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INTEGRALS OF FOLIATIONS ON MANIFOLDS WITH A
GENERALIZED SYMPLECTIC STRUCTURE

R. 0. FULP AND J. A. MARLIN

Let M be a C°° manifold of dimension m and E an inte-
grable subbundle (foliation) of the tangent bundle TM. We
are interested in structures on the set of all local integrals
of E. For example, if M is a symplectic manifold then the
Poisson brackets operation on the set CΓoc of all local func-
tions of M defines an algebraic structure on Cfoc Earlier
authors have called such structures " function groups." In
particular, if XH is a nonvanishing Hamiltonian vector
field, then XH defines a foliation E of M and the set of all
local integrals of E is also a function group.

The Poisson brackets operation can be defined on manifolds
with somewhat less restrictive requirements than that of being sym-
plectic. Other authors such as S. Lie and C. Caratheodory [4] have
studied this more general notion of Poisson brackets in the classical
local setting. Hermann [9, p. 31] has indicated how to extend the
definition of Poisson brackets to functions on manifolds having a
closed 2-form ω of constant rank (Recall that M is called symplectic
if ωv has rank m for each p e M).

The paper is largely self-contained, but does require the use of
the following basic identities:

LXY = \X, Y] , Lx — ixd + dix , Lxiγ — iγLx = i[χtY \ .

The proofs of these identities may be found in Chapter IV of the

first volume of [7]. Other undefined terms appear either in [1] or

[7].

!• Generalized symplectic structures on manifolds* Let M
be a C°° manifold of dimension m and let ω be a closed 2-f orm on
M. Recall that the kernel of a 2-form ω can be defined at each
point peM by

ker OJV = {v e Mp \ ω(v, Mp) = 0}

= {t;eM,| ω(Mp, v) = 0} .

The rank of ω at p is defined to be the rank of the bilinear map
ωp: Mp x MP-^R. Of course, since ωp is a skew-symmetric bilinear
map its rank is the even integer m — dim (ker ωp).

Let Γ denote the set of sections of TM and Γ* the set of
sections of T*M. Define a: Γ -* Γ* by
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ax = ixω .

Let Γω = {Xe Γ \ ixω = 0} = ker a.
If we fix p e Λf then we may regard α = ap as a map from

TPM into Γ£Λf. Since TPM is finite dimensional, T Λf ^ T$*M and
we may apply the standard duality theorems of linear algebra.
Thus, if we use the usual pairing between TPM and T%M we have,
for x,ye TPM,

(a(y), x) = a(y)(x) = β)p(y, x) = - α)p(α?f y) = <»**, -<φ)> .

Thus α is skew adjoint: α* = — a, and

im (α*) = im (α) = ker (α)1

where ker (α)1 is the annihilator of ker(α) in T%M.
From this we see that if Γt = {βeΓ*\ β(Γω) = 0}, then Γ* =

ker(α) 1 ^Γ*. From these remarks it follows that Γ* = im(α).
If inv(Γ) is defined by inv(Γ) = {XeΓ \ LxΓωQΓω} then inv(Γ)

is the normalizer of Γω in Γ and thus is a Lie subalgebra of Γ.
Moreover, it is immediate from the definitions any subalgebra of a
Lie algebra is always an ideal in its normalizer, thus Γω is an ideal
in inv (Γ). We summarize all these remarks as a proposition.

PROPOSITION 1.1. The image of the map a: Γ —+Γ* is precisely

Γ* = {β e Γ* I β(Γω) = 0} .

Moreover, inv(Γ) = {XeΓ\LxΓωQΓω} is a Lie subalgebra of Γ which
contains Γω as an ideal.

We now want to show that a\inγ(Γ) is a Lie algebra antiho-
momorphism from inv(Γ) onto the set inv(Γ*)QΓ* where inv(Γ*)
is defined by

inv (Γ:) = {β € Γt I Lzβ = 0 for all ZeΓω}.

Before doing this we need to define a Lie algebra structure on
inv (Γ*). For this we need a lemma.

LEMMA 1.2. If ZeΓω, then LzΓ*ως=Γt. In fact, Lzax = aLzX

for each XeΓ.

