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COMPLEMENTATION IN THE LATTICE OF
CONVERGENCE STRUCTURES

C. V. RIECKE

This paper classifies the various complements in the
lattice of convergence structures and considers some of the
properties shared by given structures and their relative
complements or differences.

1. Introduction. The lattice of all convergence structures on
a nonempty set has been investigated by several authors with some
consideration given to the smaller lattices of pseudotopologies and
pretopologies. The purpose here will be to show the lattice of con-
vergence structures is a Stone lattice and has pseudo-differences,
completely characterize relative pseudo-complements and pseudo-
differences, establish that some types of convergence structures retain
their classification after finding relative complements or differences
and exhibit certain standard lattice operators as homomorphisms.

Lattice definitions follow those of Rasiowa and Sikorski [11],
Birkhoff [2], and Szasz [15]. An element x of a lattice L is com-
pact if whenever x < V{y;|jeJ} implies that x < V{y;|j€ K} for
some finite subset K of J. The lattice L is compactly generated if
each element of L is the join of compact elements. Cocompact ele-
ments and cocompactly generated lattices are defined dually. An
element z in L is the pseudo-complement of x relative to y (wxy) if
2z is the greatest element such that Az <y. If L has a least
element 0, the pseudo-complement —x of x is the greatest element
for which z A (—2) = 0. A Brouwerian lattice is one in which the
relative pseudo-complement of any two members always exists; a
Brouwerian lattice with a least element is pseudo-Boolean and a
pseudo-Boolean lattice is a Stone lattice if there exists a greatest
element 1 and (—z)V(——2) = 1 for every # in L. An element z is
the pseudo-difference of y and « (y — x) if z is the least element
such that y £ 2V 2.

Definitions on convergence structures used herein can be found
in [1], [7] or [9]. C(X) will denote the family of all convergence
structures on a nondegenerate set X, F(X) the lattice of filters on
X and U(X) the set of ultrafilters. In this paper the power set or
improper filter is considered a member of F(X). This makes F(X)
a complete lattice and facilitates the description of pseudo-differences
in terms of the filter quotients of Ward [16].

For a point z, & will be the principal filter on X generated by
{z} while in F(X) [#] signifies the principal filter generated by a
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filter &# on X and (Fo)={Z |2 nNtcF ). For filters # and &
on X, & + & is the filter sum or the lattice join in F(X) (see [14]).

For convenience the terms pseudotopology, pretopology and
topology are abbreviated ps., pre. and top. The usage of these
terms is that described by Fischer [6] and Choquet [5].

2. Lattice structure of C(X).

DEFINITION 2.1. A convergence structure on a nonempty set X
is a map ¢: X — B(F(X)) such that for each ze€ X, £ecq(x) and if
Z eq(x), F Nteq(x) and & cq(x) for all filters & finer than & .

A filter & is said to g-converge to z if & eq(x). On C(X),
define a partial order by ¢ < if and only if 7»(x) S q(x) for all
xe€ X. Then C(X) with this order becomes a complete, distributive
lattice [7, 8] in which for any {g; | j € J}, a subset of C(X), (V¢;)(x)=
Ngi(x)(7 eJ) and (Ag;)(@) = Ug () € ).

One can observe that the lattice of convergence structures con-
tains a least and a greatest element as well as atoms and coatoms.
The greatest element is the discrete topology D and the least
element is the indiscrete topology I. A convergence structure ¢ is
an atom in C(X) if, for some ze X, q(x) = F(X)\{{X, X\{z}}} and
q(y) = F(X) for y + 2. Coatoms are of the form (z, #) for some
ze X and & € U(X) where (z, &) is the finest convergence struec-
ture ¢q (in fact, topology) for which % cq(x). While each member
of C(X) is preceded (succeeded) by an atom (coatom) the lattice
C(X) is not atomic (not coatomic). The sublattice generated by the
atoms of C(X) is isomorphic to the power set of X whereas the
coatoms generate a sublattice isomorphic to the lattice of pseudoto-
pologies [4].

LEMMA 2.2. A convergence structure q is a compact element of
C(X) if and only if there exists a finite subset Y ={x,-+-,2,} of X
and for each =, a finite subset {F (J, k)| 7 =1, +--, n(k)} of F(X)
such that qx) = F(X) of 2¢ Y and q(z,) = F(X)\U(F(, k)z.)(J = 1,
-+ -, n(k)).

