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ANTI-COMMUTATIVE ALGEBRAS AND

HOMOGENEOUS SPACES WITH MULTIPLICATIONS

A. SAGLE AND J. SCHUMI

As a generalization of certain results for Lie groups it is
shown that an n-dimensional //-space (M, μ) with identity e has
a coordinate system at e in which μ can be represented by a
function F: Rn x Rn -> jRn which is analytic at (0,0) and that
the second derivative of F induces a bilinear anti-commutative
multiplication a on Rn. In this way an algebra (Rn, a) analo-
gous to the Lie algebra of a Lie group is obtained and all such
algebras are shown to be isomorphic. If M = G/H is a re-
ductive homogeneous space, then these results generalize the Lie
group-Lie algebra correspondence and the algebra (Rn, a)
induces a G-invariant connection on G/H. Relative to this
connection it is shown that an automorphism of (G/H, μ) is an
affine map and induces an algebra automorphism of
(Rn, a). Also the connection is irreducible if (G/H, μ) has no
proper invariant subsystems (the analog of normal
subgroups). In the case where G/H has a Riemannian struc-
ture, it may happen that there are no local isometries among the
coordinate maps which give rise to anti-commutative multi-
plications on Rn.

1. Multiplications and change of coordinates. Let M
be an n-dimensional real, analytic manifold and let μ: M x M ^ M b e
an analytic function such that μ(e, e) = e for some e E M. In this case μ
is called a multiplication on M and we denote this multiplicative structure
by (M,μ). In the examples we consider, e is a two-sided identity
element; that is, (M, μ) is an H-space (for other examples see [6]). In
particular we will consider Lie groups and Moufang loops [1, 8].

For the multiplicative structure (M, μ) let (U,φ) be a coordinate
system a ί e G M where U is a neighborhood of e and φ: U -> Rn is the
coordinate map. Assume that φ(e) = 0 in Rn and let φ"1: [/0->M
denote the local inverse function of φ defined on a neighborhood Uo of
0. For D C [/o a suitable neighborhood of 0 E Rn we can represent μ in
the coordinate system (φ~\D), φ |Φ-(D)) as μ (φ~ιX, Φ~ιY)= Φ1F(X, Y)
for X, Y G D where F : D x D - > [ / o i s analytic at (0,0) G D x D and
defines a ''local multiplicative structure" (U0,F).

Let θ = (0,0); then since F is analytic we can form the k th derivative
Fk = Fk(θ), which is a symmetric k-multilinear form on Rn and, using
the notation FkZ(k) = Fk(Z,Z, , Z), with Z = (X, Y), we can write
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F(X, Y) = F(θ) + F\X, Y) + \F2(X, Y)<2)

Σ
k=3

Since μ(e, e) = e, we obtain F(0,0) = 0. Using the linearity of F 1

on Rn x Rn, it follows that

F'(X, Y) = FI((X,0) + (0

where

PX = F1(X,0)

and

OY = F1(0, Y).

Similarly, using the bilinearity of F2, we have

F2(X, Y)(2) = F2((X, Y),(X, Y))

= F2(X, 0)(2) + 2F2((X, 0), (0, Y)) + F2(0, Y)(2).

Next we assume that (M, μ) is an H-space (or more generally a local
H-space) with e the two-sided identity element. Then since μ (x, e) = JC,
it follows that F(X,0) = X for all X E Rn sufficiently near 0, which
implies

PX = X and Fk(X,0)(k) = 0 for fc = 2,3, - - .

Similarly μ(e, JC) = JC implies

QX = X and Fk(0,X) ( k ) = 0 for fc=2,3, .

Thus the Taylor's series representing μ has the form

F(X, Y ) = X + Y+α(X, Y)+

where α(X, Y) = F2((X,0), (0, Y)) defines a bilinear function a: Rn x
Rn -> Rn. That is, JR" with the multiplication α becomes a nonassocia-
tive algebra which we denote by (/?", α).

