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INVARIANT SUBSPACES OF WEAK-*DIRICHLET
ALGEBRAS

TAKAHIKO NAKAZI

Let A be a weak-*Dirichlet algebra of L”(m). For 0<
p = co, a closed subspace M of L?(m) is called invariant if
feM and g€ A imply that fge M. Let B” be a weak-*closed
subalgebra of L”(m) which contains A such that B°"M S M
for an invariant subspace }/. The main result of this paper
is a characterization of the left continuous invariant sub-
spaces for B”, which is a natural generalization of simply
invariant subspaces. Applying this result with B” = H"(m)
(or B” = L”(m)), the simply (or doubly) invariant subspace
theorem follows. Moreover this result characterizes also the
invariant subspaces which are neither simply nor doubly
invariant. Merrill and Lal characterized some special invar-
iant subspaces of this kind.

1. Introduction. Recall that by definition a weak-*Dirichlet
algebra, which was introduced by Srinivasan and Wang [6], is an
algebra A of essentially bounded measurable functions on a probability
measure space (X, .4 m) such that (i) the constant functions lie in
A; (i) A + A is weak-*dense in L“(m) (the bar denotes conjugation,
here and always); (iii) for all f and ¢ in A4,

) foim = (], sam)(|,0m) .

The abstract Hardy spaces H?(m), 0 < p < o, associated with A are
defined as follows. For 0 < p < oo, H?(m) is the L?(m)-closure of 4,
while H”(m) is defined to the weak-*closure of A in L*(m). For
0<p= o, H = {fer(m): Sxfdm = 0}.

Let B~ be a weak-*closed subalgebra of L~(m) which contains
A and let By = {fe B*: Sdem = 0} and let I3 be a maximum weak-
*closed ideal of B” in B;°, of which in Lemma 2 we shall show the
existence. If B® = H*(m) or L”(m), we know that By = [; = Hy
or I3 = {0} respectively. By [6, p. 226] and the following Lemma 1,
it follows that I3 & H; .

Suppose 0 < p =< s < . For any subset M cC L°(m), denote by
[M], the L?(m)-closure of M (weak-*closure for p = ). For any
measurable subset E of X, the function ¥ is the characteristic
function of E. If fe Lf(m), write E; for the support set of f and
write %, for the characteristic function of KEj;.

We use the following crucial result. In the proof, the simply
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invariant subspace theorem for L?(m) [6, p. 227] is not used. For
weak-*Dirichlet algebras it has not been published.

LEMMA 1 (Gamelin and Lumer). Suppose 0 < p<s=oo. Ifthe
set M, is a closed imvariant subspace of L°(m), then

M, =[M,], N L'(m) .
If the set M, is a closed invartant subspace of L°(m), then

M, = [M, N L*(m)], .

Proof. The proof is essentially that of Gamelin and Lumer [1,
p. 131]. If v is a nonnegative function in L'(m) and

Svadm - ngdm , feA,

then v = 1 a.e. By [3; Theorem 4] H“(m) is a logmodular algebra on
the maximal ideal space of L*(m), i.e., that each real-valued function
in L*(m) is the logarithm of the modulus of an invertible function
in the algebra H>(m). There exists a Radon measure 7 on the
maximal ideal space Y of L*(m) such that

| gam = o

for all fe L*(m) where f is the Gelfand transform of f. Now the
measure 7 is a unique representing measure for the multiplicative

functional m on I/{\""(m) and I/I}“(m) is weak-*closed in L”(m). By
[1, p. 131] this proves lemma.

For weak-*Dirichlet algebras, the following two invariant subspace
theorems are known.

(a) If the set M is a closed invariant subspace of L*(m) which
18 doubly tnvariant, i.e., 1f feM and ge A imply that

foeM and fgeM,

then M = XyL*(m) for some measurable subset E of X.
(b) If the set M is a closed invariant subspace of L*(m) which
is simply invariant, i.e., if

M 2[AM],

where A, = { feA: Sdem - o}, then M = qH*(m) for |g| = 1 a.e.

In general there exist many invariant subspaces which are neither
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doubly nor simply invariant. Consider any weak-*closed algebra B~
such that H*(m) & B” & L”(m) if H*(m) is not a maximal weak-
*closed subalgebra, then %;q[B~], for every ¥z in B is an invariant
subspace which is not doubly or simply invarian.t We characterize
such invariant subspaces under a condition which is natural as a
generalization of simply invariant subspaces.

