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INTEGRALS OF FOLIATIONS ON MANIFOLDS WITH A
GENERALIZED SYMPLECTIC STRUCTURE

R. O. FuLp AND J. A. MARLIN

Let M be a C* manifold of dimension m and E an inte-
grable subbundle (foliation) of the tangent bundle 7M. We
are interested in structures on the set of all local integrals
of E. For example, if M is a symplectic manifold then the
Poisson brackets operation on the set Ci,. of all local func-
tions of M defines an algebraic structure on C7,.. Earlier
authors have called such structures ¢ function groups.” In
particular, if X is a nonvanishing Hamiltonian vector
field, then X, defines a foliation £ of }M and the set of all
local integrals of E is also a function group.

The Poisson brackets operation can be defined on manifolds
with somewhat less restrictive requirements than that of being sym-
plectic. Other authors such as S. Lie and C. Carathéodory [4] have
studied this more general notion of Poisson brackets in the classical
local setting. Hermann [9, p. 31] has indicated how to extend the
definition of Poisson brackets to functions on manifolds having a
closed 2-form ® of constant rank (Recall that M is called symplectic
if w, has rank m for each pe M).

The paper is largely self-contained, but does require the use of
the following basic identities:

L;Y = [X; Y] y Ly=1xd + dix, Lyxiy— iyLy = 7:[X,YJ .

The proofs of these identities may be found in Chapter IV of the
first volume of [7]. Other undefined terms appear either in [1] or

[7].

1. Generalized symplectic structures on manifolds. Let M
be a C~ manifold of dimension m and let @ be a closed 2-form on
M. Recall that the kernel of a 2-form ® can be defined at each
point pe M by

ker w, = {ve M, | o(v, M,) = 0}
={veM,| o, v) = 0}.

The rank of @ at p is defined to be the rank of the bilinear map
®,: M, x M,— R. Of course, since w, is a skew-symmetric bilinear
map its rank is the even integer m — dim (ker @,).

Let I' denote the set of sections of TM and I'* the set of
sections of T*M. Define a: " —I'* by
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CKX——— ?:Xa) .

Let I', = {X el |10 = 0} = ker a.

If we fix peM then we may regard @ = @, as a map from
T,M into T3M. Since T,M is finite dimensional, T,M = T*M and
we may apply the standard duality theorems of linear algebra.
Thus, if we use the usual pairing between T,M and T*M we have,
for z,ye T, M,

<a(y)’ x> = a(y)(w) = wp('yv x) = - wp(x’ y) = <y**; '—a(x)> .
Thus @ is skew adjoint: @* = — a, and
im (a@*) = im (@) = ker (a)*

where ker (a)* is the annihilator of ker (@) in T*M.

From this we see that if I':! ={fel™*|pB([,) = 0}, then I'} =
ker (@)* S I'*. From these remarks it follows that I'Z = im ().

If inv (I") is defined by inv (") = {X eI | Ly[,=I,} then inv (I')
is the normalizer of I', in I" and thus is a Lie subalgebra of I.
Moreover, it is immediate from the definitions any subalgebra of a
Lie algebra is always an ideal in its normalizer, thus I", is an ideal
in inv (I"). We summarize all these remarks as a proposition.

PropPOSITION 1.1. The image of the map a: I — I'* is precisely
rs={per*|pI.,) =0}.

Moreover, inv(I")={Xel'|L,I,=I',} is a Lie subalgebra of I" which
contains I', as an ideal.

We now want to show that a|inv(l") is a Lie algebra antiho-
momorphism from inv(I") onto the set inv(I'})SI'* where inv (I'¥)
is defined by

inv()={Belt|L,=0 forall Zel,}.

Before doing this we need to define a Lie algebra structure on
inv(I'*). For this we need a lemma.

LEmmMA 1.2. If Zel,, then L, ISSTS. In fact, L0y = @ x
for each X eI

PTOOfo Since sz == (izd + diz)a) = 0, LZaX = inxw = 'ixsz +
Ux,21® = Qg5 = Q5.

COROLLARY 1.3. a(inv[I) = inv (I'}).