For example, let G be an n -dimensional Lie group with Lie algebra
g and identify g and Rn as vector spaces. Then as above the Lie group
multiplication μ induces the bilinear multiplication a on g relative to
some coordinate system (U,φ) at e E G. Denoting this algebra by
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(g,a), we will show for φι = φ'(e), the differential of φ at e, that the
original multiplication [X, Y] in g satisfies

Thus the Lie algebra g is isomorphic to the algebra (g, α)~ which is
the vector space g with multiplication α(X, Y) — α(Y, X); consequently
the algebra (g, α) is Lie admissible [9]. The proof of the above formula
is contained in Remark 3 below. However, if a canonical coordinate
system is used, the Taylor's series representing μ is given by the
Campbell-Hausdorff formula X + Y + i[X, Y] + •; see [8]. So rela-
tive to a canonical coordinate system the nonassociative algebra induced
on g by μ has bilinear multiplication i[X, Y]. In particular, in the case
of a Lie group there always exists a coordinate system in which the
nonassociative algebra induced on g by μ is anti-commutative. We will
now prove that this is true in general for analytic H-spaces (or more
generally, local analytic JhΓ-spaces).

Let (M, μ) be an analytic H-space with identity element e and with
coordinate system (U,φ) at e. As before, represent μ by

where φ~ι is the local inverse of φ and F(X,Y) =
X + Y + α (X, Y) + . Now for a suitable neighborhood W of 0 G Rn

we define a function ψ: W^>Rn, analytic at 0 in Rn, by the formula

ψ(X) = X-\a(X,X).

Then since (Dψ)(0)= I, the inverse function theorem implies there is a
neighborhood V of 0 in /?" so that (V, ψ) is a coordinate system at 0 in
Rn and ψ(0) = 0.

Next for X, Y near 0 in Rn, define the function K by

K(X, Y)=ψF(ψ-ιX,ψ-ιY).

Using (*), we see that the Rn-valued function z = ψ°φ restricted to a
suitable neighborhood U' of e gives a coordinate system in which μ is
represented by

, Y)
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for X, Y near 0 in Rn. As in the previous consideration of F, note that
K has the Taylor's series

. K(X, Y) = X+ Y + β(X, Y)+

where β: Rn x Rn -»i?" is the bilinear term. Using the equation
φF(X, Y) = K(ψX, φY) and the series for F, K and ψ, we observe that up
to degree two the approximations are

φF(X, Y) = F(X, Y) - iα(F(X, Y), F(X, Y)) +

= X + Y- |α(X,X)- iα(Y, Y)-M[α(X, Y)- α( Y, X)] +

and

K(φX9 φY) =φX + φY + β(φX, φY) +

= X + Y - ha (X, X) - \a ( Y, Y) + β(X, Y) + .

From this we see

(1) β(X,Y) = l[a(X9Y)-a(Y,X)].

Thus β(X,Y)= - β(Y, X) and the algebra (#",/?) induced by μ relative
to the coordinate system (£/', z) is anti-commutative.

REMARKS (1). The anti-commutative algebras induced by multipli-
cations such as μ are unique up to isomorphism and consequently we call
such an algebra the algebra associated with μ. To see the isomorphism,
let (U,z) and (t7, w) be coordinate systems at e in which μ is represented
byμ(z" 1X,z- IY)= 2- !ί:(X, Y) and by A ^ H ^ X , w~] Y)= w ^ X , Y) as
above. Let K(X, Y) = X+ Y+_β(X, Y)+ and K(X, Y) =
X 4- Y -f j3(X, Y) + with /3 and β anti-commutative algebra multipli-
cations on Rn. Next, note that the function η = w ° z ' is analytic at 0 in
i?" with a series expansion about 0 given by η(Z)= ηλZ + \r)2Zi2) +
for Z sufficiently near 0 and that η] is nonsingular. From the above
formulas for μ, K and K we have, for X, Y sufficiently near 0 in Rn, that

, Y)= wz^KίX, Y)

-IX,z-IY)

^wz^X), w-^wz"1 Y))
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Now expanding 17, K, K in their series, we obtain the 2nd degree
approximations

, Y) =

and

K(VX,ηY) =ηX + ηY + β(ηX, ηY)+

= η'X + ηΎ + 1

ϊη
2X(2)+ϊη2Yi2)

These formulas imply

β(ηιX9η*Y)-ηιβ(X9Y)=η\X9Y).

Since β and β are anti-commutative, the left side of this equation is
skew-symmetric while η2 is symmetric in X and Y. Thus τ?2(X, Y) = 0,
which implies ηι is an isomorphism of the algebras (Rn, β) and (Rn, β).