It is a consequence of the definition of a weak-*Dirichlet algebra
that if f is in H"(m) and S fdm =0 for all y, in H"(m), then

E

|, Fidm =o.
X

DEFINITION 1. Suppose B~ is a weak-*closed subalgebra of L*(m)
which contains A. We call the measure m quasi-multiplicative on
B> if S f*dm = 0 for every f in B” such thatS fdm =0 for all

X E
in B~

THEOREM. Fix p in range 0 < p < . Let the set M be o
closed invariant subspace of L*(m) such that B*M < M and

LeM 2 XI5 M],

Jor every monzero X in B™ so that YzM + {0}. Let B~ be a weak-
*closed subalgebra of L~(m) which contains A and on which the
measure m is quasi-multiplicative. Then M has the form

XquBp

Jor some unimodular function q and some Yz, in B”, where B® =
[B“],.

This theorem contains all known results of invariant subspaces
(doubly, simply and sesqui-invariant [4]) in the context of a weak-
*Dirichlet algebra.

2. Decomposition. Let A be a weak-*Dirichlet algebra of L™(m).
H7 is a maximal weak-*closed ideal of H*”(m) and it is clear that
H*m) @ H; = L¥(m).

LEMMA 2. Suppose B~ is any weak-*closed subalgebra of L>(m)
which contains A. Then, for 1 < p < oo,

(1) There exists a maximum weak-*closed ideal Iy of B* which
18 contained in BY.

(2) Let I3 =[I3],. Then

15 = {feL”(m): Lfgdm =0 for all geB”} .
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(3) Let B> =[B”],. Then
B = {feLp(m): S Fgdm =0 for all gef;;} .
X

(4) B~ + I is weak-*dense in L™(m) and in particular B
I3 = L¥(m).
(5) Iy ts contaitned in Hy.

Proof. Suppose I3 = {f e L*(m): S fgdm =0 for all ¢ eB“}.
Then since H*@ H? = L*(m), it follows that Iy Hy — Be. This
proves (5). It is trivial that I3 is a weak-*closed ideal of B*. Let
V be any weak-*closed ideal of B* which is contained in By. Then
since BV CV and V C By, the set V £ I and hence the weak-*closed
ideal I; of B* is maximal in B;". This implies (1). For 1 < p < oo,
it is trivial that

CM,= {feLp(m): Sngdm — 0 for all geB“’} .

Since both I% and M, are the closed invariant subspaces of L*(m),
by the first half of Lemma 1, it follows that Ij = I3 N L”(m) and
by definition, I3 = M, N L*(m). Now by the second half of Lemma
1, it follows that I} = M,. This proves (2). Let

Wt = {feL‘(m):Sngdm = 0 for all gte;’} .

Then since I3 = {f € L”(m): Sxfgdm =0 forall ge Bl}, by the duality
relation, it follows that W' = B. For 1 < p < oo, by the first half
of Lemma 1, the assertion (8) is proved. If f in L'(m) annihilate
B* + Iz, by (2) and (8), then felI,N B. Since feB' there exists
a sequence g, € B* such that g, — f in L'(m) as n — . Hence, since
I3 is a ideal of B>, it follows that | f P e[I*],,., Cc H*(m). |f]* = 0a.e.
because every nonnegative H'*(m) function is a constant [7]. Thus
f = 0a.e. This proves (4).

DEFINITION 2. Let the set M be a closed invariant subspace of
Lr(m) for 0 < p < oo. (i) M is called left continuous for B~ if B~
is a weak-*closed subalgebra such that B*M & M and A < B® and

LM 2 1150,

for every nonzero X< B~ so that ;M = {0}. (i) M is called right
continuous for B” if M is left continuous for B* where

M= {feXELs(m): Sngdm = 0 for all geM}
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and F is a support set of M and 1/p + 1/s = 1.

We shall show a decomposition theorem that any invariant subspace
of L*(m) is a direct sum of a left continuous invariant subspace, a
right continuous invariant subspace and a remaining invariant sub-
space.

THEOREM 1. Suppose 0 < p < o, the set M is an invariant
subspace of L*(m) and B™ is a weak-*closed subalgebra such that
B°M < M and B> A. Then

M=M,+ M + M,

where M; = Yz, M(i = 0,1, 2), %5, € B~(: =0, 1, 2) and Yz )z; =0 as
1% 3. M, is left continwous for B®, M, is right continuous for B*
which contains mo left continuous invariant subspace of the from
Y=M for ¥z B=, and M, = [I3M,], and My = [I3M;],, where s is the
conjugate index to p. If the algebra B* is fixed, then this decom-
position 1s unique.