Proof. From Proposition 1.1, we know that inv (I'¥) is contained
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in im (@). By the lemma above, for Zel',, L,y = @1,x = —CQy 7
thus a e inv(l¥)if LyZeI', for all Zerl, It follows that
a(inv I') = inv (I'%).

The map « is a linear transformation from inv (I") onto inv (I'%)
with kernel I',. Thus inv (I"}) = inv (I")/I", as vector spaces. Since
I', is a Lie ideal in inv (I"), the quotient inv (I")/I", is a Lie algebra.
We impose this Lie structure on inv (I'}) via the vector space
isomorphism induced by «a.

ProroSITION 1.4. The set inv (I'}) of all invariant elements of
I'} is a Lie algebra under {,} where {,} is defined by

{ax, @y} = —Qep .

The map a: inv (I') — inv (I'%) is a Lie algebra antihomomorphism with
kernel I',, thus the sequence

0— I',— inv (I') — inv (I'*) — 0 ,
is an exact sequence of Lie algebras.

REMARK. It is easy to see that for «, Scinv (I'*) one has

{a, By = {a |y, By}
for open subsets U of M.

REMARK. We now call attention to certain identities which have
proven useful in our work. If 8 and 7 are closed 1-forms in I'?
and X and Y are vector fields such that 8 = ay, ¥ = &y, then

{:8, 7} = _'I:[X,Y]a) = —L;Y=L;B = d(ZCO(X, Y)) .

Note, in particular, that {8, 7} is exact.
To see that the above identities hold, observe that

{8, 7} = {ay, ay} = —arn
= —i,pn® = —Lyiy® + iy L0
= —L3@y + ty(diy + 1xd)® = —Lyay + iy(day)
= —LyY = —(dixy + txd)Y = — d(iyY)
= 2d(w(X, Y)) .
Let C=(w) denote the set of all invariant functions of ker w, i.e.

C(w) = {f | L,f =df(Z) =0 forall Zel.}.

We now define the Poisson bracket { , } for pairs of invariant
functions of ker w:
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{f’ g} = 2w(Xf: Xv)
where X; and X, are any two vector fields such that
dh = 15,

for b = f, g. Clearly {,} is well-defined.

ProposiTiON 1.5. If f, g C=(w) the following statements are
true:

(1) {f, 0} = — Lz (0) = L, (/)

(2) d{f, g} ={df, dg}.
Moreover, C=(w) is a Lie algebra with respect to { , } and

(3) X(f,g) + [Xh Xy] erl.

Proof. If f, g C=(w) then (1) follows from {f, g}=2w(X;, X,)=
af(X,) = Lg,(f). By the above remark we have d{f, g} = d(20(X;,
X,)) = {df, dg} and thus (2) follows. The statement (3) is immediate
from definitions.

ProposITION 1.6. If f, geC=(®) and dg = iy,® then [ is con-
stant on integral curves of X, iff {f, 9} = 0.

Proof. X,(f) = Lx(f) ={f, 9} =0.

2. Function groups. Let M be a connected C+=-manifold of
dimension m with a 2-form ® of constant rank o < m. In this case
ker o is locally trivial, i.e., ker  is a subbundle of 7M. Moreover,
ker w is actually an integrable subbundle of TM and thus is a
foliation of M. To see this observe that for Xerl',,

Lyw = iz(dw) + d(i,w) = 0.
Thus for X, Y in I,
Tz, n® = Ly(1,@) — iy(Lyw) = 0.

A function f is called a local C= function on M iff the domain
U=dom(f) of f is an open subset of M and feC=(U). Let
fe = Cp(M) denote the set of all local C~ functions of M. Let
Ci(w) denote the set of all local integrals of the foliation ker w,
ie.,

Ciw) ={feCp. |df(ker(w,) =0 for all pedom f}.

Note that in the symplectic case Ci(w) = C..
Recall that a function feC{. is said to be C=-dependent on
fole oo, freCy, at pe M provided that there is a neighborhood U
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of p and a function F e Ci(R") such that

(1) the functions f, f,, f, -+, f, are all defined on U, and

(2) f(@) = F(fix), fx), -+, f.(x)) for each we U.