Proof. If A={xeX]|q(x)+* F(X)} is infinite, for each z in 4
define ¢, in C(X) to be ¢, (y) = F(X) if y # = and ¢,(x) = q¢(x). Then
g = Va.,(xeA) but q # Vq.(xe B) for any finite subset B of 4 and
¢ is not a compact lattice element.

Suppose for some x € A no finite family &, «++, &, of filters
on X exists with ¢q(2) = F(X)\U(&F2) (=1, ---,m). For each
& e F(X) with & ¢q(x), define ¢(#) in C(X) by ¢(F)(¥) = q(¥)
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for y # 2 and ¢(F)(z) = F(X)\(F 2). Now ¢ = Vo(F)NF eq=))
but ¢ is not the join of any finite subset so again ¢ could not be
compact. The converse follows readily.

THEOREM 2.3. C(X) is compactly generated.

Proof. If qeC(X), for every w<c X and filter % not in q(x),
let ¢(z, #) in C(X) be g(z, # )(y)=F(X) if y+*2 and q(z, # )(x) =
F(X)\(# z). Each ¢(z, &#) is compact by Lemma 2.2 and ¢=
Ve, F)xeX, F ¢q).

LEMMA 2.4. A convergence structure q is a cocompact element
of C(X) if and only if {x]|q(x) #= [Z]} is finite and if q@) # [©]
there exists a finite subset {F,, -+, Z,} of F(X) such that q(x) =
(#F eF(X)| 7;<% for some j =1, .-, u}.

Proof. The proof parallels the procedure in Lemma 2.2.

One can note from Lemma 2.4 that each cocompact member of
C(X) is the meet of a finite set of topologies of the form (x, %)
for % a filter on X. One immediate consequence follows from
Lemma 2.4.

THEOREM 2.5. C(X) 1is cocompactly generated.

Proof. If qeC(X), q= Az, )| F eq(x), xe X} and each
(z, &) is cocompact by Lemma 2.4.

If L is a lattice, e L, AcCL and & 1is a filter on L, A~ =
{ylx =y, all z in A} and & = U{4"|AecF}. The correspond-
ing lower bounds are designated by A" and &# *. A filter & order
converges to x if v =V.F = AF . The order topology on L is
defined as that topology whose closed sets are those sets A4 which
contain all points to which filters that contain A converge. Kent
and Atherton [10] have shown that in a compactly and cocompactly
generated lattice (i.e., bicompactly generated) order convergence is
topological. Hence Theorems 2.3 and 2.5 with the result of Kent
and Atherton imply that order convergence in the lattice of con-
vergence structures is topological.

An inspection of the lattice operations will quickly show that
C(X) is not a Boolean lattice. It is possible, however, to show
that C(X) has pseudo-complements, relative pseudo-complements and
pseudo-differences as well as present an internal characterization of
each.
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THEOREM 2.6. C(X) is Brouwerian.

Proof. If g and r are in C(X), define gxr: X— B(F(X)) by
gxr(@x) ={F | F 22 or Nt F# for some Z cr(x)\g(x)}. The
map g¢*r is a convergence structure and is the pseudo-complement
of ¢ relative to » in C(X).

COROLLARY 2.7. C(X) s a Stone lattice.

Proof. In any Brouwerian lattice with least element I, the
pseudo-complement of ¢ is —qg = ¢xI. In C(X) this means that if
A={zeX|qx)#* F(X)}, —qx)=[2] if x¢ A, —qz)=F(X)ifzcA
and (——q) V (—¢q) = D.

The characterization of the pseudo-complements of members of
the lattice of convergence structures gives rise to a natural map
between the class of all regular elements of C(X) and B(X). The
subsequent corollary has appeared in [12].

COROLLARY 2.8. The maximal Boolean sublattice of C(X) 1is
isomorphic to B(X).

Pseudo-differences were used in [12] to exhibit a classification
of the group of lattice automorphisms of C(X). Pseudo-differences
in C(X) are closely related to the concept of a quotient filter defined
by Ward [16]. The properties of pseudo-differences will be generalized
slightly to an arbitrary distributive lattice.