Proof. Since Lzω — (izd + diz)co = 0, Lzax — Lzixω = %xLzω +

COROLLARY 1.3. α(inv Γ) = inv (Γ2).

Proof. From Proposition 1.1, we know that inv (Γ*) is contained
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in im(a). By the lemma above, for ZeΓω, Lzax — aLzX — —0LLχZ\
thus ax 6 inv (Γ£) iff LXZ e Γω for all Z e Γω. I t follows that
a(inv Γ) = inv (Γ*).

The map a is a linear transformation from inv (Γ) onto inv (Γ*)
with kernel Γω. Thus inv (Γ*) = inv (Γ)/Γω as vector spaces. Since
Γω is a Lie ideal in inv (Γ), the quotient inv (Γ)/Γω is a Lie algebra.
We impose this Lie structure on inv (Γ*) via the vector space
isomorphism induced by a.

PROPOSITION 1.4. The set inv (Γ*) of all invariant elements of
ΓZ is a Lie algebra under { , } where { , } is defined by

{ax, aγ] = -aίx>Yl .

The map a: inv (Γ) —> inv (Γ*) is a Lie algebra antihomomorphism with
kernel Γm thus the sequence

0 > Γω > inv (Γ) - ^ inv (ΓJ) > 0 ,

is an exact sequence of Lie algebras.

REMARK. It is easy to see that for a, β e inv (Γ*) one has

{a,β}\ϋ = {a\U9β\ϋ}

for open subsets U of M.

REMARK. We now call attention to certain identities which have
proven useful in our work. If β and 7 are closed 1-forms in Γ*
and X and Y are vector fields such that β = az, 7 = aγ, then

{β, 7} = -i [ J Γ i F ]α> = -LXY= Lγβ = d(2ω(X, Y)) .

Note, in particular, that {/S, 7} is exact.
To see that the above identities hold, observe that

{β, 7} = {ax, aγ) = - α [ x > F ]

= — i[χ,γiω — —Lxiγω + iγLxω

— —Lxaγ + ίF(^ίχ +

- 2d(ω(X, Y)) .

Let C°°(ω) denote the set of all invariant functions of kerω, i.e.

C~(ω) - {/ I Lzf = d/(Z) - 0 for all ZeΓω}.

We now define the Poisson bracket { , } for pairs of invariant
functions of ker ω:
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{/, g) = 2ω(Xf> Xg)

where Xf and Xg are any two vector fields such that

dh = iχho)

for h = / , g. Clearly { , } is well-defined.

PROPOSITION 1.5. // f, ge C°°(α>) the following statements are
true:

(1) ί/,flf}= - LZf(g) = Lz§(f)
(2) d{/f ff} - {df, dg}.

Moreover, C°°((ύ) is a Lie algebra with respect to { , } and
(3) X{ftg) + [X

Proof. If /, g e C°°(ω) then (1) follows from {/, flr} = 2α>(X,, X,) =
df(Xg) — LXg(f). By the above remark we have d{f, g) = ώ(2ft)(X/,
XJ) — W, dg} and thus (2) follows. The statement (3) is immediate
from definitions.

PROPOSITION 1.6. If f, geC°°(ω) and dg = iXgω then f is con-
stant on integral curves of Xg iff {/, g) — 0.

Proof. Xg{f) = LZg(f) = {/, g} = 0.

2* Function groups. Let I be a connected C°°-manifold of
dimension m with a 2-form ω of constant rank p ^ m. In this case
ker ω is locally trivial, i.e., ker ω is a subbundle of TM. Moreover,
kerft) is actually an integrable subbundle of TM and thus is a
foliation of M. To see this observe that for XeΓω,

Lxω = ix(dω) + d{ixω) = 0 .

Thus for X, Γ in Γω,

iίχ,γico = Lx(iγω) - iγ(Lxω) = 0 .

A function / is called a local C°° function on .M iff the domain
Ϊ7=dom(/) of / is an open subset of M and feG°°(U). Let
CΓoc — CZc(M) denote the set of all local C°° functions of M. Let
CZG((I>) denote the set of all local integrals of the foliation ker o),
i.e.,

CΓoc(o>) = {/ 6 CΓOCI d/(ker (ωp)) = 0 for all p e dom /} .