(2). The following observation will be needed in the next
section. From formula (1), β(X, Y) = l[α(X, Y)-a(Y, X)], we see that
an automorphism of (Rn, a) is an automorphism of (i?", β).

We summarize some of these results as follows:

THEOREM 1. Let (M, μ) fee an analytic H-space with identity
element e. Then

(1) There exists a coordinate system (U,z) at e so that if μ is
represented by F(X, Y) = X + Y + a(X, Y) + , ffien ί/ie algebra
(Rn,a) is anti-commutative and is unique up to isomorphism.

(2) The differential τx = τ\e) of an analytic automorphism τ of
(M, μ) induces an automorphism of (Rn,a).

To prove the last statement, let τ: M-+M be an analytic dif-
feomorphism with r(e) = e and rμ(JC, y) = μ(τx, ry); that is, r is an
automorphism. Let (U,z) be the coordinate system at e given in
Theorem 1 and let z~ι: D-> M be a local inverse as before with D a
neighborhood of 0 in JR". Since τ(e)=e and z(e) = 0, we can write
τ(z~ιX)= z'ιk(X) for X near 0 in R\ where fc is analytic at 0 and
fc(0) = 0. Then for X, Y near 0 in i?" we have
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and

μ (τ(z ]X), τ(z ] Y)) = μ{z \kX\ z\kY))

= z \F{kXΛY)).

Since τ is an automorphism we obtain

fc(F(X, Y)) =

Let k have the Taylor's series

k(X)= k\

where X is near 0 in Rn and km = km(0) is the mth derivative of k at
0. As in the computations in remark (1), we use the series for F to
obtain

a(kiX,kιY)-kιa(X, Y)= fc2(X, Y).

Since a is anti-commutative, we see that kιa(X, Y) — a(kιX, kx Y).
Because r is a diffeomorphism, we see that k] is nonsin-
gular and therefore k' is an automorphism of (/?", α).

REMARK (3). Modifying the notation of Remark 1, let ([/, z) be the
coordinate system at e E M for which μ is represented by
μ(z-]X,z~]Y) = z~]K(X, Y) where K(X, Y) = X + Y + a(X, Y) +
with a(X, Y)= - α ( y , X ) . Next let (17, w) be any other coordinate
system at e for which μ is represented by μ(w !X, w"ιY) = w"!K(X, Y)
where 1C(X, Y) = X + y + β(X, y )+ with β bilinear. Then for
η = w°z'\ computations analogous to those in remark 1 yield
τjK(X, Y) = K(τ/X, 7/Y) and

β(η]X,η]Y)-ηιa(X, Y) = η2(X, Y).

Interchanging X and Y in this formula we obtain β(ηι Y, r/ ]X)-
T7'α(y, X)= τ;2(Y, X). Subtracting these formulas and using the fact
that η1 is symmetric, we see that

2ηιa(X, Y) = β(η ]X,r/ ιY)~β(ηί Y, η ]X).

In particular, for a Lie group G with ([/, z) a canonical coordinate
system, we obtain the results previously mentioned concerning Lie
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admissible algebras. More generally, the above formula shows the
algebra (Rn, a) is isomorphic to the algebra (Rn,{β)' which is the vector
space Rn with multiplication i[/3(X, Y)-j3(Y, X)].

2. Automorphisms and affine maps of a homogene-
ous space. We apply the results of §1 to a homogeneous space with
multiplication μ to obtain an invariant connection from the anti-
commutative algebra associated with μ see [6,8]. For certain
homogeneous spaces we show that an automorphism of the multiplicative
structure is an affine map of the corresponding connection.

Let G be a connected Lie group with Lie algebra g and let H be a
closed (Lie) subgroup with Lie algebra ft. The pair (G,H) or (g, ft) is
called a reductive pair if there exists a subspace m of g such that
g = m + ft (subspace direct sum) and (AdH) (ra) C m that is, in terms of
algebras [ft, m]Cm. The corresponding analytic manifold G/H is
called a reductive homogeneous space. In most of the examples considered
in [6] G and H are semi-simple with a decomposition g = m + ft where
m = ft x is the orthogonal complement relative to the Killing form of g.