LEMMA 2.9. In a distributive lattice L, for any cofinal subsets
Aand B, let Ai:B={x|xV yeA for all ye B}. Then:

(i) A:B is cofinal.

(ii) If A s a filter, A: B is a filter.

(iii) If C s a cofinal subset of L with BUCZSA, then CSA:B.

(iv) AC A:B.

(v) (A:B)NBC<SA.

Proof. The proof parallels a proof of a similar theorem for
power set lattices by Schmidt [14].

DEFINITION 2.10. Tne set G: H in Lemma 2.9 will be called
the quotient set of G and H.

THEOREM 2.11. C(X) is pseudo-differenced.
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Proof. For q and r in C(X), define q — r: X — B(F(X)) by
(¢ — r)(®) = g(x): (). That ¢ — » is a convergence structure on X
follows from (i) of Lemma 2.9 and the fact that if & c(q¢ — 7)(z)
and Zerk), GNF)+ e =@+ Z)N(F + &) where # + &
is the filter generated by .# and ¥ as used in [14].

Part (v) of Lemma 2.9 implies 7(z) N (¢ — r)(x) = r(®) N (¢(z):
r(x)) S q(x) for each xz in X and ¢=<rV (g —r). If seC(X) with
g < rVs, then r(x) N s(x) < q(x) and part (iii) of Lemma 2.9 implies
s(x) S q(x): r(x) so ¢ — r < s and ¢ — r is the pseudo-difference of ¢
and 7.

3. Relative pseudo-complements in C(X).

DEFINITION 3.1. A subset A of a lattice L is prime with
respect to joins in L if z v ye A implies z€ A or y e A.

LEMMA 3.2. For q in C(X), gx(r V s) = (g*r) V (g*s) for all
convergence structures r and s in C(X) of and only if q(@)\[%] is
prime with respect to joins in F(X) for every point x.

Proof. Since in any Brouwerian lattice ¢x(r \V s) = (gx7) V (g=s),
it suffices to show the condition is equivalent to the reverse inequa-
lity.

Assume filters &, & exist such that & + & eq(x)\[£] and
F,Z ¢ q@)\[Z]. Define r, s in C(X) by r(y) = s(y) = [4] if y # =,
rix)=[F N&] and s(z) =[Z NE]. Then F + & is in [(g*r) V
(gxs)1(x) but not in [g+(r V 8)I(x) and (g=7) V (gxs) £ g*(r V s).

Conversely, if for some ze X, there exists & ¢[gx(r V s)](z)
with & e[(g*r) V (g*s)](x) then there exist & er(x)\g(z) and 5# ¢
s(@)\q(x) with & + £ <. Now & + SF er(z)Ns(x) so if & +
F ¢q@), F elgx(r V s)|(w). But F,Z, 7 #4 and q(@)\[%] is
not prime with respect to joins.

On C(X), define, for any convergence structure ¢, the self-map

f(@) by f(@)(r) = gxr.

THEOREM 3.3. For any couvergence structure q.

(i) f(q) s a meet-homomorphism

(ii) f(g) s a joim-homomorphism and an interior operator
ioff each q(x)\[#] ©s prime with respect to joins in F(X).

Proof. Part (i) follows from ordinary properties of relative
pseudo-complements and (ii) is an immediate consequence of Lemma
3.2
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A natural question to consider is whether the relative pseudo-
complement of two convergence structures preserves any of the
properties of the original structures. Since gxr is the discrete
structure whenever ¢ < r such a question appears not to hold much
promise of fruitful investigation. One interesting result holds when
g is a limitierung (resp. ps., pre., top.).

THEOREM 3.4. If q and r are convergence structures on X
with r a limitierung (respectively ps., pre., top.) then gxr is also
o limitierung (resp. ps., pre., top.).

Proof. A proof will be exhibited for the case of  a topology.
Since » < g*r, each r» — open set is ¢+r — open and the g+»r — neigh-
borhood filter N, has a base of ¢xr — open sets for each ze¢ X
with N,(x) ¢ g(x) since for these points g+r(x) = [N,(x)]. If N,(x)e
q(x), g*7r(x) is discrete and {x} is gxr — open so ¢gxr is a topology.

THEOREM 3.5. If r is a T(T,) convergence structure, then qxr
is T(T,) for any convergence structure q.