If f,9eC(w) and U =dom fNdomg # @, then U can be
regarded as a manifold with |, a 2-form of constant rank on U.
Thus {f,9}={f|U, g| U} is a well-defined element of C=(w| U).
It follows that X, and X, have domains dom f and dom ¢ respec-
tively and thus [X[, X,] and X, , are well-defined vector fields on
U. Similarly, {df, dg} is a well-defined 1-form on U.

DEFINITION 2.1. A nonvoid subset & of Ci.(w) is called a
function group iff the following conditions hold:

(1) M= Uyesdom (),

(2) if fe.s” and U is an open subset of dom f then f| Ue . %

(3) if f, ge.9” and dom (f) N dom (g) # ¢, then {f, g} .S,

(4Y) if f, f, -+, f, are elements of & and f is C~-dependent
on flyfz; "'1fk then fe<—(:/7

(5) Let U= U; U; where U; is an open subset of M for each
j. If feC=(U) and f|U;e &, for each j, then fe .

A function group is said to be of rank » at a point pe M pro-
vided that there are » funections f, f;, ---, f, in & such that

(1) there is a neighborhood U of p contained in the domain
of each of the functions f, f;, ---, f, such that for each qe U

dfw; dfzqr Tt dfrq

are independent elements of M}, and
(2) for each fe.o”, with pedom f, f is C~-dependent on f,, f,
«++, f, on some neighborhood of p.

In case f,, fy, « -, f, satisfy (1) and (2) we say that f, f, <+, [,
generate 7 at p.

REMARK. If f, f, -++, f, generate & at p and ¢, g **°, Js
generate & at p, then » = s. To see this observe that the defini-
tion implies that there exists functions F,€C3.(R"), G;€C.(R")
such that for 1 =1,2, --+-,sand 5=1,2, +-+, »

gizFi(fn"',fr) and fj:Gj(gly"'ygs)'

Then the chain rule applied to the equalities

g9: = Fi(GL(gn tt gs); Tty Gr(gn ) gs))
fj = Gj(Fl(fI’ ""fr)y ] Fs(fly ""fr))

implies that (0F';/of;) and (0G,/dg,) are inverse matrices. Hence » = .s
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REMARK. If &7 is a function group of rank » at peM, then
one can easily show that if A, h, ---, h, are elements of . such
that dh,,, dhy,, -+, dh,, are independent in M} then they generate
S at p.

A function group is said to be of rank » iff it is of rank » at
each point of M.

The following is an example to show that a function group may
not have the same rank at each point of M. Let M = R® and
w =dx A dy. Let feC=(R) such that

f)=0,2<0 and f(x)>0,2>0.

Define functions F' and G on R* by F(z, y) = z and G(z, y) = f(x)y.
Let & denote the set of all functions of the form

(@, y) — O(F'(z, y), G(x, y))

where @ is any element of Ci.(R?). Then & is a function group
which has ‘rank 2 at points («, y) where « > 0 and rank 1 at points
(x, y) where x < 0.

We describe the relation between function groups of rank
and foliations.

THEOREM 2.2. Let .&¥ be a function group of rank r and let
E, ={X,|2w,X,,) = df(-) for fe.} for each pc M. Then E =
U,en B, & TM ts an integrable subbundle of TM which contains

ker (w).

Proof. We show E is locally trivial. Choose p € M, U a neighbor-
hood of p, and f,, -+, f, in .57 as in the definition of a generating
set for &7 at p. Let X, = X;. If ¢qeU and ve E, then v = (X,),
for some he.s”. Since df,, ---, df,, are independent we know that
there exists F'e C%.(R") such that

h = F(fly “';fr)
on a neighborhood V of q. One sees that

X, - li%?XieF(ker (@|V)

and thus » = (X)), e{(X,, -+, X,o» + ker (®,). Therefore E is a
subbundle of TM.