Proof. If M is left continuous for B=, let M,=M. If M is
not left continuous for B~, there exists at least one nonzero y,e B”
and y;M < [IzM],. If yz and ), in B* such that y;M < [[3M], and
LM <= [IzM],, then it is easy to show that y;,-€B” and Yz M <
[I3M],. Let

@ = sup {m(E): yzM € B”, yzM < [I;M],}

then we can show that there exists Xz, in B” such that m(K,) =«
and yx,M < [I3M],. The set yx:M is left continuous for B or trivial.
Suppose M, = Yx:M if Yx:M + {0}, where E, = K.

The set Xx,M coincides with [I3)x,M],. Let E be the support
set of M and let K; = K, N E. Suppose

(e, M)+ = { F &t Lt (m): SX fgdm =0 for all ge xKOM} ,

where 1/p + 1/s = 1. Then (Y, M)" is a closed invariant subspace
of L°(m) and B*(Xg,M)* = (X7, M)*. Just as in the first part of the
proof, we can show that there exists X, in B~ such that

(XKOM)l = XFo(XKQM)l + XFS(XKOM)J_ ’

where the set Xp:(Xx,M)" is left continuous for B* and ¥ ((x,M)" =
[IOB?XFO(XKOM)J‘]S- Then

XeM = ArgnxM + Arox,M

where the set Xron x, M is right continuous which contains no left
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continuous invariant subspace yzM for xz< B™ or trivial. Let M, =
Xe M if Yg M {0} and let M, = Xz, M where E, = F;N K, and E,=
F,NK, It is clear that M, = [I3M,], and M; = [IzM;],. If the
algebra B~ is fixed, then this decomposition is unique. For if M =
XeM + Yz M + Xz M is anotherde composition of M for B, it is absurd
that m(E;N E) >0 or m(E;N E,) >0 since yzM = [I5)zM], and
Oz M)t = [I5(Xz;M)*].. Thus E, = E;. Both )z M and )z M are right
continuous for B* and they do not contain left continuous invariant
subspaces y;M for yz€ B”. So it is clear that E, = E,. This proves
the uniqueness.

REMARK. In this theorem, suppose B*(M) = {g € L*(m): gM < M}.
The remaining invariant subspace M, has the properties such that
M, = [I3.,M,), and M{ = [[5,, Mi], with 1/p + 1/s =1. Then for
every weak-*closed subalgebra B* such that B*M, S M,and B*D A4,
M, = [I3M,], and M} = [IzM}].. For suppose

D ={feL>(m): fM, = M},

then D~ is a weak-*closed subalgebra and ¥,D” = yzB*(M) where F'
is the support set of M,. Let Iy be a maximal weak-*closed ideal
of D* in Dy. By (4) of Lemma 2 and Lemma 1, it follows that
Y=l = eIz and hence M, =[I3M,], and My =[I3;M{],. If B°M,=SM,,
then B*C D~ and hence I5;C I by (2) of Lemma 2. Thus M,=[I3M,],
and M; = [I3M{]..

Helson and Lawdenslager [2] established that there exists an
invariant subspace M such that if the weak-*closed subalgebra B*
contains 4 and B°M & M, then M = [I3M], and M* = [[zM*], with
1/p+1/s = 1.

3. Characterization. Let A be a weak-*Dirichlet algebra of
L*(m). In this section, we shall characterize left continuous invariant
subspaces for any weak-*closed subalgebra B* which contains A and
on which the measure m is quasi-multiplicative. Then we can charac-
terize right continuous invariant subspace, too.

LEMMA 3. Suppose B* is any weak-*closed subalgebra which
contains A and on which the measure m 1is quasi-multiplicative.
If v is a monnegative function in B, then (1) Vve B, (2) 1/(v +¢) ¢
B* for any € > 0 and X, < B

Proof is an easy consequence of Lemma 4 and Theorem 4 in §5.
For [<5°], = L/(<#) for some c-algebra <Z.
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Now we shall show the main theorem.

THEOREM 2. Fixz p in range 0 < p < . Suppose B* is a
weak-*closed subalgebra of LT(m) which contains A and on which
the measure m is quasi-multiplicative.

(1) The set M is a left continuous invariant subspace in L*(m)
for B> if and only if M has the form

M = yzqB*

where Yz 1S a characteristic function in B* and q s a unimodular
function. If M = xzq'B* with a wunimodular function ¢, then
120" = XeF'q where F is a unimodular function and F, F e B>.

