Then R
18 a right PCQI-ring iff either (i) R = @ >~ R,, where R, is semi-
simple artinian or a rank o duo maximal valuation ring or (ii)
R = (OD g), where D is a diviston ring.

Proof. Let R be a right PCQI-ring. By Propositions 7-10, R
is a gcring unless R =¢R@e¢,R, where ¢, R and ¢,R are not
isomorphic and exactly one of e¢,Re, or e,Re, is zero, say eRe, # 0
and e,Re, =0. If R is a QC-ring, we get (i) by Koehler [13].

Otherwise, we have R = <61Rel elRe?). We claim that e Re, and
0 e,Re,

e,Re, are isomorphic division rings and M = ¢ Re, is a (D, D)-bimodule
such that dim, M =1 = dim M,, where D = ¢, Re, = ¢,Re,. Clearly
e,Re, is nilpotent ideal and since it is nonzero, R is not prime.
So, by Proposition 3, the radical N of R is a nil ideal. Thus
e,Ne, is nil. We claim that e¢,Ne, = 0. Let e,xe,ce¢,Ne,. Define
o:e,R—e,R by o(e;y) = e;xe,y. Then o€ Homy (¢,R, ¢,R), and since
e,xe, is nilpotent, ¢ is not a monomorphism. So ker ¢ == (0). Since
Hom, (¢,R, ¢,R) # 0, there exists an embedding %:¢,R—e¢,R. Now
no: e,R —e R, and since kero # (0), kerzno # (0). By Lemma 5,
7o = 0. Since 7 is a monomorphism, we have ¢ = 0. Thus e,xe, = 0,
and ¢,Ne, = 0. So ¢,Re, is a division ring. Further ¢,Re, = ¢,R since
e,Re, = (0). Thus ¢,N =0, and ¢,R is a minimal right ideal. Now
e, X is uniform because it is quasi-injective and indecomposable. Since
0 # e,Re,R is the sum of the images of all R-homomorphisms of ¢,R
into e, R, the fact that ¢,R is minimal and ¢, R is uniform yields that
e, Re,R itself is the unique minimal right subideal of ¢,R, is isomorphic
to e,R, and is contained in every nonzero right subideal of ¢,R. We
claim that e, Ne, = 0. Let 0 = e¢,xe, ce¢,Ne,. Since N is nil, emxe, is
nilpotent. Then o:¢,R— ¢, R defined by o(e,r) = exe,r is an endo-
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morphism of ¢, R with ker o0 # (0). Let A = kero. Then ¢Re,RC A,
and we have exeRe, = (0). On the other hand, ¢ Re,R C exe R
yields that e,xe,Re, = (0). This is a contradiction. Hence ¢, Ne, = (0),
and e, Re, is a division ring. Now using the fact that Hom, (¢,R, ¢,R)
is a division ring and that ¢,R is quasi-injective, it follows that every
member of Hom (¢,Re,R, ¢,Re,R) admits a unique extension to an
endomorphism of e¢,R. Further, every endomorphism of ¢, R maps
e, Re,R into itself since e, Re,R is the unique minimal subideal of ¢,R.
Thus Hom (¢, Re,R, ¢,Re,R) = Hom (¢,R, ¢,R). Since ¢ Re,R = ¢,R, we
obtain e,Re, = ¢,Re,.

Now ¢,N = ¢,Ne, because ¢,Ne, = (0). Since ¢,Re,R < ¢, N, we get
e.N = e, Re, = ¢, Re,R. Thus M = ¢,Re, is a one-dimensional right
vector space over D = ¢,Re¢,. We show that M is also a one-dimen-

sional left ¢, Re,-space. Let X = (ellgel ](l)[) =~ R/A, where A = <8 lg)
Then X is quasi-injective. Let 0 == xe M, and let y€ M. Consider