We show E is integrable. Let X, Y belong to I'(E) and let
peM. On a neighborhood U of p both X and Y are of the form

X+ Z
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for v, eC(U), Zel'(w|y), and X, = X;,. Then [X, Y] will be in
I'(E) provided that for 1 <4, j=7r, [X,, X;]€'(E) and for Z € I 1,
[X, Zle'(E). Since & is a function group, {f,f;}e.s and
Xisurp€l'(E|U). By (3) of Proposition 1.5 it follows that [X;, X;]e
I'(E|U). Moreover, 20([Z, X;], Y) = (iz,xyONY) = Ly(ix,0)(Y) =
L, df;)Y) = d@df;)}(Y)=0 for all Yel'. Thus [Z, X;]el, for
each Z e, and consequently E is integrable.

Hereafter the foliation E described above will be called the
foliation determined by .&~.

If & is a function group then the reciprocal of & is defined
to be the set of all geCpi.(w) such that {f, g} =0 for all fe.&
such that dom f Ndom g #* ¢. We denote the reciprocal of & by
&', The fact that &’ is a function group is somewhat trivial.
To see that &’ is closed under {,} one uses the Jacobi identity.
To see that (4) of Definition 2.1 holds we need an identity which is
useful in subsequent sections of our paper: for arbitrary h, hy, «--,
h,e€C(w) and FeCy(R"), then

@) F iy -y b)) = 35Sy by oy RS B
Part (4) follows immediately from this identity. To prove 2.4
observe that

{f, F(hlv hz: cecy hn)} = - 2(!)(XF’ Xf) = - dF(Xf)
= OF s OF oy
- -2, =54 m

REMARK. It is obvious that &2 < .&”” for any function group
. Observe that if & has rank 7, then & = .&°".

If & is a function group then .7~ is a subgroup of & iff 7
is a function group such that 7 < ..

Observe that every function group is a subgroup of the func-
tion group Ci.(w). Also the intersection of two subgroups is a
subgroup. In particular & N &’ is a subgroup of both . and &'.

PROPOSITION 2.6. Let &7 be a function group of rank r at p.
Then tts reciprocal has rank 0 — r at p.

Proof. Let pe M and let f,, ---, f. be generators of & at p.
Choose coordinates ,, -+, @, at p such that X, = X, = 0/dx; for
1 <47 <7 and such that {9/ox,,;} 1 <j<m — p generate [, near
p. Then any integral of the integrable system X, ---, X,, d/0x,,,,
«++,0/0%,,m_» depends only on the last coordinates. Since each
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fes”’ is an integral of this system it follows that %,.,_p.y ***Tn
generates &’ at p.

Using arguments similar to those above we obtain the following
corollary.

COROLLARY 2.7. Let & be a function group of rank r, &’
the reciprocal of &7, and E the foliation determined by . Then

(1) E,= nikerdy,|gec.}, for each pe M,

(2) of 91, 9o =+, Go_r gemerate S~ at pe M, then there is a
netghborhood U of p such that the map x— (g.(x), g), * -, go_(2))
18 comstant on each leaf of the foliation E| U of U.

We say that a subbundle E of TM is locally Hamiltonian iff
ker (w) S F and for each p e M there is a neighborhood U of p such
that I'(E'| U) is spanned by vector fields X which satisfy df = 7,0
for some fe Cy.(w).

PROPOSITION 2.8. An integrable subbundle E is the foliation
determined by some function group tff E is locally Hamiltonian.
Moreover, the function group which determines such an E is unique.

Proof. Clearly if E is determined by some function group,
then E is locally Hamiltonian.

Conversely, suppose that E is locally Hamiltonian and consider
the set . of all local integrals of . We now show that 7 is a
funetion group and that & is determined by the reciprocal, &', of
F. Let f,ge #,peM, and XeI'(E). There is no loss of generality
in assuming that there is an H € Cp.(w) such that 20w(X, ) = dH(-)
in a neighborhood of p. It follows that

a{f, og}(X) = Ly, (f, o)) = {f, {9, H}} + {9, {H, f}}
= {Lxg, f} +{Lxf, 9} =0

by Proposition 1.5, the Jacobi identity, and the fact that XeI'(E).
Thus {f, g} €-# and it follows that . is a function group with
constant rank. Since . = _#" it follows from Corollary 2.7 that

E=nfkerdf|fers" =7}.