Note that in the symplectic case CΓoc((ϋ) = CΓ0C*
Recall that a function feCZc is said to be C°°-dependent on

fit fif * *, fr^CΓoc at p eM provided that there is a neighborhood U
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of p and a function FeCΓ0C(Rr) such that
(1) the functions /, fί9 f2, , fr are all defined on U, and
(2) f(x) = F(Ux)f /,(*), , fr(x)) for each xeU.
If /, g e Czc(ω) and C7 = dom / n dom g Φ 0 , then 17 can be

regarded as a manifold with ω\π a 2-form of constant rank on U.
Thus {/, g} = {f\U,g\U) is a well-defined element of C°°(ω | U).
It follows that X/ and Xg have domains dom / and dom g respec-
tively and thus [Xf, Xg] and X/,3} are well-defined vector fields on
U. Similarly, [df, dg) is a well-defined 1-form on U.

DEFINITION 2.1. A nonvoid subset Sf of C£c(ω) is called a
function group iff the following conditions hold:

(1) M = U / e ^ d o m ( / ) ,
(2) if /e&* and Z7 is an open subset of dom / then f\UeS^f

( 3 ) if /, g e & and dom (/) Π dom (g) Φ φ, then {/, g) e ̂ ,
(4!) if /L,/2, •••,/* a r e elements of ^ and / is C°°-dependent

on Λ, /2, , Λ then fe£*f

(5) Let U — Ui C7i where Us is an open subset of M for each
j. If feC-(U) and / | Ude^9 for each i, then / e ^ .

A function group is said to be of rank r at a point peM pro-
vided that there are r functions flf f2, , fr in £f such that

(1) there is a neighborhood U of p contained in the domain
of each of the functions flf /2, , fr such that for each q e U

dflq, df2gf , dfrq

are independent elements of M*, and
(2 ) for each / e £f, with p e dom /, / is C°°-dependent on flf f2,

• , fr on some neighborhood of p.

In case f19f2, •••,/,. satisfy (1) and (2) we say that fίff2, •••,/,.
generate S* at p.

REMARK. If /„ /2, •••,/,. generate y at p and £» &> •• ,^ s

generate 6^ at p, then r — s. To see this observe that the defini-
tion implies that there exists functions FieCT0C(Rr)f GjeCΓ0C(Rr)
such that for i = 1, 2, , s and j" = 1, 2, , r

9i = ̂ (/ i , , Λ) and /,• = G,^!, , gs) .

Then the chain rule applied to the equalities

gt =

ft - G;(Wi, •••,/,),

implies that (dFJdfj) and (dGJdgt) are inverse matrices. Hence r = .s
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REMARK. If £f is a function group of rank r at p e M, then
one can easily show that if hl9 h2, , hr are elements of S? such
that dhlp, dh2p, , ώferί, are independent in Mp then they generate
Sf at p.

A function group is said to be of rank r iff it is of rank r at
each point of M.

The following is an example to show that a function group may
not have the same rank at each point of M. Let M = Rι and
ω = dx A dy. Let feC°°(R) such that

f{x) = 0, a? ̂  0 and /(a?) > 0, a? > 0 .

Define functions F and G on JB2 by F(x, y) = x and G(x, y) — f(x)y*
Let Sf denote the set of all functions of the form

(x, y) > Φ(F(x, v), G(x, y))

where Φ is any element of CZc(R2)- Then Sf is a function group
which has" rank 2 at points (x, y) where x > 0 and rank 1 at points
(x9 v) where x < 0.

We describe the relation between function groups of rank r
and foliations.

THEOREM 2.2. Let S^ be a function group of rank r and let
Ep - {Xp I 2ωp(Xpr) = df( ) for fe Sf) for each peM. Then E =
\JPeM Ep *Σ= TM is an integrable subbundle of TM which contains
ker (ft)).

Proof. We show E is locally trivial. Choose peM, U & neighbor-
hood of p, and f19 •••,/,. in S* as in the definition of a generating
set for <9* at p. Let X, = X/.. If ? e C7 and v e Eg then v = {Xh)q

for some h^S^. Since d/lff, •••, e2/rff are independent we know that
there exists FeCΐoc(Rr) such that

h = F(f19 . . . ,/ r )

on a neighborhood V of 9. One sees that

and thus 1; - (Xh)q 6 <XW, ., Xrq) + ker (ft),). Therefore E is a
subbundle of TM.