<8 ZKI> (8 l(\;[) defined by 0(8 %c> = (8 'yoc)’ for ceD. Then o

is an R-endomorphism, so it can be extended to an endomorphism 7

of X. Let 7)( > = (g 8) Then we have (8 %) = 0(8 g) = 77<0 0)

(8 agc) Thus ¥y = ax, so M = ¢,Re;x. So M is a one-dimensional left

vector space over ¢,Re,. Thus, for each d € ¢,Re,, there exists a unique
d ce,Re, such that dx = xd’. Define 6:¢,Re, —e¢,Re, by 6(d) =
Then # is an isomorphism, and we may identify d and d’. Then

7: <€ g) (6) Jg) defined by 77(8‘ 2) = <g Z;x) is an isomorphism.

Conversely, if R satisfies (i), then, by Koehler [13], R is a QC-
ring, hence a PCQI-ring. If R satisfies (ii), then straightforward
computation shows that R is a right PCQI-ring.

Since every right QC-ring is a left QC-ring and (OD g) is also
a left PCQI-ring, we get the following corollary.

COROLLARY. A nonlocal semiperfect right PCQI-ring is also a
left PCQI-ring.

5. Local PCQI-rings. Theorem 13 and Theorems 14, 15, and 16
which follow generalize Klatt and Levy’s [11] theorems for commuta-
tive pre-self-injective rings which are not domains. Throughout this
section M will denote the unique maximal right ideal of a local ring
R. M is then the Jacobson radical of R, and R/M is a division ring.

THEOREM 14. Let R be a local right PCQI-ring with maximal
ideal M. Then either R is a right valuation ring or M? = (0) and
M, has composition length 2.
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Proof. First note that for all nonzero right ideals A, R/A is
indecomposable quasi-injective and hence uniform. Now we show
that all nonzero right ideals are either minimal or essential. Let
A, B be nonzero right ideals such that 4 N B = (0). We claim that
A is minimal. Let C be a nonzero right ideal properly contained in
A. Then R/C is quasi-injective and not uniform since A/CN
(B + C)/C =0. This is a contradiction, so A is minimal. Similarly,
B is minimal. In particular, it follows that any maximal independent
family of minimal right ideals can contain at most two members.

If Soc R = (0), then all nonzero right ideals are essential. Let
A, B be two nonzero right ideals. If neither A & B nor B & A, then
R/ANB is quasi-injective but not uniform since A/(ANB)NB/(ANB)
=(0). As before, this is a contradiction. So either A< B or
B c A.

If Soc R, consists of a unique minimal right ideal then it is clear
that R is a right valuation ring.

Finally, suppose Soc R, = A @ B, where A, B are minimal right
ideals. Then R cannot be prime. Let x€ M, and consider zR. If
xR is not minimal, then aR is quasi-injective and decomposable.
Then xR =A@ B. In any case, for all xe M, x<Soc B;. This
implies that M* = (0), and the composition length of M is 2, completing
the proof.

The next two theorems give the structure of non-prime local
right PCQI-rings. Prime local PCQI-rings are discussed in the next
section.

THEOREM 15. For a momprime right wvalwation ring R, the
Jollowing are equivalent:

(i) R is a right PCQI-ring.

(ii) R s a right duo almost maximal valuation ring of rank
0 such that any left ideal containing a nonzero right ideal is two-
sided.

Proof. (i) = (ii). Since R is not prime, M is nil by Proposition
3. 8o, if xR is a nontrivial principal right ideal of R, zR is quasi-
injective. Since xR is essential in R, the injective hull of zR is the
same as that of R. Hence, by Johnson and Wong [10], RxR < zR.
So xR is a two-sided ideal of R. Thus R is a right duo ring. Since
each proper homomorphic image of a PCQI-ring is a QC-ring, the
proof of (i)= (ii) as well as that of (ii)= (i) is completed by a
theorem of Koehler [13].

THEOREM 16. For a local ring R with M* = (0) and the composi-
tion length of My, equal to 2, the following are equivalent:
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(i) R is a right PCQI-ring.