(2) The set M is a right continuous invariant subspace in
L*(m) for B” if and only if M has the form

M = yzqI%

where Yz 18 a characteristic function in B and q is a unimodular
Junction.

Proof. If the assertion (1) is shown, the assertion (2) follows
by (2) and (3) in Lemma 2. In the assertion (1), ‘if’ part is easy.
For if M = yzqB?, then

Xl Iz M), = XrXe91% & XrX29B? = XeM

for all € B~ and y;M =+ {0}. We shall show only ‘only if’ part.
By Lemma 1, it suffices to consider the case p = 2. For when 2 <
p < oo, let M be a left continuous invariant subspace of Lf(m) and
let M, = M N L*(m). Then M, is a closed invariant subspace of L*(m)
and it is left continuous by the second half of Lemma 1. Thus
M, = %zqB* and hence again by the second half of Lemma 1, M =
1zqB?. By the first half of Lemma 1, when 0 < p < 2, the proofs
are the same one as the above.

Let M be a left continuous invariant subspace in L*(m) for B~
and let R = MO [I3M],. Observe that for any feR.

|giflam =0 (eL).

By (8) of Lemma 2, it follows that |f|* lies in B' and hence by
Lemma 3, it follows that |f| lies in B* and ;€ B®. Let E Dbe the
support set of R, then there exists fe R with E; = E. Now just
as Merrill and Lal [4, Lemma 8], define

f@)/f@) wecE

Q(x)z{ 1 veE.



158 TAKAHIKO NAKAZI

Define q¢.(x) = f(®)/(|f(x)| +¢) for any ¢ > 0. Then ¢, lies in R.
For since f is orthogonal to I3M and 1/(|f]| + ¢)e B, the function
f is orthogonal to 1/(| f| + ¢)I3M. Thus q. is orthogonal to Iz M for
any ¢ > 0. Since ¢.c M, it follows that ¢. lies in B. Since ¢, —
qYr a.e. as ¢ — 0 and [q.| < 1, it follows that y,geR. Clearly
v:qB* S M as B*M & M and xzq € M.

Let ge M © ¥zqB? Then g is orthogonal to X,¢B”. Also since
2:q € R, we have y;q is orthogonal to gI; & I7M. So )7y is orthogonal
to B® + I% in L*m), and hence is 0 a.e. by (4) of Lemma 2. But
lgl =1a.e., s0 yzg = 0a.e. If ¥zg # 0, then

{0} = xpeM & Y[ Iz M1,

and ;. € B”. This contradicts M being left continuous. So ¥ .g=0
a.e. and hence g = 0 a.e. Thus M = yqB"

If M = y,¢'B* with a unimodular function ¢', then the function
%209 and ¥,qq" lie in B, Suppose F = ¥:09" + Yz

This theorem contains all known results of invariant subspaces
in the context of a weak-*Dirichlet algebra as corollaries.

COROLLARY 1 (Wiener). For 0 < p = oo, the set M is a doubly
wnvariant subspace in LP(m) if and only 1f M has the form

M = XELP(WL) .

Proof. Since A + A is weak-*dense in L”(m) and M is doubly
invariant, L™(m)M < M. Since m is clearly quasi-multiplicative on
L*(m), apply Theorem 2 with B* = L*(m).

COROLLARY 2 (Beurling [6, p. 244]). For 0 < p < oo, the set M
is a simply invariant subspace in L*(m) if and only if M has
the form

M = qH"{m)
where q is a unimodular function.

Proof. Since m is multiplicative on H”(m) by definition, apply
Theorem 2 with B* = H*(m).

CoroLLARY 3 (Merrill and Lal [4]). Suppose there exists at least
one positive nonconstant function v in L'(m) such that the measure
vdm s multiplicative on A. Then there exists a unitmodular
Sunction Z such that Hy = ZH"(m). For 1 < p =< <o, define
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1 ={femmy: \Zram=0,n=012, -]

and denote by &? the closure (in L*(m)) of the polynomials in Z
and Z (for p = oo, the closure is taken in the weak-*topology). Let
M be a closed invariant subspace of L*(m) such that M is not simply
or doubly invariant. Then we call M sesqui-tnvariant.

Fix p in range 1 < p <. Let M be a closed sesqui-invariant
subspace of LP(m) and let E be the support set of M. Let

R= {feMm Li(m): Sxfg“dm — 0 for all geIwM}

where s is the conjugate index to p. Then E is the support set for
R if and only ©f M has the form

M = yzo(£" + I)

where Yz € F* and q is a unimodular function.