For G/H a reductive homogeneous space with a fixed decomposi-
tion g = m + ft, Nomizu [3, 2] established a 1 - 1 correspondence be-
tween G-invariant affine connections V on G/H and nonassociative
algebras (m, a) satisfying AdH CAut(m, α) where a: m x ra ̂  ra is the
algebra multiplication and Aut(m, a) is the automorphism group of
(ra, a). On the algebra level, AdH CAut(ra, a) corresponds to ad ft C
D(ra, α), where D(ra, a) is the Lie algebra of derivations of the algebra
(ra, a). For example, if V corresponds to the algebra (ra, a), then for all
X E m the one-parameter subgroups exp ίX in G project into geodesies
(relative to V) in G/H by π: G^G/H if an only if α(X, Y) =
-α(Y,X). Further, if V has zero torsion, then a(X,Y) = \[X,Y]m

where [X, Y]m is the projection of [X, Y] in g onto m see [3, 8].
Next, let M = G/H be a reductive space and let (G/H,μ) be an

/ί-space as in §1 with e — eH the 2-sided identity; then we obtain an
algebra (m, a) from μ relative to the canonical coordinate system
obtained from π °exp. For u E H let τ(u): G/H ^> G/H: x^ΰx and
let T(//) = {T(M): U EH}; then in [6] it was shown that τ(H)C
Aut(G/H,μ) implies AdHCAut(m, a) where Aut(G/H,μ) is the
automorphism group of (G/H,μ). Thus a multiplicative system
(G/H,μ) with τ(H)CAut(G/H, μ) induces a G-invariant connection
on G/H via the algebra (m, α). But from §1, there is a change of
coordinates which determines an anti-commutative algebra (m, β) which
is unique up to isomorphism and is given by 2/3(X, Y) =
α (X, Y) - α (Y, X). By Remark (2), Ad H C Aut (m, α) implies Ad H C
Aut(m, β) and therefore the anti-commutative algebra (m, β) gives rise
to a G-invariant connection called the connection induced by μ. Many
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examples are given in [6] and the Moufang Loop S7 obtained from the
Cayley numbers of norm 1 is discussed in [7],

REMARK (4). For a Lie group (G, μ) with associative multiplica-
tion μ, the G-invariant connections are given by all the possible
nonassociative algebras (g, a). However, these algebras need not arise
from a fixed algebra (g, aQ) by using the formulas obtained from a change
of coordinates at e E G. For, as in Remark 3, any algebra (g, β) which
arises from a change of coordinates at e in G is Lie admissible with
(g, β)~ isomorphic to the Lie algebra g. But there are many nonassocia-
tive algebras (g, a) which are not Lie admissible and consequently cannot
be obtained via a change of coordinates.

We will now consider certain //-spaces (G///, μ) which have
properties analogous to Lie groups and the Moufang loop S7. Thus we
first assume (G///, μ) is an analytic loop; that is, the left and right
multiplications

L(x): G/H->G/H: y->μ(x,y) and R(x): G/H-^G/H: y-*μ(y,x)

are analytic diffeomorphisms for all x E G/H. Next we observe that the
set of all diffeomorphisms L (x) and R (y) of the loop (G/H, μ) generates
a subgroup Γ of the group of all diffeomorphisms. In particular note
that a Lie group G can be represented by the Lie group K generated by
all the maps L(x). Also, the Moufang loop S7 can be represented as a
reductive space K/H where K CΓ is the Lie group generated by the
maps R(x )L(x) for all x E S7 and r(H) is contained in the automor-
phism group of S7; see [7]. Using this notation we have the following
definition.

DEFINITION. An analytic loop (M, μ) is called multiplicatiυely
homogeneous if in the group Γ generated by all the diffeomorphisms
L(x) and R{y) for JC, y E M there exists a Lie group K CΓ satisfying:

(1) K acts transitively on M, and
(2) K is generated by a set of fixed monomial expressions in the

functions L(x) and R(y) for all JC, y E M.
We now consider the relationship between automorphisms of a loop

(M, μ) and affine maps of a connection V on M which generalizes some
well known results on Lie groups and Moufang loops. An affine map of
a manifold M with connection V is a diffeomorphism f: M-+M such
that /'V(X, Y) = V(f'XJΎ) for all vector fields X, Y on M where /' is
the differential of /.