REMARK. If & is any function group then .&” determines a
unique integrable locally Hamiltonian subbundle E of TM and con-
versely. If E is determined by .52 then the reciprocal of &7 is
precisely the set of all local integrals of E. If E is an integrable
locally Hamiltonian subbundle of TM then the set of all local inte-
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grals of E is a function group. The {foliation determined by the
reciprocal of this function group is precisely E.

Let & be a function group of rank . We say that a set
S C C=(M) globally generates & provided that for each p € M there
exist functions f,, f5, ++-, f, €S and a neighborhood U of p such that
{110, 151U, -+, f.| U} generates & at p. We say that a set
TCTI'* of closed 1-forms globally generates .52 provided that for
each pe M there exist forms B, ---, 8,€ T, a neighborhood U of p,
functions f,, f,, -+, f, satisfying df, =8, on U for 1 =1,2, -+, 7
such that {f,|U, £,|U, ---, f.|U} generates .&¥ at p.

PrROPOSITION 2.9. Suppose that there exist closed 1-forms B, B,
cee, By tn Ik and r > 0 such that

(i) Bup), Bp), + -+, B.p) span an r-dimensional subspace of
M3} for each pe M,

(ii) there ewist functions a;;; € C*(M) such that

{8B;, Bi} = kzi;lai:ikﬁk .

Then there exists a unique function group & of rank r which is
globally generated by {B,, B -+, Ba.}. Conversely, if &7 is a func-
tion group of rank r which is globally generated by B, B, *+*, Ba
then conditions (i) and (il) are satisfied.

Proof. The details of this proof are much like those of Theorem
2.2 and are left to the reader.

Recall that inv (I"%) is a Lie algebra under { , }. Observe that
if a,a, -+, a, are elements of inv (/'¥) they span a finite dimen-
sional subalgebra of inv([l'}) iff

{a, a;} = Zk; Ciinly

for constants ¢;;;, € R.
We now give an application of function groups which is a slight
generalization of certain well-known theorems.

THEOREMS 2.10. Let M be a symplectic manifold (0 =m = 2N)
and & a function group of rank r on M. Suppose that the closed
1-forms {a, a,, ---, &,} globally generate & and that they span an
n-dimensional subalgebra & of inv(I'}) = I(T*M). If the wector
Jield X, is complete for each i =1,2, «--, n, then each leaf of the
foliation determined by &7 s diffeomorphic to a homogeneous space



382 R. O. FULP AND J. A. MARLIN

G/H where G 1is the unique simply connected Lie group with Lie
algebra ¥ and H s a closed subalgebra of G.

Proof. This is a consequence of a well-known theorem due to
Palais [11] (see also Loos [10]). The details of the proof of Theorem
2.10 are similar to those of Theorem 1 of [2].

REMARK. Note that if we take »r = 2N — 1 we obtain a part
of Theorem 1 of Andrié and Simms [2]. Note that if we take
r = N and assume that & is commutative we obtain a part of a
theorem of Arnold [1] in which the leaves of the foliation turn out
to be cylinders or tori (see, for example, Abraham [1, page 113]).

3. Invariant metrics and transverse structures. Let M be a
connected C~-manifold of dimension m and let E be an integrable
subbundle of TM of dimension . The normal bundle TM/E of
E will be denoted by @ and its dual @* will be identified with the
bundle E° where, for each x € M, E? is the annihilator of E, in T*M,
i.e.,

E:={8ecT:M|B(E,) = 0}.

Define a connection /* on I'(E°) along the leaves of E by /(B =
LB for B '(E°) and X e I'(H).

Observe that if f is any local integral of E then Fi(df) =
L,(df) = df(X) = 0 and thus df is covariant constant along leaves
of E. Also, if f,, fs +++, fu_. are independent local integrals of E
defined on an open set U< M, then df, df, ---, &f._. span E°on U.

LEmMMA 3.1. If Bel(E") is closed, then B is parallel along the
leaves of E, i.e., V3B =0 for all XeI'(E).

Proof. ViR = LB = (ixd)B + (diy)8 = 0 for all XeI'(E) and
BeI(E).

COROLLARY 3.2. If B, B ***, Bur are global, independent,
closed elements of I'(E°), then E° is parallelizable, i.e., it has m-
r global, independent, parallel sections.