We show £7 is integrable. Let X, Y belong to Γ(E) and let
peM. On a neighborhood U oΐ p both X and F are of the form

t +
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for XteC^U), ZeΓ(ω\σ), and X, = Xf.. Then [X, Y] will be in
Γ(E) provided that for 1 ^ i, i ^ r , [X,, I . l e Γ ^ ) and for ZeΓ ( β > I ι n,
[X,, Z] e ΓCE). Since y is a function group, {fi9 /,-} e ^ and
X{f.,fj}eΓ(E I C7). By (3) of Proposition 1.5 it follows that [Xif X3] e
Γ(E\ U). Moreover, 2ω([Z, X3], Y) = (kz,xβω)(Y) = Lz{iXjω){Y) =
Lz(dfd)(Y) = diizdfjXY) = 0 for all YeΓ. Thus [Z, X3]eΓω for
each Z eΓω and consequently i? is integrable.

Hereafter the foliation E described above will be called the
foliation determined by Sf.

If £f is a function group then the reciprocal of Sf is defined
to be the set of all geCroc(ω) such that {/, g) = 0 for all / e ^
such that dom / n dom g Φ φ. We denote the reciprocal of S? by
Sf\ The fact that Sf" is a function group is somewhat trivial.
To see that &" is closed under { , } one uses the Jacobi identity.
To see that (4) of Definition 2.1 holds we need an identity which is
useful in subsequent sections of our paper: for arbitrary hlf h2, •••,
kneCΐ0C(ω) and FeC?0C(Rn), then

(2.4) {/, F(K K , K)) = Σ ^-{K K , K){f, fcj .

Part (4) follows immediately from this identity. To prove 2.4
observe that

{/, F(K K , K)} = - 2ω(XF, Xf) = -

= - Σ |f-{^, /} - Σ

REMARK. It is obvious that Sfζ^Sf" for any function group
&*. Observe that if £f has rank r, then £f = ^ " .

If ^ is a function group then j?^ is a subgroup of Sf iff ^ "
is a function group such that ^ ~ £ ^ .

Observe that every function group is a subgroup of the func-
tion group CΓ0Q(ω). Also the intersection of two subgroups is a
subgroup. In particular S^ Π ̂ ' is a subgroup of both ^ and ^ " .

PROPOSITION 2.6. Lei S^ he a function group of rank r at p.
Then its reciprocal has rank p — r at p.

Proof. Let peM and let fί9 ••-,/,. be generators of Sf at p.
Choose coordinates xu , xm at p such that Xt = Xf. = d/dXi for
1 ^ i <; r and such that {d/dxr+j} 1 <L j ?ί m — p generate Γω near
p. Then any integral of the integrable system X19 , Xr, d/dxr+ί,
• , d/dxr+m_p depends only on the last coordinates. Since each
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" is an integral of this system it follows that xm+r_p+1, * xm

generates S^f at p.

Using arguments similar to those above we obtain the following
corollary.

COROLLARY 2.7. Let 6^ be a function group of rank r, &"
the reciprocal of £f, and E the foliation determined by S?. Then

(1) Ep = Π {ker dgp \ g e <$"}, for each peM,
( 2 ) if g19 g2, " ,gP-r generate S^' at peM, then there is a

neighborhood U of p such that the map x—^ig^x), fiΦ0> •••> 9P-A%))

is constant on each leaf of the foliation E\U of U.

We say that a subbundle E of TM is locally Hamiltonian iff
ker (a)) Q E and for each peM there is a neighborhood U of p such
that Γ(E I 17) is spanned by vector fields X which satisfy df = ixω
for some feCΓoc(ω).

PROPOSITION 2.8. An integrable subbundle E is the foliation
determined by some function group iff E is locally Hamiltonian.
Moreover, the function group which determines such an E is unique.

Proof. Clearly if E is determined by some function group,
then E is locally Hamiltonian.