THEOREM 2. Let (M, μ) be a multiplicatiυely homogeneous analytic
loop such that M can be represented as a reductive homogeneous space
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K/H with K as above and τ(H)CAut(K/H,μ). Then an analytic
automorphism of (K/H,μ) is an affine map relative to the invariant
connection induced by μ.

Proof. Since (K, H) is a reductive pair we have a Lie algebra
decomposition k = m -f- h and from Theorem 1 the differential /' = f(e)
of an automorphism / E Aut(K/H, μ) is an automorphism of the algebra
(m, β) associated with μ.

Next note that / being an automorphism of (K/H,μ) implies

fL(x)Γ = L(fx) and fR(y)Γ-R(fy)

for all ί , y 6 K/H. Thus if k = m (L(x,), i? (y,), ) E K is a monomial
generator expression, we see that fkf~ι = m(L(fxι),R(fyx),' ••) is in
K. Consequently

where for any a E K we have r (α) : K/H—> K/H: x~>~ax and τ(i£) =
{r(α): α E K}. Thus for any a E K, there exists a' E K such that

and this implies / locally commutes with i£ as defined in [4]. It is also
shown in [4] that if φ is an analytic diffeomorphism of K/H with φ(e) = e
such that φ locally commutes with K and φ' E Aut(ra, β), then φ is an
affine map of K/H relative to the connection given by (m,β). This
result, along with the fact that /' E Aut(m, β), proves / is an affine map.

REMARK (5). In the above proof the restrictions on K were used to
show fr(K)f~] Cτ(K), which was needed to prove the local commuting
property; thus the preceding proof can be generalized to give the
following result.

COROLLARY 3. Let (G, H) be a reductive pair and let (G/H,μ) be
an H-space with identity e such that τ(H) C Aut(G//ί, μ). Let f be an
analytic automorphism of (G/H, μ), so that f(e)=e and
/τ(G)/"1Cτ(G). Then f is an affine map of G/H relative to the
connection induced by μ.

3. Normal subsystems and holonomy reducibility.
For an analytic //-space (M, μ) we now define local inverses and
show how they can be used to generalize the concept of a normal
subgroup of a Lie group. We then observe the relation between
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these subsystems and the irreducibility of the connection on a reductive
space M = G/H induced by μ.

Let the H-space (M, μ) have identity e and, relative to a suitable
coordinate system (17, φ) at e with φ(e) = 0 in i?π, let μ be represented
by

F(X, Y ) = X + Y + α(X, Y)+ .

At 0 = (0,0) G JR" x JR ", the partial derivative of F relative to the second
variable is given by (D2F)(0)(O, Y)= Y and thus the transformation
/ = (D2F)(0): Rn -» Rn is nonsingular. Therefore, by the implicit func-
tion theorem, there exists an open ball B in Rn with center at 0 E JRn and
a uniquely determined analytic map r: B-> Rn such that r(0) = 0 and
F(X,r(X)) = 0 for all X G B. These facts imply that there exists a
neighborhood V of e in M and a unique analytic function p: V-+M
such that p (e) = e and μ (x, p (x)) = e for all JC G V. Thus (M, μ) has a
/oca/ right inverse function p and similarly a local left inverse function.

Now assume that in the coordinate system in which μ is represented
by F(X,Y) the algebra (Rn,a) is anti-commutative as in Theorem
1. Then the local right inverse function r has a series expansion

for X near 0 and rk = rk(0). This gives

0 = F(X, r(X))

= X + r ]X + y X(2) + α (X, r ]X) + ,

which implies the approximation

r(X)= - X + α(X,X)+6(3)

- - X + e(3)

since α(X,X) = 0.

DEFINITION. Let the H-space (M, μ) have identity e and local right
inverse function p. Then a submanifold N of M containing β is called a
locally invariant subsystem if μ(N, N)CN and there is neighborhood [/
of e in the domain of p such that μ (μ (JC, y), p (X )) E N whenever x E ί7
and yEJV.
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REMARK (6). Let N be a locally invariant subsystem of the H-
space (M, μ) and identify the tangent space T(N,e) with a vector
subspace n CRn. Then (n, a) is an ideal of the algebra (i?n, a) as-
sociated with μ. To see this, let μ be represented by F(X, Y) as before;
then for X E Rn, 7 E n sufficiently near 0 E i?", the local invariance of N
implies that F(F(X7 Y), r(X)) is in n. Expanding the Taylor's series, we
see that

F(F(X, Y), r(X)) = F(X, Y) + r(X) + α(F(X, Y), r(X))

2α(X, Y)+€(3)

is in n. Since YEn, this implies a(XyY)En and also a(Y,X) =
- α(X, Y)G n; that is, n is an ideal of (Rn, a).

