
PACIFIC JOURNAL OF MATHEMATICS
Vol. 69, No. 1, 1977

ON COMPOSITE n FOR WHICH φ(n) \ n - 1, II

CARL POMERANCE

The problem of whether there exists a composite n for
which φ(n) \ n — 1 (φ is Euler's function) was first posed by
D. H. Lehmer in 1932 and still remains unsolved. In this
paper we prove that the number of such n not exceeding x
is O(x1/2(logx)3/4). We also prove that any such n with
precisely K distinct prime factors is necessarily less than
K2K. There are appropriate generalizations of these results
to integers n for which φ{n) \ n — a, a an arbitrary integer.

1* Introduction* In 1932, D. H. Lehmer [6] asked if there are

any composite integers n for which φ(n)\n — 1, φ being Euler's
function. The answer to this question is still not known. Lieuwens
[7] has shown that any such n is divisible by at least 11 distinct
primes; Kishore [5] has recently announced the analogous result for
13 primes.

If S is any set of positive integers, denote by N(S, x) the
number of members of S which do not exceed x. Let L denote the
set of composite n for which φ(n)\n — 1. Although Erdδs was not
specifically considering the problem of estimating N(L, x), as a
corollary of his paper [2], we have

N(L, x) = O(x exp (— c log x log log log x/log log x))

for some c > 0. In [11] we proved

N(L, x) = O(x2/3(log log x)1/3) .

One result of this paper is

(1.1) N(L, x) = O(x1/2(log α>)3/4) .

There is still clearly a wide gap between the possibility L = 0 and
(1.1), for the latter does not even establish that the members of L
are as scarce as squares! Note that we conjectured in [11] that for
every ε > 0,

N(L, x) = O(xε) .

Important in proving (1.1) is the consideration for neL of the
distribution in the interval [0, log n] of the numbers log d for d | n.
We show that these numbers do not leave any large gaps, in that
any reasonable subinterval will contain some log d.

We also prove another result of independent interest about the
set L: if neL and n is divisible by precisely K distinct primes,
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then

(1.2) n < KzK .

This result is similar to a result of Borho [1] dealing with amicable
numbers.

We establish results analogous to (1.1) and (1.2) for other sets
of positive integers analogous to L. Recalling notation from [10],
[11], we let

F(a) = {n:n = α(mod φ{n))}

for each integer a. From Sierpiήski [12, p. 232], we have

(1.3) Fφ) = {1} U {2* 3': i > 0, j ^ 0} .

We have seen in [10] that F(0) plays a special role for the sets
F(a). Indeed, if aίF{0), then F(a) has no member of the form pa
with p prime, p \ a. However, if a e F(0), then every such number
pa is in F(a). Hence we are naturally led to consider the subsets

F\a) = {n e F(a): n Φ pa for p prime, pJfa} .

Note that F'(l) = L U {1}. We shall prove

(1.4) N(F'(a), x) = O(α;1/2(log x)3/4)

for every integer α, where the implied constant depends on a. Note
that (1.3) implies N(F(0), x) = O((log xf), so that (1.4) is true for
a = 0. However other results we prove will not be true for a — 0.
Throughout the remainder of this paper, α will represent a nonzero
integer.

We also prove that if n e F\a) and ^ is divisible by precisely
K distinct primes, then

n <max{16|α|3, \a\ KzK} .

Certain results of Norton [9] (see Suryanarayana [13]) enable
us to state our theorems in a sharper form than could be done
otherwise. The results of Meijer [8] might yield further improve-
ments.

We wish to thank the referee who carefully read the paper and
made several helpful suggestions.

2* Preliminary results* If n is an integer at least 2, denote
by co(n) the number of distinct prime factors of n, P(n) the largest
prime factor of n, and p(n) the least prime factor of n.

In our work with the sets F\a) it will be convenient to isolate
the square free members. Note that every member of F\l) is
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square free. Let

F"{a) = {n 6 ̂ '(α): w is square free} .

LEMMA 1. N(F'(a), x) ̂  4α2 + Σ d l α N(F"(a/d), x/d).

Proof. Let w e .F'(α), £a2 < n <^ x. If n = pa for some prime
p, then p I α, so n ^ α2. Hence n Φ pa for every prime p. Let m
be the maximal square free divisor of n and let d = njm. Then
every prime factor of d also divides m. Hence φ(m) = φ(n)/d, so
that ώ|α and meF(a/d). Since m Φ pa\d for every prime p, we
have meF"(a/d).