If ¢ is a Riemannian metric on M, then @ may be identified
with the orthogonal complement of E in TM. Let g =0[(Q X Q)
be the induced metric on Q. If Bel'(E°), then grad B is that
unique vector field in I'(Q) such that

o(grad B, ) =8



INTEGRALS OF FOLIATIONS ON MANIFOLDS 383

and, for £e'(Q), B, is that element of I'(E°) defined by
185 = G(Er ')

We define the dual connection 7 of /* to be that connection on
I'(Q) along leaves of E such that

V(&) = grad (1B:)

for XeI'(F) and £eI'(Q). Another connection 7 for I'(Q) along the
leaves of E is defined by

Fx(§) = [Lxéle

where Xel'(E), £eI'(¢§) and where [Y], denotes the component of
Y in Q.

LEMMA 3.3. If o4 1s invariant with respect to 7 then [ =7V.

Proof. For & nel'(Q) we have: (FiB:)(1)=(LxB)(MN)=1,(LxBe)=
Lx(%,8¢) —trx,n(Be)=L(0o(&, 7)) —0(& [ X, 7D =[0e(Fx& 1) + 0e(& Fx)] —
o, [X, 7]o) = 0o(Fx&, ). Thus 7:& = grad (738:) = V£.

We say that ¢ is invariant when o, is invariant with respect to
the connection 7 in which case V = 7. Observe that a metric ¢
satisfies this property iff it is ‘‘ bundle-like ’’ in the sense of Reinhart
[12]. Also the connection ; can be defined for all XeI'(TM) in
such a way that 7 is a ‘‘ basic connection’’ (see Conlon [5]). More-
over the last result is a reflection of the fact that restrictions of
basic connections to I'(E) are unique.

LEmMA 3.4. If ¢ is an invariant metric, then B is parallel
with respect to V* iff grad B is parallel with respect to .

Proof. It is a standard result that B is F*-parallel iff grad 8
is parallel relative to the dual connection 7/ (see [7], Vol. II, page
342). Since V = J the result follows.

REMARK. If o is an invariant metric the usual one-to-one corres-
pondence between I'(Q) and I'(E°) induces a one-to-one correspondence
between [-parallel sections of @ and F/*-parallel sections to E°.

REMARK. If £ and 7 are f-parallel along leaves of E then the
invariance of ¢ implies that o(¢, ) is an integral of E. Thus if 8
is a closed element of I'*(E) we conclude that o(grad 8, gradg) is
constant on leaves of E. If ¢ is complete as well as invariant then
the vector field
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1
o(grad B, grad B)

.grad 8

is a complete vector field for nonvanishing closed B in I'(E").

The foliation E is transversally parallelizable iff there exist m-
7 independent elements of I'Q each of which is -parallel along the
leaves of E.

THEOREM 3.5. Suppose there exist m—1r everywhere independent
closed 1-forms By, Bs ***, Bm-,r sSuch that

B(I(E)=0 for 1=12 ---,m —1r.
Then E is transversally parallelizable.
Proof. If we show that there exists an invariant metric on E,
then the theorem will be a consequence of Lemmas 3.1 and 3.4.

Let @ be the orthogonal complement of E in TM relative to an
arbitrary Riemannian 7 on TM. Define ¢ on TM by

c=t|(ExB)® (B®A) -

Clearly o is a Riemannian on TM. We show that ¢ is invariant.
First observe that for & nel'(Q) and XeI'(E),

Li(oolé, 1) = ' La(BUOB) =3, [BAL#B) + BIDLx(BN -
But
Lx(847) = Lx(%,8;) = rx,nB: + 1:(LxB;)
= BX, 7]) + ilixd + dixl(8)) = BUAX, 7le) = B72(0)) -
Thus
Lo, ) = SI8DBFx0) + BB K]
= 0o(&, Fx7) + 0o(Fx& 1)

as required. The theorem follows.