Proof. Since M is sesqui-invariant, it follows that J°M < M by
[4, Lemma 2], where J~ is the weak-*closure of Jz_, Z"H"(m). By
Theorem 5 in §5, m is quasi-multiplicative on J*. Hence by the remark
below Theorem 4 in §5, J° = & + I7, where & is a selfadjoint
part of J*. It is clear that I® 2 Iy and by the definition of I*,
and by [4, Lemma 1], it follows that H*(m)I* < I* and ZI” < I~.
So I” is a weak-*closed ideal of J= in J; and hence I” = I7. Since
H*(m) = 5#* + I*, where 5#* is the L’-closure of the polynomials in
Z, it follows that J* = [, D I* 2 [~ + I”], 2 H*(m). Since J
is the minimum weak-*closed subalgebra of L*(m) which contains
H>(m) properly by [5, Theorem 1], J* = & + I° = [<" + I"],N
L>(m). Hence by the second half of Lemma 1, it follows that
[, + P =[], + I* and hence [<°], = [%~.. We can show
that [ ], = [<¥~]. = L¥(<Z) for some o¢-algebra B and hence &~ =
&z
Let E be the support set of R. Suppose there exists some
characteristic function ), in J“ such that yz M = Xg[["M]* and
Xs, M # {0}. If f is any function in L*(m)(1l/p + 1/s = 1) such that

S fgdm =0 for all geyxzI°M,
X
then
| fadm =0 for all geys .
X

Therefore if feR, then y;f =0 a.e. This contradicts the fact
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the support set of M conincides with that of R. Thus M is left
continuous for J”. Now apply Theorem 2 with B” = J*, then
M = yzqJ? where )z€J” and ¢ is a unimodular function. By
Lemma 4 in §5, J? = &? + I*. It is clear that y;eJ” if and only
if xze £

In many examples which we know, the measure m is quasi-
multiplicative on every weak-*closed subalgebra which contains A.
So under such a condition we would like to know the form of all
invariant subspaces.

THEOREM 3. Suppose the measure m is quasi-multiplicative on
every weak-*closed subalgebra B™ which contains A. Suppose 0 <
p = oo, the set M is an invariant subspace and B™ = {f e L*(m):
fM < M}, Then

M= M, + %2,9.0% + X5,9:B”

where M, = (1 — Xr, — XEZ)My e 15 = XElM? and Az, 0:B? = XE2M! Xe; €
B*(i =1, 2) and XXz, = 0 and q,(¢ = 1, 2) are unimodular functions.
Here Yz0.1% = Y qlI515], and M, = [I3M,], and M} = [IzM;], with
1/p + 1/s = 1. Moreover if Iy is left continuous for B>, then

M = XE2q2Bp .

Proof. By Theorem 1, we can get a decomposition of M such
that M = M, + M, + M,. By Theorem 2, it follows that M, = ¥, M =
Az9.1% where Yz€ B” and ¢, is a unimodular function and, M, =
Xz, M = %z,9:B” where ), € B and ¢, is a unimodular function.

Moreover if I3 is left continuous for B®, then I3 = y¥;q¢B” by
Theorem 2. So ¥z,9.1% = Xz)sq.B? and hence X q,I% is left continuous.
By the above decomposition, it follows that x;,¢.I% = {0}. Since M, =
[IzM,], = qlxzB*M,], and B>M, < M,, it follows that gM, & M, As
in the remark below Theorem 1,

{f € XFLw('m'): fMo - Mo} = XFBOO

where F' is the support set of M,. While since yz)x:q ¢ B” for every
Yz € B® and gz # 0, if ¥ # 0,

{f exzL=(m): fM, & M} + 3B~ .

Thus M, = {0} and hence M = };,q,B".

4. Remarks. Our definition of left continuous invariant sub-
spaces is natural as a generalization of simply invariant subspaces.
Because it is immedeate that if M is a simply invariant subspace,
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then M is a left continuous invariant subspace. Suppose M is a closed
invariant subspace of L?(m). We call M a sesqui-invariant subspace
for B® under the following condition: Let B* be a weak-*closed
subalgebra which contains A, let E be the support set of M and let

R = {f e M Li(m): Sxfgdm —0 forall ge I;;M}

where 1/p + 1/s = 1, then FE is the support set for B. This definition
is a natural generalization of sesqui-invariant subspaces by Merrill
and Lal [4]. However it is somewhat unnatural. If M is a sesqui-
invariant subspace in L'(m), even if the measure m is not quasi-
multiplicative on B®, we can characterize it. For we can easily
show that if » is a nonnegative function in any weak-*closed sub-
algebra which contains A, then (1) Vv € B>, (2) 1/(v + ¢)e B~ for
any ¢ > 0 and (3) y,€ B*. Then we can show that M = yz¢B' just
as the proof of Theorem 2. But we can not characterize any sesqui-
invariant subspace for p = 1. If M is a sesqui-invariant subspace,
then it is clear that M is a left continuous invariant subspace.