COROLLARY 3.6. The lattice C(X) of T, convergence structures
on X 1s Brouwerian.

Proof. Since C/(X) is a principal filter in C(X), the relative
pseudo-complements of two T'-structures must be the same for both
lattices.

4. Pseudo-difference. Since properties of pseudo-differences
are perhaps less familiar some of these properties are included for
reference.

THEOREM 4.1. If L is a distributive lattice having pseudo-
difference and o least element, then for any x, y, 2z in L,

(i) z—y ==

(i) z—2z2z=sy—zif x=y.

(iii) @—y)—y=2—y.

If L is complete and completely distributive,

(iv) (V) —y = V(x; —y)jed).

(v) (Az)) —y = A —y)Jed).

Although equality in part (v) of Theorem 4.1 does not always
hold even for finite cases, equality can be determined for the lattice
of convergence structures.

THEOREM 4.2, For any convergence structure q on X, in C(X):
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(1) D — q= D ff each ultrafilter ¢ — converges to every point.
(i) r—g A= =@As)y—q for all r, s in C(X) 2f q
8 o limitierung.

Proof. The proof of (i) is direct. A proof of only (ii) will be
given.

Assume ¢ is a limitierung, ze X and & ¢ (r — ¢)(x) U (s — ¢)(x).
Then there exists &, & in q(x) with & + T ¢r®), F + £ ¢
s(x). Since  NF eqx) and F + (T NZFA)S(F + @)N(F +
), F +(zNnNF)e¢(r A s)x). This together with Theorem 4.1.,
part (v) implies the desired equality.

Conversely, if r —g)A(s—q¢)=(rAs)y—gq for all r, s in
C(X), suppose &,, &, €q(x) with &,, &,, #% and Z,N Z,#q(2).
Define 7, s in C(X) as follows:

) ={F e F(X)| & 2% or £ <. for some & €q(x)
with £ N&t<S .} and r(y) = q(y) if ¥y # =,

s(@)={F eFX)| & 2% or ZNt<.F for some Z €q(x)\
r(x)} and s(y) = q(y) if y#=.

Z,¢r(x) since &, N Z,¢q(x) and similarly &, ¢ s(x). Moreover,
rANs=¢qgso (rAs)—q=1I Since (Z,NZF,) + Z,¢r(x)and (£,N
Z)+ Z.¢s(x), T.NZ,¢[(r —a) A (s — @)l(x), contradicting the
assumption and showing ¢ to be a limitierung.

In a fashion similar to that for relative pseudo-complements, a
self-map of C(X) can be defined for each convergence structure ¢
by Ff(@)(r) = r — q. This pseudo-difference map was used in [12] to
determine the group of lattice automorphisms of the lattice of con-
vergence structures where a slightly different definition was used
for a convergence structure corresponding to the definition used by
Kent [8].

THEOREM 4.3. The pseudo-difference map f(q) associated with
e given convergence structure q is a lattice homomorphism if and
only if q is @ limitierung. In addition f(q) is an interior opera-
tor if and only if q is a limitierung satisfying the condition of
(i) of Theorem 4.2.

Proof. The proof is a consequence of Theorem 4.2 and parts
(i)-(iv) of Theorem 4.1.

For pseudo-differences the situation regarding pretopologies and
topologies is not so clear as for relative pseudo-complements. The
next two theorems show some results on preservation of the various
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types of structures.

THEOREM 4.4. If q and r are in C(X), r — q is a limitierung
(pseudotopology) +f r is a limitierung (pseudotopology).

Proof (for » a pseudotopology). If # € F(X) has the pro-
perty that & e(r — ¢)(x) for every ultrafilter & with # & & then
for any 57 € q(x) and any ultrafilter .9 with & + 5 < %", % ¢
(r — q)(®). But this implies Z er(x), & + HF er(x) and F €
(r — q)(x) so r — q is a pseudotopology.

ExAMPLE 4.5. Let X be an infinite set, x ¢ X and & be a free
ultrafilter on X. For each ye X, ye[D — (, & )]|(x) from which
it follows that the filter {X}e[D — (z, &#)I(x) if [D— (z, )] is a
pretopology. However, {X} + & =% ¢D(x) so D — (z, &) is not
a pretopology even though both original structures are topologies.