REMARK. In the proof of the preceding theorem we have intro-
duced a new metric ¢ =7|; DI (B: X B;). Observe that the
orthogonal complement of K relative to ¢ is the same as for 7,
namely Q. The gradient vector fields of the 1-forms 5, B, **+, Bu-»
with respect to this metric are parallel along the leaves of E. In
the following we will use these vector fields without specific refe-
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rences to the metric ¢. Thus grad B, is the unique section of @
satisfying

m—r

(3.6) Bi(grad 8,)8,(Y) = B(Y)

=1

o,

for all YeI'(Q).

We make a few remarks regarding completeness. First note
that if the metric 7 is complete then the metric ¢ will also be com-
plete if there exist numbers ! and L such that

o)X, X,) £ 3 BUX,) < Ley(X,, X,)

for all pe M and X el'(Q). If this is the case then the vector fields
[1/8,(grad B;)] grad 5, are complete vector fields. In any case (assum-
ing 7 is complete) the vector fields grad B; will be complete if they
are bounded in the metric 7. Moreover, in this case, every linear
combination in the grad B, is complete.

COROLLARY 3.7. If im addition to the hypothesis of Theorem
3.5 we require that every linear combination of the wvector fields
grad B; (see 3.6) be complete, then

1) any two leaves of E are diffeomorphic and if any leaf of
E is closed in M they all are,

(2) <f E admits a closed leaf then there is a fibre bundle p:
M — N where N 1is parallelizable and E is the foliation of M whose
leaves are the fibres of p.

Proof. The corollary follows immediately from Theorem 3.5
above and Propositions 4.8 and 4.4 of Conlon [5].

We now apply the results of this section to function groups.

As an example consider the case where M is symplectic and
suppose there is a Hamiltonian function HeC=(M) such that
dH(p) #= 0 for each peM. Clearly {H} globally generates a func-
tion group 57 of rank 1. This leads to a foliation E which is
generated by the unique Hamiltonian vector field X, = X,5. The
reciprocal function group 7', which consists of all local integrals
of E, also determines a foliation E’. Thus by Theorem 3.5, E’ is
transversally parallelizable. Indeed, if the vector field grad (dH) is
complete then each two leaves of E’ are diffeomorphic. Also since
the leaves are the components of the level surfaces of H, they are
closed and hence, by Corollary 3.7, they fibre M over a paralleliza-
ble manifold. The following theorem generalizes this example where
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M is not necessarily symplectic and the grad 3, are as defined by 3.6.

THEOREM 3.8. Let @ be a closed 2-form of comstant rank o0 on
M. Let B, B, -+, B, be closed 1l-forms which globally generate a
Junction group &7 of rank r. Then the foliation E’ determined
by the reciprocal function group of &7 is transversally paralleliza-
ble. Moreover, if every linear combination of the wvector fields grad
By t=1,2 ---, 7 128 complete then E' is a complete transversally
parallelizable foliation and each two leaves of E' are diffeomorphic.
Furthermore, if one of the leaves of E' is closed then they all
are and M s a fibre bundle over a parallelizable manifold in
which the fibres are the leaves of E'.

Proof. The theorem is an immediate consequence of what it
means for {8, B,, -+, B,} to globally generate .5, Theorem 3.5 and
Corollary 3.7.

REMARK. Suppose that in the above theorem we have 7 = p.
In this case E’ = ker w. Moreover, if some leaf L of the foliation
E’ is closed then the manifold M is fibered by #: M — N where
7~ (x) = L, for each z, and N, the manifold of leaves of ker o, is
a symplectic manifold. This is true since N, =@, and o |(Q X Q)
is nondegenerate.

REMARK. If in the above theorem » = 1, then E’ is a foliation
of codimension 1 and thus by [5, Proposition 5.1] we conclude that
either every leaf of E’ is closed or else every leaf of E’ is dense
in M.

REMARK. If in addition to the hypothesis of the above theorem
we assume that the 1-forms 8, 8, - -+, 8, are exact, then there exist
functions H,, H,, ---, H, such that dH, = 8, and the leaves of E’,
being components of level surfaces of H,; = h;, are necessarily closed.
Thus we see that if the functions {H,, H,, ---, H,} globally generate
a function group of rank 7 and every linear combination of the
grad (H,) is complete then each two components of the level surfaces
H, = h, are diffeomorphic.
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