5. Quasi-multiplicative. To our regrect, we have been unable
to prove the conjucture; Every left continuous invariant subspace
can be characterized. However we characterized left continuous
invariant subspaces for the weak-*closed subalgebra B* on which
the measure m is quasi-multiplicative. In this section, we investigate
when the measure m is quasi-multiplicative.

Let B” be any weak-*closed subalgebra of L“(m) which contains
A and let <% be a self-adjoint part of B*. Suppose

= {feB“: SEfdm =0 for all erB“} ,
then BY 2 %~ 2 I3. If B* = H*(m) or B® = L*(m), then %~ = I3.

LEMMA 4.
B* = &£~ A"
where @ denotes algebraic direct sum. Moreover for 1 < p < oo
B =L DA% -
Proof. The set <5~ is a weak-*closd subalgebra of B~ and hence
it is a commutative von Neumann algebra as an algebra of operators

on Lm). Let & be the c-algebra of Borel subsets E of X for
which the characteristic functions y; lie in B®. Then &% coincides
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the set of essentially bounded measurable functions L”(<Z) on a
probability measure space (X, <& m) and [°], = L(<Z) for 1<

p < e
If fe B>, then f defines a bounded linear functional on L'(m)
which induces a bounded linear functional on L'(<Z). Let

5:0) = | vfdm

for any v in L'(<#). Since L”(<#Z) is a dual space of L'(<#), there
exists a function F' in L”(<#) such that

SX’U Fdm = SXdem

for all v in LY<#). By definition of %", f — F lies in _%>. Hence
B” = & @ %", To show the second assertion, as [1, Lemma 5],
it suffices to show that whenever f = u + F for we &>, and Fe

% then for 1 < p < <o, (SXWI”dM>W - <Llf|”dm)1/p

(uram)”

— sup HXsudm s eL"(.%’)SX[s[qdm <1

= sup 18(}»3(% + F)dm} < (gXiu + F!"dm)w .

Thus B = [ 25T, ® 157,

Let the set M be a closed invariant subspace of L*(m), let B"M< M
and suppose ¥ ;M 2y .%"M], for every nonzero X, € B~ and y,M={0}.
Then we can show that M = y,¢B” as in the proof of Theorem 2.
However we do not know whether y.B” 2 ¥;[-%"B?], for every
nonzero ¥z € B”. We shall show that this is equivalent to the measure
m being quasi-multiplicative.

THEOREM 4. Let B be a weak-*closed subalgebra which contains
A. Then the following are evuivalent.

(1) The measure m s quasi-multiplicative on B~

(2) For every real-valued function w in B?, there exist real-
valued functions u, tn B” such that S [ — u,*dm—0 as n— co.

X

(3) A =1I

(4) B A< A%

(5) 2B~ 2 ¥zl %7 B”].. for every monzero ¥z in B,

Proof. Suppose S = B*O I3, then S is the self-adjoint part of
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B* by (4) of Lemma 2. By Lemma 4
[o%w]z @ [-melz = S@ I%; .
This shows that (2) = (3).

(1) = (3). The assertion (1) implies that fg € By for every f and
g in %> and hence _%> is orthogonal to .%~. This is that B~ is
orthogonal to .%~. By (4) of Lemma 2, it follows that %~ = I3.

(3)=1(5). Since I3 is a weak-*closed ideal of B® and %> =13,
for every nonzero Y in B%, yzB” = XI5 = X[ %"B"].

(5)=(4). By Lemma 1, we may assume X B®=22 x5 B,
for every nonzero ¥, in B*. Let R = B*©[.%"B?],, then for any
feR

| glriam =0 (ges).

By (8) of Lemma 2, it follows that |f|* lies in B'. Since |f[*e B
annihilate %%, by Lemma 4, it follows that | f [ lies in [ &57], = L{(<#)
for some o-algebra <& So |fleB? 1/(|f| + €)e B~ for any ¢ > 0
and y,€ B”. As the proof of Theorem 2, we can show that B* = ¢B*
for some unimodular function ¢ in RN &5 Since &F°RC R, it
follows that the constant function 1 lies in R and hence B?=
[%5°], © [#~B?., and hence B* %> < %~ by Lemma 4.