(ii) For each monzero right ideal A in R and for each
m, m, & A, the congruence xm, = m,(mod A) has a solution, z = c,
such that A C A.

Proof. Under the hypothesis the only nonzero right ideals 4 of
R different from M and R are minimal right ideals, and M/A is a
simple right R-module.

(i()=(2) Let A be a nontrivial right ideal in R, and let
m,, my€ R such that m, m,¢ A. Then m,R = M/A = m,R, and the
mapping o: M/A— M/A which sends 7,r to m,r is a well-defined
R-homomorphism. Since R/A is quasi-injective, ¢ can be lifted to
o*c¢Hom, (R/A, R/A). Let o*(1)=a& Then am,= m, Hence
xm, = my(mod A) has a solution 2 = a. Clearly aA cC A.

(ii) = (i) We only need to prove that if A is a nontrivial right
ideal of R and o: M/A — R/A, is a nonzero R-homomorphism, then o
can be extended to an R-homomorphism ¢*: R/A— R/A. Let me M,
where m¢ A. Then M/A = mR. Also, o(M/A)= MJ/A. Let
o(m) = mr. Since M?>= (0), r¢ M. So r is invertible, and mr ¢ A.
Let a € R be chosen such that am = mr(mod A), and cA S A. Then
o*(T) = aR is well-defined, and it extends o, completing the proof.

The example which follows shows that a local right PCQI-ring
is not necessarily a left PCQI-ring.

EXAMPLE. Let F be a field which has a monomorphism p: FF— F
such that [F:p(F)] > 2. Take x to be an indeterminate over F.
Make V = zF into a right vector space over F' in a natural way.
Let R = {(«, 2B8) |, B € F}. Define

(@), 2B,) + (a, 2B,) = (@, + a,, 2B, + xBs)
and
(@, B0 28,) = (.0, 2(0(X)B: + B:2))
Then R is a local ring with identity with the maximal ideal
M = {0, xa)|ac F} .

In fact, M is also a minimal right ideal and M* = (0). Thus R is a
right PCQI-ring. Further, if {a;},c; is a basis of F as a vector
space over o(F) then straightforward computations yield that
M= > R0, xx,)) as a direct sum of irreducible left R-modules
R(0, ;). Since card I > 2, it follows by Theorem 14 that R is not
a left PCQI-ring.
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6. Prime local PCQI-rings.

THEOREM 17. Let R be a prime local right PCQI-ring. Then
R is a right valuation domain, hence right semihereditary.

Proof. By Theorem 14, R is a right valuation ring. Let A
denote the intersection of all nonzero two-sided ideals of R. The
proof that R is a domain falls into three cases.

(i) A=(0).

Let z, ye€ R such that xy = 0. Suppose ¥y = 0. Then yR is a
nonzero right ideal of R. Since R is right valuation and 4 = (0),
yR must contain a nonzero two-sided ideal of R. Further, each
proper homomorphic image of R is a local QC-ring, hence a duo ring
[13]. This implies that yR is two-sided. Hence x = 0, and R is an
integral domain.

(ii) A=+ (0) and A # M.

Under these hypotheses, A cannot be a prime ideal. So there
exist x, y € R such that xRy S A, x¢ A and y¢ A. Since R is right
valuation, A Z 2R and A S yR. So both xR and yR are two-sided
ideals. For definiteness, let tRSyR. Then (zR)}=(xR)(yR)YSAR=A
gives that (zR)* = A by the minimality of A. Also 4 = A% hence
(xR) = (zR)*. It follows that 2*R = x'R. Then «* = x'r, for some
reR, and 2*(1 — 2’7) = 0. So 2> =10. Thus A = (0), and this case
cannot occur.

(iii) A = M.

Let Sc R, and let 7(S) denote the right annihilator of S in R.
Let Z(R) = {xe R|r(x) is an essential right ideal}. Then Z(R) is an
ideal in R called the right singular ideal.