Conversely, suppose that E is locally Hamiltonian and consider
the set ^ of all local integrals of E. We now show that ^ is a
function group and that E is determined by the reciprocal, &", of
^y. Let / , g e ^", peM, and X e Γ(E). There is no loss of generality
in assuming that there is an HeC?oc(ω) such that 2ω(X, •) = dH( )
in a neighborhood of p. It follows that

d{f, g}(X) = LXH{{f, g}) = {/, {g, H}} + {g, {H, /}}

- {Lzg, /} + {Lzf, g) - 0

by Proposition 1.5, the Jacobi identity, and the fact that XeΓ(E).
Thus {/, g) e <J^ and it follows that ^ is a function group with
constant rank. Since ^ = ^?" it follows from Corollary 2.7 that

E = n {ker df \ f e ^" - ^} .

REMARK. If S? is any function group then Sf determines a
unique integrable locally Hamiltonian subbundle Έ of TM and con-
versely. If E is determined by Sf then the reciprocal of SS is
precisely the set of all local integrals of E. If E is an integrable
locally Hamiltonian subbundle of TM then the set of all local inte-
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grals of E is a function group. The [foliation determined by the
reciprocal of this function group is precisely E.

Let y be a function group of rank r. We say that a set
Sζ^C°°{M) globally generates Sf provided that for each peM there
exist functions fί9 f2y , fr e S and a neighborhood U of p such that
{/il U,f2\ U, •• , / r | U} generates &> at p. We say that a set
TQΓ* of closed 1-forms globally generates & provided that for
each p e M there exist forms βί9 , βr e T, a neighborhood Z7 of p>
functions fl9 f2, - ,fr satisfying dft = βt on U for i = 1, 2, , r
such that {/Jϋ /.ItT; •• ,Λ|ϋ r} generates ^ at p.

PROPOSITION 2.9. Suppose that there exist closed 1-forms βlf β2f

• , βn in Γ* and r > 0 such that
( i ) βi(p), β2(p), , βn(p) span an r-dimensional subspace of

Mp for each peM,
(ii) there exist functions aίάkeC°°(M) such that

- Σ
A = l

Then there exists a unique function group S^ of rank r which is
globally generated by {βίf β2, •••, βn}. Conversely, if £f is a func-
tion group of rank r which is globally generated by βlf β2, •• ,/5w

then conditions (i) and (ii) are satisfied.

Proof. The details of this proof are much like those of Theorem
2.2 and are left to the reader.

Recall that inv (Γ*) is a Lie algebra under { , }. Observe that
if alf a2, **,an are elements of inv^Γ*) they span a finite dimen-
sional subalgebra of inv(Γ*) iff

{ai9 ad} =
k

for constants cijk e JB.
We now give an application of function groups which is a slight

generalization of certain well-known theorems.

THEOREMS 2.10. Let M be a symplectic manifold (ρ~m —
and S^ a function group of rank r on M. Suppose that the closed
1-forms {alt a2, , an} globally generate S* and that they span an
n-dimensional subalgebra £f of inv (Γ*) = Γ{T*M). If the vector
field Xai is complete for each i — 1, 2, , n, then each leaf of the
foliation determined by &* is diffeomorphic to a homogeneous space
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G/H where G is the unique simply connected Lie group with Lie
algebra Sf and H is a closed subalgebra of G.

Proof. This is a consequence of a well-known theorem due to
Palais [11] (see also Loos [10]). The details of the proof of Theorem
2.10 are similar to those of Theorem 1 of [2].

REMARK. Note that if we take r = 2N — 1 we obtain a part
of Theorem 1 of Andrie and Simms [2]. Note that if we take
r = N and assume that Jίf is commutative we obtain a part of a
theorem of Arnold [1] in which the leaves of the foliation turn out
to be cylinders or tori (see, for example, Abraham [1, page 113]).

3* Invariant metrics and transverse structures* Let M be a
connected C^-manifold of dimension m and let E be an integrable
subbundle of TM of dimension r. The normal bundle TM/E of
E will be denoted by Q and its dual Q* will be identified with the
bundle E° where, for each xeM, E°x is the annihilator of Ex in TIM,
i.e.,

E°x = {βeTϊM\β(Ex) = 0}.

Define a connection F* on Γ(E°) along the leaves of E by Vxβ =
Lxβ for βeΓ(E°) and XeΓ(E).