(4) = (1) is trivial.

Now by the above theorem, if the measure m is quasi-multipli-
cative on the weak-*closed subalgebra B* which contains A, then
B® or H”(m) has the form

B® =D I3
or
H>(m) = 54~ D I
where 573> = H*(m) N 5.
We shall search for the weak-*closed subalgebra which contains

A and on which the measure m is quasi-multiplicative. H%(m) and
L~(m) are typical such subalgebras.

THEOREM 5. Let B” be a weak-*closed subalgebra which contains
A and let Iy = xzqB~ for some Xz wn B” and some unimodular
Sunction q. Suppose D is the weak-*closure of Ui, (xz9)"B”. If the
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measure m s quasi-multiplication on B%, them it is quasi-multi-
plicative on YzD” + YrL™(m) for some Yy in D™,

Proof. Let S be a weak-*closed linear span of y,q".<5~ for all
positive integers n. Then

B = [S]Z@I% .

For suppose K = B*©|[S],, then since m is quasi-multiplicative on
B>, by (2) of Theorem 4, the set K I%. Since I} = y,9B* and ¥;7K
is orthogonal to S, the set ¥,§K K and hence SKc K. If feK
and gc B*, then fgeB:. If keS, then kf e KcI: and hence by
(4) of Lemma 2 SXEfgdm — 0. Thus fg lies in K, i.e., B°K K and
hence D”K < K. By the definition of K, the subspace K contains
I;. Again by (2) of Lemma 2, K N L”(m) coincides I3 and hence
K = I3 by Lemma 1.

Now we can show that m is quasi-multiplicative on D”. For by
the above assertion,

Lm) =BT
=[SLE LB L)DI;

and I3 © I3 is contained in [S],. Thus D* = [S], P S 13)P I% and
hence m is quasi-multiplicative D* by (2) of Theorem 4. For some
ArD”, suppose D37 = yzD” + Yr.L”(m). Then

D7 = Ar LD + XFch(’m) =+ XFIOS ’

by the remark below Theorem 4, since m is quasi-multiplicative on
D”. By Lemma 4 and (3) of Theorem 4, it follows that m is quasi-
multiplicative on D3.

6. Applications. Let A be the algebra of continuous, complex-
valued functions on the torus 77 = {(z, w) € C* |z| = |w| = 1} which
are uniform limits of polynomials in z"w™ where

(n, m)e I’ = {(n, m): m > 0} U {(n, 0):n = 0}.

Denote by m the normalized Haar measure on 7%, then A is a weak-
*Dirichlet algebra of L>(m). Merrill and Lal [4] characterized com-
pletely the invariant subspaces of L?(m)(1 < p < ), together with
known results.

If M is an invariant subspace of L?(m)(1 £ p £ ), then M has
the next forms;

(1) M = yzL?(m) for some measurable set £ & 7%

(2) 7 is the L*(m)-closure of the polynomials in z and Z and
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I* is the Lrf-closure of the polynomials in z"w™ for m = 1. Then,
M = 35, L*(m) + xz,9(" + I?)

where ¢ is a unimodular function, E, is some measurable set of T,
XEzegz and XE1‘XE2 = 0.
(3) M = qH"(m) for some unimodular function q.

Our Theorem 3 implies that if M is an invariant subspace of
L*(m)(0 < p < o0), then M has the form

M = yzqB*

where B” = {feL?(m): fM < M}, q is a unimodular function and
Xz € B”.

There exist many examples to which the theorem of Merrill and
Lal [4] is not applied. However our theorem is applied. We shall
give those examples.

First example: Let A be a weak-*Dirichlet algebra. Suppose
there exists at least one positive nonconstant function v in L'(m)
such that the measure vdm is multiplicative on A. Then let J* be
the minimum weak-*closed subalgebra of L“(m) which contains H*(m)
properly and suppose X, J” for every f e H"(m).

By [5, Theorem 1], it follows that J* is the weak-*closure of

©  Z"H*, where Hy = ZH“(m). Since m is multiplicative on H*(m),
by Theorem 5, m is quasi-multiplicative on yzJ”+ yz.L™(m) for xz e J=.
Since ys€J“ for every feJ®, by [5, Theorem 4], we know that
each weak-*closed subalgebras which contains H>*(m) has the form;
YzJ” + YzeL7(m) for yzeJ=. Hence by Theorem 3, it follows that
if M is an invariant subspace of L*(m)(0 < p = ), then M has the
form

M=M+ ¥z9.15 + Xz,9.B*

where B” = {f € L”(m): fM = M} and Xz, € B* and g; is a unimodular
function.