Hence all we need verify is that if nlf n2eF'(a) with maximal
square free divisors mlf m2, and if n19 n2 > ia2, then m1 = m2 implies
^x = n2. Now for any n we have

(2.1) 9>(Λ) > Vnβ

(Sierpiήski [12, p. 230]). Suppose m1 = m2. Then ^ and ̂ 2 have
the same set of prime factors. This implies njψ{n^) = n2jφ{n2). Let
&. = (^. — a)lφ(n%) for i = 1, 2. Then

&! + a/φ(nj) = k2 + a/φ(n2) .

From (2.1) and the assumption ^ , τ&2 > 4α2, we have 0 < \a/φ(nt)\ < 1
for % = 1, 2. But ^, Jfc2 are integers and a/φ(n1)9 a/φ(n2) have the
same sign, so

But njφin^ = n2jφ{n2), so 7̂ ! = w2, which was to be proved.

LEMMA 2. // w ̂  16α2, w 6 F"(a), then
( i ) Λ == (n — a)/φ(n) is a positive integer at least 2;
(ii) if m\n, m Φ n, then m/φ(m) < k;
(iii) there is a prime q > P(n) with nq/φ(nq) > k;
(iv) ω(n) ^ 3.

Proof. ( i ) First we note that n is composite. Indeed if
n = p, & prime, then the condition p e F"{a) implies p — 11 a — 1 and
α ^ l . Then p ^ |α | + 2 < 16α2, a contradiction.

Now w = kφ(n) + α, so if k <; 0, then n ^ a. Suppose & — 1.
Since n is composite, w has a divisor ώ with Vn <^ d < n. Then
φ(w) ^ n — d ^ ^ — Vn . Then

a — n — φ(n) ^ τ/w ^ 41 a \ ,

a contradiction.
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(ii) I t is sufficient to prove (ii) for m = n/p where p = P(n).
From (2.1) and the assumption n ^ 16α2, we have | a/φ(n) | < 1/2.
Hence from the equation n/φ(n) = k + a/φ(n) and (i) we have

(2.2) (3/4)ft ^ fc - 1/2 < w/?(w) < & + 1/2 .

Then m/φ(m) < k + 1/2 < 2&, so

(2.3) fc^(m) > m/2 .

Now

(2.4) α = % — fc9?(w) = mp — kφ{mp) = p(m — kφ{m)) + kφ(m) .

If m = kφ(m), then (2.4) implies α — kφ{m), so that a = m and
w g JF"(a). Hence m ^ fep(m). If m > A^(m), then (2.3), (2.4) imply

α ^ p + kφ(m) > p + m/2 ^ (2pm) ι/2 > w1/2 ^ 41 α | ,

a contradiction. Hence m < kφ(m).
(iii) If α > 0, clearly any prime q > P(?ι) will do. Hence assume

a < 0. We first prove

(2.5) P(n) <n/2\a\.

Indeed from (2.2) we have (with m — n/P(n))

3 j , n m P(^) / 2m
4 φ(n) <p(m) P(n) — 1 φ(m)

Then from (ii) and (2.4) we have

P(n) = (α — kφ(m))/(m — kφ(m)) ^ | α | + kφ(m) < | α | + (8/3)m .

If (2.5) fails, we have m = n/P(n) <̂  2 |α | , and it follows that
P(^) < (19/3) I a I and n = mP(n) < 16α2, a contradiction.

By Chebyshev's theorem there is a prime q with n/2 \a\<q <n/\a\,
and by (2.5), q > P(w). Also

nq ^ n _ n/\a
φ{nq) φ{n) n/\a\ — 1 φ{n){n + a)

= !™L > k,
(n — a)(n + a)

since n2 > n2 — α2 > 0.
(iv) We noted in the proof of (i) that ω(n) ^ 2. Suppose

ω(n) — 2. Let n — pq with p < q. Let r be a prime with r > q
and pqr/φ{pqr) > k ^ 2 (using (i) and (iii)). Since (2/l)(3/2)(5/4) < 4,
we have & = 2 or 3.

If & - 3, then since (2/l)(5/4)(7/6) < 3, we have n = pq = 6 < 16a2.
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Suppose k = 2. Since (5/4)(7/6)(ll/10) < 2, we have p = 2 or 3. By
(ii), p/?>(p) < 2, so p - 3. Since (3/2)(7/6)(ll/10) < 2, we have q = 5.
That is, w = pg = 15 < 16α2.

LEMMA 3. Suppose k, n are natural numbers with n square
free and n\φ(n) > k. If m\n and m/φ(m) < k, then

p(n/m) < ω(n/m) (m + 1) .

Proof. Let r = ω(n/m), p = p(n/m). Then

A? < - * _ <; - ^ _ . ( P Y ,
ςp(n) φ{m) \ p — 1 /

so that

m/kφ(m) > (1 - l/p)r ̂  1 - r/p .