Observe that if / is any local integral of E then Vx{df) =
Lx(df) — df(X) = 0 and thus df is covariant constant along leaves
of E. Also, if flf f2, , /m_r are independent local integrals of E
defined on an open set UQM, then dflf df2, , dfm_r span E° on U.

LEMMA 3.1. IfβeΓ(E°) is closed, then β is parallel along the
leaves of E, i.e., Fxβ - 0 for all XzΓ(E).

Proof. VW = Lxβ = (ixd)β + (dix)β = 0 for all XeΓ(E) and
βeΓ(E°).

COROLLARY 3.2. // βlf β2, , /Sw_r are global, independent,
closed elements of Γ(E°), then E° is parallelizable, i.e., it has m-
r global, independent, parallel sections.

If σ is a Riemannian metric on M, then Q may be identified
with the orthogonal complement of E in TM. Let σQ = σ \ (Q x Q)
be the induced metric on Q. If β e Γ(E°), then grad β is that
unique vector field in Γ(Q) such that

<7(grad/9, .) = β
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and, for ξ eΓ(Q), βξ is that element of Γ(E°) defined by

A - σ(£, •)

We define the dual connection V of F* to be that connection on
Γ(Q) along leaves of E such that

for XeΓ(E) and ζeΓ(Q). Another connection /7 for Γ(Q) along the
leaves of i7 is defined by

where XeΓ(E), ξeΓ(ξ) and where [Y]Q denotes the component of
Γ i n Q.

LEMMA 3.3. // σQ is invariant with respect to p then p = V.

Proof. For ζ,ηeΓ(Q) we have: (Pxβξ)(η) = (Lxβξ)(rj) = iη(Lxβξ) =

σ(ξ, [X, η]Q) = σQφxξ, η). Thus ^ = grad (P*βξ) = Vxζ.

We say that σ is invariant when σQ is invariant with respect to
the connection y in which case V = p. Observe that a metric σ
satisfies this property iff it is " bundle-like " in the sense of Reinhart
[12]. Also the connection pΣ can be defined for all XeΓ(TM) in
such a way that p is a " basic connection M (see Conlon [5]). More-
over the last result is a reflection of the fact that restrictions of
basic connections to Γ(E) are unique.

LEMMA 3.4. If σ is an invariant metric, then β is parallel
with respect to V* iff grad β is parallel with respect to p.

Proof. It is a standard result that β is F*-parallel iff grad β
is parallel relative to the dual connection V (see [7], Vol. II, page
342). Since V = p the result follows.

REMARK. If σ is an invariant metric the usual one-to-one corres-
pondence between Γ(Q) and Γ(E°) induces a one-to-one correspondence
between /7-parallel sections of Q and F*-parallel sections to E°.

REMARK. If ς and η are p-parallel along leaves of E then the
invariance of σ implies that σ(ξ, η) is an integral of E. Thus if β
is a closed element of Γ*(E) we conclude that <τ(grad/3, grad/9) is
constant on leaves of E. If σ is complete as well as invariant then
the vector field
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_ grad β
or(grad/S, grad/9)

is a complete vector field for nonvanishing closed β in Γ(E°).

The foliation i? is transversally parallelizable iff there exist m-
r independent elements of ΓQ each of which is p-parallel along the
leaves of E.

THEOREM 3.5. Suppose there exist m — r everywhere independent
closed 1-forms β19 β29 , /3m_r such that

βt(Γ(E)) = 0 for i = 1, 2, , m - r .

Then E is transversally parallelizable.

Proof. If we show that there exists an invariant metric on E9

then the theorem will be a consequence of Lemmas 3.1 and 3.4.
Let Q be the orthogonal complement of E in TM relative to an
arbitrary Riemannian τ on TM. Define σ on TM by

σ = τ\(E x E) e * Σ (ft (g) A)

Clearly σ is a Riemannian on TM. We show that σ is invariant.
First observe that for f, ηzΓ(Q) and XeΓ(E),

ζf V)) =

But

, 37])

Thus

as required. The theorem follows.