Since R is a right valuation ring, R is immediately a domain if
Z(R) = (0).

So assume that Z(R) # (0). Then Z(R) = M, and each element
in M is a right zero divisor. So xz€ M implies that xR is proper
cyclic, hence quasi-injective. Also zR is an essential right ideal in
R. By Johnson and Wong [10], RzR < xR. Hence xR is two-sided.
So R is a prime right duo ring, and it follows that R is a domain.

7. PCQI-domains. In this section we discuss right PCQI-rings
which are integral domains and prove that these are right Ore-
domains. This generalizes the result of Faith [4]. Our proof, in
this case, though it runs on the same lines as that of Faith, does
not use Faith’s result.

PROPOSITION 18. Let R be a right PCQI-domain, and let I be a
nonessential right ideal of R. Then R/I is an injective right R-
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module containing a copy of R.

Proof. Since I is nonessential, there exists a nonzero right ideal
J in R such that INJ =0. Let acJ such that a #0. Then
eRNISJNI=0. Consider (@ + I)={rxeR|axecl}. Clearly
(@ + I) = 0. So R/I contains a copy of R. Since R/I is also quasi-
injective, this implies that R/I is injective by [17].

For a right R-module A4, let A denote the injective hull of A.

PropoOSITION 19. Let R be a right PCQI-domain whick is not a
right Ore-domain. Then R is finitely presented.

Proof. Let ae R such that @ = 0 and aR is not essential. Then
R/aR is injective. Since R/aR contains a copy of R and is injective,
R/aR contains a copy of R. Then R/aR = Y/aR @ X/aR, where
X/aR =~ R. Now Y/aR is cyclic. So Y = aR + bR, for some beR,
and the short exact sequence 0 Y —>R—R/Y = X/aR = R—0 shows
that R is finitely presented.

THEOREM 20. A right PCQI-domain R is a right Ore-domain.

Proof. Let R be a right PCQI-domain. Suppose E is not a
right Ore-domain. Then, as in Proposition 19, there exists a € R such
that R/aR = Y/aR @ X/aR, where X/aR = R = R/Y and Y = aR + bR.
We also get that R = X + Y, where XN Y = aR. This yields an
exact sequence 0 - aR — X X Y — R — 0 which splits. So X x Y =
aR X R= R x R. This implies that Y =aR + bR is a finitely
generated projective right ideal. Since B = R/Y,0—-Y—R —R—0
is exact. Then Y@®R—>R®.R—R®,R—0 is exact. Also, a
finitely generated projective R-module is essentially ﬁmtely related.
So, by Cateforis ([3], Proposition 1.7), (aR + bR) ®:R is projective
as an R-module. Then Y®;, R is a direct summand of a free R-
module. Now Z(R3) = 0, hence Z(Y ®:R) = 0 because Y®: R is

a diregt summand of a free R-module. Now consider Y®Rﬁ—z—>
R@:E—R@®;E—0. Again, by Cateforis ([3], Lemma 1.),
keri=Z(Y®zR)=0. 80 0->Y@®,R>R@:R—R@E—0 is
exact. Since R®. R = R, let fiR®;R— R be the canonical iso-
morphism. Then fi: YQ®LE— R is a monomorphism, and Y®RR YR.
Smcg Y is finitely generated, YR is a finitely generated right ideal
of R. So YR = ¢R, Where ¢ =e. Thus we have the followmg
exact sequence: 0— ¢eR—B—R ®RR—> 0, and R®RR R/eR =
1- e)R Hence R®RR is isomorphic to a direct summand of R.
Since Z(Ky) = 0, Z(R®,R) = 0. Since R = zR, for some z¢ R, the
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kernel of the canonical map f: R ®, R — R defined by fla ®b) = ab
is contained in Z(R @®; R) and hence must be zero. Since f is surjec-
tive, f is an isomorphism. By Silver ([18], Proposition 1.1), there
exists an epimorphism in the category of rings from R to R.