Hence

p < rkφ(m) = J 1 + m ) ^ r ( m + 1 } .
kφ(m) — m \ kφ(m) — mJ

3* Members of F\a) with K prime factors*

THEOREM 1. Suppose n ^ 16α2, n e F"{a), K = ω(n). Let the
prime factorization of n be pλp2 pκ where px > p2> > pκ.
Then for 1 ̂  i ^ K, we have

Pt<(i + 1)(1 + Π Pi)

Proof. Let m = Πf=i+i Pi By (iϋ) of Lemma 2 there is a prime
Q > Pi with nq\ψ(nq) > k. By (ii) of Lemma 2, m/φ(m) < k. Since
p. = p(nq/m) and i + 1 = a)(nq/m), Lemma 3 completes the proof.

THEOREM 2. Suppose n^lβa2, neF"(a), K=ω(n). Then there
is a positive constant β independent of the choice of a, n such that

(3.1) p(n) < βK1/2(\og K)1/2 .

In addition, if K ^ 4, then p(n) ̂  K — 1.

Proof. Let p = £>(%). Since there is a prime q > P(%) with
nq/φ(nq) > k ^ 2 ((i) and (iii) of Lemma 2), it follows from Norton
[9, Theorem 4] that there is an absolute constant βλ > 0 with

K + 1 - ω(nq) > βrfβog p .
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By Theorem 1, log p < log (2(K + 1)) < β2 log K for some β2 > 0
((iv) of Lemma 2). Hence there is an absolute constant β > 0 such
that p2 < β2KlogK, which proves (3.1).

Now assume K ^ 4. Then p ^ ϋΓ — 1 if p — 2 or 3. From
nq\ψ(nq) > 2, we have J K ' + 1 ^ 7 i f p = 5, S O ^ ^ U L — l i n this case
too. If p ^ 7 we similarly get K + 1 7> 15, so that using a result
of Grϋn [3], we have

p < (2β)(K +1) + 2<K-1.

THEOREM 3. If ne F"{a), K = o)(n), then

n < max {16α2, KzK} .

Proof. Assume n Ξ> 16α2. By (iv) of Lemma 2 we have K ^ 3.
If K — 3, we can show as follows that n ^ 435 < 323. Write n = pgr
where p < q < r are primes. By Lemma 2 there is a prime s > r
such that

(3.2) pqrs/φ(pqrs) > & ̂  2 ,

(3.3) M M M ) < &

We proceed as with the proof of (iv) of Lemma 2. Say k ^ 3.
Then (3.2) implies k = 3, p = 2, q ^ 5 or & = 4, w = p^r = 30. In
the former case, (3.3) implies q — 5, so (3.2) implies w = pqr = 70.
Now say fc = 2. Then (3.2), (3.3) imply p = 3. Then (3.2) implies
g = 5, r ^ 29 (so w ̂  3 5 29 = 435) or q = 7, r ^ 13 (so
^ ^ 3-7.13 = 273).

Assume ϋΓ ̂  4. Let the prime factorization of % be pγp2 pκ

where px> p2> > pκ- By Theorem 2,

p * + 1 ^ JBΓ .

By Theorem 1, pκ_t < K(pκ + 1) ̂  K\ Hence

Again by Theorem 1, pκ_2 < (K — ϊ)(pκ-iPκ + 1)> so that

Vκ-&κ-Φκ + K vκ-lvκ-Φκ + i ) < (JB:

Continuing in this fashion we get

THEOREM 4. If neF'(a), K = ω(n), then

|α | 3 , \a\ K2K} .

Proof. Assume n^l6\a\\ Following the proof of Lemma 1,
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we find a positive integer d with d \ (n, a) and n/d e F"(a/d). Then
n/d ^ 16α2, so Theorem 3 implies n/d < KzK. Hence

n <d-K2K ^ I α, I -iίΓ2^ .

4* A combinatorial lemma*

LEMMA 4. Suppose δ ̂  0, αx ̂  α2 ̂  ^ α< > 0, Bt = Σ 5 = Ϊ
 α i

for 1 ̂  i ^ t, and

(4.1) α, ̂  δ + £ ί + 1

/or 1 ̂  i ^ ί — 1. Then given any y with 0 ̂  y < B19 there is a
subset S of {1,2, , i) with

y — δ — at < Σ<ii^y •
ieS

Proof. We may assume y ^ δ + at > for otherwise take S = 0 .
We have

(4.2a,b) B,>yf Bt ^ y .

Let s(0) = 0. Say we have either constructed a set S as
called for or we have inductively found an integer sequence
s(0) < s(l) < < s(i - 1) < t where i ^ 1 and

i—i

(4.3a) Σ α.<y> + -B.U-D+I > ?/ ,

(4.3b) Σ β . i / ι + B . ^ ϊ .