We now let M = G/H be a reductive homogeneous space and
consider what a locally invariant subsystem implies about the holonomic
properties of the induced connection; see [2, 3, 4, 5] for more results on
holonomy. For the reductive pair (G,H) with a fixed Lie algebra
decomposition g = m + h and (AdH)mCm, let the algebra (m, a)
determine a G-invariant connection V as before. For X,Y,Z E.m we
have the map

R(X,Y): m^m:Z-*R(X,Y)Z

where

R(X,Y)Z = a(X,a(Y,Z))-a(Y,a(X,Z))-a(XY,Z)-[h(X,Y),Z]

is the curvature of V evaluated at e = eH in G/H; recall that XY =
[X, Y]m (resp. /ι(X, Y) = [X, Y]h)is the projection of [X, Y] in g onto m
(resp. /ι). The holonomy algebra of G/H is the Lie algebra of the
holonomy group of G/H relative to V. From [2,3], we know that the
holonomy algebra is the smallest Lie algebra h * of endomorphisms of m
such that i?(X, Y)Eh* and [L(X), ft*] C/i* for all X,Y(Ξm where
L(X): m^m: Y-*a(X, Y). Denote h* by hol(α).

REMARK (7). Let L(m, α) be the Lie algebra of endomorphisms
generated by the set of all L(X) for X E m and let D(m, a) be the Lie
algebra of derivations of the algebra (m, a) which we now assume to be
anti-commutative. Since the mappings ad U: m->m: X—>[l/X] for
UEh are in D(m,a), we see from the formulas for hol(α)
that hoi(α) CL(m, a) + D(m,a) which is a Lie algebra since
[L(m, α), D(m, α)] CL(m, α). We say that the holonomy group acts
irreducibly on G/H if hol(α) acts irreducibly on m. The relation
between irreducibility and the algebra (m, a) is as follows: Let n be a
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proper ideal of the algebra (ra, α); then in [4] it was shown that there
exists a proper ideal n' of (ra, a) which is D(ra, α)-invariant. Thus
hol(α)n'C[L(ra, a) + D(ra, a)](n')Cn' and therefore the action of
hol(α) is reducible on ra if (ra, a) has a proper ideal. We use the
terminology that a locally invariant subsystem N of M is "proper" if its
tangent space n is a proper subspace of the tangent space of M. The
proof of the following result now follows from remarks (7) and (8).

THEOREM 4. Let (G/H) be a reductive pair with decomposition
g = m + h and let the H-space (G/H, μ) with identity e satisfy τ(H)C
Aut(G///, μ). If (G/H,μ) has a "proper" locally invariant subsystem
N, then the algebra (ra, a) associated with μ has a proper ideal n' such that
ad h(n')Cn'. Thus, in this case, G/H is holonomy reducible relative to
the connection induced by μ.

REMARK (8). Let (M, μ) and (Af', μ') be analytic //-spaces and let
φ: M-» M' be an analytic homomorphism of M onto M\ Then, as for
Lie groups, the kernel of φ is a subsystem of (M, μ) which is also a locally
invariant subsytem. Thus if φ is an analytic homomorphism of
(G/H,μ) such that the kernel of φ is a "proper" invariant subsystem,
then one obtains a proper ideal of the algebra (ra, a) associated with
μ. Consequently G/H is holonomy reducible relative to the connection
induced by μ. The converse-type statements appear to be false unless
further associativity assumptions on μ are assumed.

4. Isometric change of coordinates. In §1 we showed
that for an analytic //-space (M,μ) there exists a coordinate system in
which the algebra (Rn, a) associated with μ is anti-commutative. How-
ever, if further conditions are imposed on the coordinates, then this need
not be the case. In particular we shall now consider pseudo-
Riemannian connections and coordinates.