Let M be a right R-module which is quasi-injective as a right
R-module. We claim that M is quasi-injective as a right R-module.
Let 0— Ay — M; — B3 — 0 be exact. Consider 0 — Homj (Bj, M3) —
Homj (M3, M) — Homp (A, M3). By Silver ([18], Corollary 1.3),
Homj (N, N*) = Homg (N, N*'), where N, N* are right R-modules. Also
0 — Hom, (B, M) — Homg (M, M) — Hom, (4, M)— 0 is exact since
M, is quasi-injective. Thus 0-— Homj (B, M) — Homj (M, M) —
Hom, (4, M)— 0 is exact. So Mj; is quasi-injective. Let K be a
cyclic right R-module. Then K is a cyclic right R-module. Since R
is a right PCQI-domain, K, is quasi-injective. Thus Kj is quasi-
injective. Since R is right self-injective, R is a QC-ring. So R is
semiperfect and simple, hence simple artinian. Thus R is a division
ring. This proves that R is a right Ore-domain.

We conclude by a remark that we have not studied arbitrary
prime right PCQI-rings. This case remains open. Indeed, a charact-
erization of right PCQI-domains has not yet been obtained.

REFERENCES

1. J. Ahsan, Rings all of whose cyclic modules are quasi-injective, Proc. London Math.
Soc., 27 (1973), 425-439.

2. R. Bumby, Modules which are isomorphic to submodules of each other, Archiv. der
Math., 16 (1965), 184-185.

8. V. C. Cateforis, Flat regular quotient rings, Trans. Amer. Math. Soc., 138 (1969),
241-249.

4. C. Faith. When are proper cyclics injective, Pacific J. Math., 45 (1973), 97-112.
5. , Lectures on Injective Modules and Quotient Rings, Springer-Verlag, Berlin,
1967.

6. M. Harada, Note on Quasi-injective modules, Osaka J. Math., 2 (1965), 351-356.

7. D. A. Hill, Semi-perfect q-rings, Math. Ann., 200 (1973), 113-121.

8. G. Ivanov, Non-local rings whose ideals are all quasi-injective, Bull. Australian
Math. Soc., 6 (1972), 45-52.

9. 8. K. Jain, S. Mohamed and Surjeet Singh, Rings in which every right ideal is
quasi-ingjective, Pacific J. Math., 31 (1969), 73-79.

10. R. E. Johnson and E. T. Wong, Quasi-injective modules and irreducible rings, J.
London Math. Soc., 36 (1961), 260-268.

11. G. B. Klatt and L. S. Levy, Pre-self-injective rings, Trans. Amer. Math. Soc.,
137 (1969), 407-419.

12. A. Koehler, Rings for which every cyclic module is quasi-projective, Math. Ann.,
189 (1970), 311-316.

13. , Rings with quasi-injective cyclic modules, Quar. J. Math. Oxford (2),
25 (1974), 51-55.

14. L. S. Levy, Commutative rings whose homomorphic images are self-injective,
Pacific J. Math. 18 (1966), 149-153.




472 S. K. JAIN, SURJEET SINGH, AND R. G. SYMONDS

15. S. Mohamed, g¢-rings with chain conditions, J. London Math. Soec., 2 (1970), 453-460.
16. B. L. Osofsky, Noncyclic injective modules, Proc. Amer. Math. Soc., 19 (1968),
1383-1384.

17. E. deRobert, Projectifs et injectifs relatifs, C. R. Acad. Sci. Paris, Ser. A, 286
(1969), 361-364.

18. L. Silver, Noncommutative localizations and applications, J. Algebra, 7 (1967),
44-76.

Received November 19, 1976.
Om10 UNIVERSITY, ATHENS, OHIO

Present address: Surjeet Singh, Guru Nanak Dev University, Amritsar, India.
Present address: Robin Symonds, Indiana University at Kokomo, Kokomo, Indiana 46901.