Let s(i) be maximal with

ΐ - l

Σ ».(/) + -5.(0 > ?/ .

By (4.3a), (4.3b), s(i) exists and β(i - 1) < s(i) < t. Then since
asU) + J?β«)+i = B8U), we have

(4.4a) Σ α.(i> + -Bβ(4)+ι > 1/ .

Note that Σί=i αs(ί) + 5β(<)+i ^ 2/. Then we may assume

<—1

(4.5) Σ α.(i) + -Sβu)+i ̂  2/ - δ - at ,

for otherwise we may take

S = {8(1), β(2), , s(i - 1), β(i) + 1, s(i) + 2, ., ί} .
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Then from (4.5) and from (4.1) applied to a8{i)9 we have

Σ α(i) + δ + Bβ«>+1 + α* <;

that is,

(4.4b) Σ α.(i) + Bt^y .

Since there is not an infinite increasing sequence of positive
integers all less than t, this process must terminate with the con-
struction of a suitable set S.

5- Estimates for N(F'(a), x).

THEOREM 5. For every a, N(F'(a), x) = O(x1/2(log xf/4), where the
implied constant depends on a.

Proof. In view of Lemma 1, it will be sufficient to prove for
every a that N(F"(a), x) = O(&1/2(log x)3/4), where the implied constant
depends on a. We record for future reference: there are positive
constants a, 7 with

(5.1) n/φ(n) < a log log n , n i> 3

(5.2) ω(n) < 7 log nβog log n , n ^ 3 .

(Hardy and Wright [4, pp. 353-355].)
Let n 6 F"(a), 16α2 <̂  n ^ x, K — ω(n). Let the prime factoriza-

tion of n be pγp2 pκ where pί > p2 > > pκ. We may assume
n > x1/2(log x)3/\ Theorem 1 implies

l o g p t < l o g (2K) + Σ l o g P i , l ^ i ^ K - 1 .

We apply Lemma 4 with

1 3
δ = log (2iί) , t = K , «i = log p f , y = — log a? + — log log x .

Hence there is an integer m with m|w and

y — δ — log pκ < log m ^ y .

Then

α;1/2(log x)3/4/2Kpκ < m ^ α?1/2(log x)3/4 .
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By (3.1), (5.2), we have

2Kpκ < 2βK3/2(log K)1/2

< 2/3(7 log x/log log α)3/2(log (7 log x/log log xψ2

< 7'(log α;)3/2(log log x)'1

for some Y > 0. Hence

f(x) = (l/7'K/2(log x)-^ log log x < m

^ £1/2(log x)m = g(x) .

For each integer m in the above interval we now count the number
of choices for neF"(a) with n ̂  x and m\n. Since φ(m)\φ(n) for
such n, we have

n = 0(mod m) , n = α(mod φ{mj) ,

so by the generalized Chinese remainder theorem, there are at most
1 + x/[m, φ(m)] choices for such n (here [ , ] denotes least common
multiple). Now (m, φ{m)) \ {n, φ{ri)) and (n9 φ{n)) \ a. Hence for each
m, there are at most (using (5.1))

1 + x/[m, φ{m)\ — 1 + x(m, φ(m))/mφ(m)

^ 1 + I a I x/mφ(m) < 1 + | a | ax log log x/m2

choices for neF"(a) with n ̂  x and m|w.
Hence we have

N(F"(a), x) ^ 16α2 + α;1/2(log aj)3/4 + Σ (1 + I α I αa? log log ^/m2)
/(sXmrgflrίa;)

= O(a;1/2(log *)3/ί) + O(x log log a; Σ V™2)
f(x)<m

= O(x1/2(log xψι) + O(x log log *//(a;))

= O(a;1/2(log xf1') .

REMARK. Both the referee and D. Suryanarayana kindly suggest
the use of a fact due to Landau,

Σ l/mφ(m) = 0(1/2/) ,
m>y

in the proof of Theorem 5, rather than (5.1). This enables us to
get the slightly stronger estimate

(5.3) N(F'(a), x) - O(α1/2(log ^)3/4(log log x)~1/2)

where the implied constant depends on a. In addition we note that
if those n ̂  x for which p(n) <; (log x)ι/* are treated separately from
the remaining choices for n, then an extra factor of I/log log x may
be introduced on the right of (5.3). It is conceivable that further
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improvements are possible, even in the exponent on log x (perhaps
by considering a sharper version of Lemma 4 where the constant 3
is replaced by a variable dt which is usually small). It would seem
to take a completely new idea however to lower the exponent on x.
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