LEMMA 4.6. If q and » are in C(X) an ultrafilter & q — r
converges to x if and only if F q — converges to x or does not
r — converge to x.

THEOREM 4.7. If q and r are convergence structures on X and
(Aq) — 7 is a pretopology, then (Mq) — r = Mg — r) where Ng s the
finest pretopology preceding q in C(X).

Proof. Since Mg < q, by part (ii) of Theorem 4.1, it suffices to
show Mg —7r) = (Ag) —r. If s=(\q) — r and x€ X, the s — neigh-
borhood filter of x is Nyx) = N{F c UX)| ZF es(x)} = U{F ¢
UX)|.&7 ¢rx) or & exq(x)} by Lemma 4.6. But N,(z) = N{F ¢
UX)|.# en(z)} = {N{F e UX)|# €q(x)} which implies N,(zx) =
N{F e U(X)[F e(g—7)@)}, N(») e Mg—7)(@) and Mg —7) < (M) — 7.

For T(T,) — convergence structures, one can ascertain precisely
the conditions under which the pseudo-difference of two T.(T,) struc-
tures is also T'(T,) but the conditions are not especially elegant or
illuminating. One result on T,-structures is worth stating although
we omit the proof which can be obtained by a check of the defi-
nitions.

THEOREM 4.8. The lattice C(X) of all T,-convergence structures
on X has pseudo-differences. In particular, if ¢ and r are T,-
structures on X, the pseudo-difference q — r in C(X) is (@ —r)(x)=
{F el@—n@ {120 AAdeF))
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5. Lattice homomorphisms in C(X). The families of limiti-
erungs (resp. pre., ps., top.) are well-known to be complete lattices
whose order is the order induced from C(X). Moreover, each of
these lattices is a join-complete subsemilattice of C(X). Information
on completions of many families of special types of structures in
C(X) is contained in [7] or [13]. With each convergence structure
¢ is associated the finest limitierung (pre., ps., or top.) coarser than
g. This gives rise to maps ¢, ¢, A, @ of C(X) into the lattices of
limitierungs (ps., pre., top.) where ¢q(oq, Mg, ®wq) is the finest limi-
tierung (ps., pre., top.) coarser than ¢g. These functions were
essentially all defined by Kent [8] or Fischer [6] and subsequent
investigations of wq and \g appear in [6, 8, 9]. The purpose here
is to show that most of these functions are lattice homomorphisms.

THEOREM 5.1.

(i) ¢é(o, \, @) is a complete meet homomorphism
(i) ¢ is a finite join homomorphism

(iii) o and N\ are complete lattice homomorphisms.

Proof. Most of the appropriate homomorphism properties follow
directly from the properties of C(X) and the definition of the maps.
Let us show that )\ is a complete lattice homomorphism. If {g,} is
any family of convergence structures on X, A°rg, = MANG) =
MA ;) by definition of M A° in the lattice of pretopologies). If
Z e V°ng(x), N(z), the g, -neighborhood filter of z, is contained in
& for each q,. If ¢ =V ¢q,, N,(») =N, x)S.F and & e MV q,)
() so V°Ag, =MV q,). The necessary reverse inequalities follow
directly.

EvyampPLE 5.2. The map @ is not of necessity join preserving.
If X ={x, vy, 2} with ¢ and » defined on X by () = [2NZ], 7(y) =
[0 9], @) =[yNZ] with g@) = [¢ N ¥] and ¢ discrete at y and z,
o(g V) =D but wq Vv wr = wqg #+ D.

ExamMPLE 5.3. Let N be the positive integers and for each
positive integer n > 1, let &, be the filter generated by N\{n} and
define the convergence structure ¢, by ¢.1) ={¥ | F,S.% or
F,.S.7 } and q, discrete at all other points of N. Then Vg,(n>1)
is a limitierung different from the discrete topology at 1 whereas
each ¢q, is indiscrete, V ¢¢, = D and ¢ does not preserve arbitrary
joins.

In consequence of Theorem 5.1 we find that each of the lattices
of limitierungs (ps., pre.) inherits any property of C(X) preserved
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by lattice homomorphisms. For example, that each of these three
lattices is distributive (a well-known result) and that each lattice
has pseudo-differences are consequences of Theorem 5.1.
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extends his appreciation to the referee for a correction of Theorem
2.5.
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