Let G/H be a reductive homogeneous space with the usual decom-
position g = m -f- h and let C* be a pseudo-Riemannian metric [2, 8]
which induces the G-invariant connection V corresponding to the algebra
(ra, a). Then C* is given by a symmetric nondegenerate form C on m
such that for all X, Y, Z G m and V E h the following conditions are
satisfied:

(1) C(α(Z,X), Y)+C(X,a(Z, Y)) = 0 and

C((ad V)X, Y) + C(X, (ad V) Y) = 0.

We denote such an algebra by (ra, α, C); see [5,10] for more
details. The algebra multiplication a is given uniquely by
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a(X, Y)= 1/2XY+U{X,Y)

where XY = [X, Y]m as before, and U(X, Y)= U(Y,X) is uniquely
determined by

(2) 2C(U(X, Y), Z) = C(ZX, Y) + C(X, ZY).

Now suppose D* is another pseudo-Riemannian structure on G/H
which is given by a symmetric nσndegenerate form D on m. A mapping
f: m-^m with /(0) = 0 is a local isometry relative to the structures C
and D on m if / is a local diffeomorphism at 0 in m and for f1 = /!(0) we
have as usual C(/1X,/1Y) = D(X, Y). With these formulas we prove
the following results about a local isometric change of coordinates for an
H-space (G/H,μ).

THEOREM 5. Let M - G/H be a reductive homogeneous space with
fixed Lie algebra decomposition g = m + h and pseudo -
Riemannian structures C* and D*. Let the algebras (m,a,C)
and (m, β, D) be obtained from the H-space multiplication μ on G/H by
coordinate maps φj and φ2 as before, and assume these algebras determine
G-invariant pseudo-Riemannian connections relative to C* and D*
respectively. If the change of coordinates map φ = φx° φ2

ι: m-*m is a
local isometry, then the algebras (m, a, C) and (m, β,D) are isomorphic.

In this case the new algebra is anti-commutative if and only if the
original algebra is anti-commutative. Conditions for the algebra
(m, a, C) inducing an invariant pseudo-Riemannian connection to be
anti-commutative are discussed in [11]; roughly the conditions are that
the algebra (m, a, C) must be power-associative.

For the proof first note that we have the following diagram:

G/H x G/H > G/H

φ2x φ2

Vx V > V
K

where U and V are suitable neighborhoods of 0 in m and for φ =
φ,o φ~2

x we have F(φX, φY) = φK(X, Y) for X, Y near 0 in m. From
the Taylor's series expansions of φ, F and K we obtain as before
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(3) a(φιX, φιY)-φιβ(X, Y) = φ2(X, Y)

where φ1 = φι(0) and φ2 = φ2(0). Also using the fact that φ is a local
isometry, we have

(4) C(φ1X,φ'Y) = D(X,Y).

Now β satisfies formulas similar to those for a that is, β is given by

β(X, Y) = 1/2XY + U(X, Y)

where U(X, Y)= U(Y, X) is uniquely determined by

(5) 2Ό (U(X, Y), Z) = D (ZX, Y) + D (X, ZY).

Hence, we see from (3) that

1/2φ1XφιY+ U(φιX, φ1Y)-ί/2φ\XY)- φ'U(X, Y) = φ2(X, Y).

Since U, U and φ2 are symmetric in X and Y,

U(φ 1X,φιY)-φ1 U(X, Y) = φ\X, Y) and

(6) φ\XY)=φ1XφiY.

Using equations (2), (4), (5) and (6) we see that

= C(φiZφ1X,φιY)+ C(φιX,φιZφιY)

= c(φ '(zx), φ • y) + c(φ ιx, φ '(ZY))

= D(ZX,Y)+D(X,ZY)

= 2D(U(X,Y),Z)

= 2C(φ1U(X,Y),φiZ).

Since C is nondegenerate and φ1 is nonsingular, we obtain

φιU(X,Y)=U(φiX,φiY).

Thus from the formulas for a, β and (6) we see (m, a, C) and (m, β, D)
are isomorphic; this proves Theorem 5.
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REMARK (9). The above result shows an isometry induces an
isomorphism of algebras. However the results in [4] indicate the
converse is false in general; the local commuting property is needed.
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