REMARK. In the proof of the preceding theorem we have intro-
duced a new metric σ = τ \E 0 Σ J E r (A (x) A) Observe that the
orthogonal complement of E relative to σ is the same as for r,
namely Q. The gradient vector fields of the 1-forms β19 βif •••, βm_r

with respect to this metric are parallel along the leaves of E. In
the following we will use these vector fields without specific refe-
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rences to the metric σ. Thus grad βt is the unique section of Q
satisfying

(3.6) Σ'/3i(grad βt)βs( Y) = βt( Y)

for all YeΓ(Q).

We make a few remarks regarding completeness. First note
that if the metric τ is complete then the metric σ will also be com-
plete if there exist numbers I and L such that

lτp(Xp, Xp) ^ Σ* βi(X,Y £ Lτp{Xp, Xp)
1 = 1

for all peM and XeΓ(Q). If this is the case then the vector fields
[l/ZS^grad &)] grad βi are complete vector fields. In any case (assum-
ing τ is complete) the vector fields grad βt will be complete if they
are bounded in the metric τ. Moreover, in this case, every linear
combination in the grad βt is complete.

COROLLARY 3.7. If in addition to the hypothesis of Theorem
3.5 we require that every linear combination of the vector fields
grad βi (see 3.6) be complete, then

(1) any two leaves of E are diffeomorphic and if any leaf of
E is closed in M they all are,

(2) if E admits a closed leaf then there is a fibre bundle p:
M—> N where N is parallelίzable and E is the foliation of M whose
leaves are the fibres of p.

Proof. The corollary follows immediately from Theorem 3.5
above and Propositions 4.3 and 4.4 of Conlon [5]

We now apply the results of this section to function groups.
As an example consider the case where M is symplectic and

suppose there is a Hamiltonian function HeC°°(M) such that
dH(p) Φ 0 for each peM. Clearly {H} globally generates a func-
tion group £$f of rank 1. This leads to a foliation E which is
generated by the unique Hamiltonian vector field XH = XdH. The
reciprocal function group Sίff, which consists of all local integrals
of E, also determines a foliation Er. Thus by Theorem 3.5, Ef is
transversally parallelizable. Indeed, if the vector field grad (dH) is
complete then each two leaves of Ef are diffeomorphic. Also since
the leaves are the components of the level surfaces of H, they are
closed and hence, by Corollary 3.7, they fibre M over a paralleliza-
ble manifold. The following theorem generalizes this example where
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M is not necessarily symplectic and the grad βt are as defined by 3.6.

THEOREM 3.8. Let ω be a closed 2-form of constant rank p on
M. Let βlf β2, , βr be closed 1-forms which globally generate a
function group 6^ of rank r. Then the foliation Ef determined
by the reciprocal function group of S^ is transversally paralleliza-
ble. Moreover, if every linear combination of the vector fields grad
βi9 i = 1, 2, « , r is complete then Ef is a complete transversally
parallelizable foliation and each two leaves of Ef are diffeomorphic.
Furthermore, if one of the leaves of Ef is closed then they all
are and M is a fibre bundle over a parallelizable manifold in
which the fibres are the leaves of E\

Proof. The theorem is an immediate consequence of what it
means for {βl9 β2, •••, βr) to globally generate £f9 Theorem 3.5 and
Corollary 3.7.

REMARK. Suppose that in the above theorem we have r — p.
In this case E' = ker ω. Moreover, if some leaf L of the foliation
Ef is closed then the manifold M is fibered by π:M—*N where
π~\x) = L, for each x, and N, the manifold of leaves of ker co, is
a symplectic manifold. This is true since Np = Qp and ω \ (Q x Q)
is nondegenerate.

REMARK. If in the above theorem r = 1, then Ef is a foliation
of codimension 1 and thus by [5, Proposition 5.1] we conclude that
either every leaf of Ef is closed or else every leaf of JE" is dense
in M.

REMARK. If in addition to the hypothesis of the above theorem
we assume that the 1-forms βlf βif , βr are exact, then there exist
functions H19 H2, •• , H r such that dff* — βt and the leaves of E',
being components of level surfaces of Ht — hif are necessarily closed.
Thus we see that if the functions {H19 H2, •••, Hr) globally generate
a function group of rank r and every linear combination of the
grad (Hi) is complete then each two components of the level surfaces
Hi — hi are diffeomorphic.
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