If I7 is left continuous for J, then I7, is left continuous for
Jy = Xed” + XeeL(m)(Yz € J*). For I, = xzI7. Thus by Theorem 3
every invariant subspace M has the form

M = yzqB*

where B” = {feL”(m): fM < M}, q is a unimodular function and
Az € B”.

Second example: Let A be the algebra of continuous, complex-
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valued functions on the polydisc T" = {(z,, -+, 2,)€C™ || = -++ =
|2,] = 1} which are uniform limits of polynomials in 2z, ---, zl» where

(/1’ "‘,/,,L)GF = {/u ) (/'n):/n> O}U{/u cety luyy O):/n—1>0}
Ue-- U{(/MO’ "';0):/1>0}'

Denote by m the normalized measure on 7", then A is a weak-*
Dirichlet algera of L”(m). For n = 1, we know forms of all invariant
subspaces of L?(m). For n = 2, Merrill and Lal [4] characterized
all invariant subspaces of L?(m). However their result is not applied
ton = 3. We shall show that for n = 3, if M is an invariant subspace
of L*(m) (0 < p < o), then M has the form M = y,qB® where B? =
{feL(m): fM < M}. For n >3, we can show it similarly. By
Theorem 3, it suffices to show that m is quasi-multiplicative on every
weak-*closed subalgebra B~ which contains A and every I is left
continuous.

Suppose J7 is the weak-*closure of U_,z*H”(m) and suppose
Jy is the weak-*closure of Uy.,27J7. By Theorem 5, m is quasi-
multiplicative on every weak-*closed subalgebra B™ which has form
B” = x5 J7 + AgJ? + Ap L7(m) for xz €J7 and ¥z eJ7(i = 2,3). I3
for such a subalgebra is clear left continuous. Thus it suffices to
show that every weak-*subalgebra B~ which contains A has the form
B” = Y J7 + Ae s + Az, L7(m) or B* = H”(m).

Let B* be any weak-*closed subalgebra which contains 4. By
[5, Theorem 1], it follows that if B® 22 H*(m), then B* 2 J;. Then
B~ is an invariant subspace such that J?B* Z B®. Since m is quasi-
multiplicative on J7 and I7, is left continuous, by Theorem 1 and
Theorem 2, B” has the form yz:B” + 2zqJ7 for y; € J7, where
Xz:B® = Xz:lI7,B”].. Since 5 lies in Xz gJ7, it follows that B~ =
Xz2B” + Xz J”. Since I, = 2. J7, Z:Xz B~ S Xz:B” and hence JyyzB” <
AzB>. Similarly as the above 7y:B* = Ype(sB” + YeXz:J;y and
Zs)lped s B S)relp:B”. Since L™(m) is the weak-*closure of U7, 2:J5,
XrXesB” = ArXe:L™(m). Let E, be F N E; and let E; be F°nN Ei.
Then B” = Yz J7 + Xz Js + Xz L7(m).

Third example: Let K be the Bohr compactification of the real
line. Let A be the algebra of continuous, complex-valued functions
on K X K which are uniform limits of polynomials in x.x., Where

(cy, ) el = {(z, 7): 7, > 0} U {(z,, 0): 7, = O}

and denote by ., the characters on K, where z; in the real line.
Denote by m the normalized measure on K X K, then A is a weak-*
Dirichlet algebra of L*(m). Then there exist no positive nonconstant
functions in L'(m) which are multiplicative on A. If M is a simply
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invariant subspace of L?(m) or a doubly invariant subspace of L*(m),
then the characterization of M is known.

Suppose M is neither simply nor doubly invariant. Suppose
there exists 7, > 0 such that ¥. M & M. Let V" be the weak-*closure
of U:,20 X, H"(m), then H*(m) & V= & L”(m) and V= is a weak-*closed
subalgebra. Then y,c V= for every Be H"(m) [5, Example 3]. By
(2) of Theorem 4, we can easily show that m is quasi-multiplicative
on V* and hence on every weak-*closed subalgebra which contains
V> by [5, Theorem 3]. From the hypothesis, it follows that

Ve < B® ={geL”(m): gM < M} .

Thus if M is left continuous, we can characterize the form of M.
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