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A GENERALIZATION OF CARISTΓS THEOREM
WITH APPLICATIONS TO NONLINEAR

MAPPING THEORY

DAVID DOWNING AND W. A. KIRK

Suppose X and Y are complete metric spaces, g: X-+X
an arbitrary mapping:, and f:X->Y a closed mapping (thus,
for {xJczX the conditions xn-+x and f(xn)->y imply f(x) = y).
It is shown that if there exists a lower semicontinuous
function φ mapping f(X) into the nonnegative real numbers
and a constant c > 0 such that for all x in X, max {d(x, g(x)),
cd(f(x), f(g(x))}^φ(f(x))-φ(f(9(x))), then g has a fixed
point in X. This theorem is then used to prove surjectivity
theorems for nonlinear closed mappings /: X -» F, where X
and Y are Banach spaces.

l Introduction* The following fact is well-known in the theory
of linear operators;

(1.1) Let X and Y be Banach spaces with D a dense subspace
of X, and let T: D —• Y be a closed linear mapping with dual T'.
Suppose the following two conditions hold:

( i ) N(T') = {0}.
(ii) For fixed c>0, dist (x, N(T)) ^ c \\ Tx\\, xeD.

Then T{D) = Y.

Proof. Because T is a closed mapping it routinely follows
from (ii) that T(D) is closed in Y (e.g., [15, p. 72]), whence it
follows from the Hahn-Banach theorem (cf. [17, p. 205]) that
{N(T))L = T(D) where (iSΓ(Γ'))1 denotes the annihilator in Y of the
nullspace of T. By (i), {N{T')Y = Y.

It is our objective in this paper to give a nonlinear generali-
zation of the above along with more technical related results. The
key to our approach is an application of a new generalized version
of Caristi's fixed point theorem. While our method parallels that
of Kirk and Garisti [12], these new results differ from those of [12]
and the earlier 'normal solvability' results of others, e.g., Altman
[1], Browder [3-6], Pohozhayev [13, 14], and Zabreiko-Krasnoselskii
[18], in that by using the improved fixed point theorem we are
able to replace the usual closed range assumption with the assump-
tion that the mapping be closed (in conjunction with a condition
which in the linear case reduces to (ii)). Before doing this, however,
we state and prove our fixed point theorem.
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2* The fixed point theorem* The following theorem reduces
to the theorem of Caristi [7, 8] in the case that X — Y, f is the
identity mapping, and c = 1. (We should remark that Caristi's
theorem is essentially equivalent to a theorem stated earlier by
Ekeland [9]. A simple proof along the general lines below is impli-
cit in Br0ndsted [2]. A similar proof is given by Kasahara in [10],
and in [16] Wong gives a simplified version of Caristi's original
transfinite induction argument.)

THEOREM 2.1. Let X and Y be complete metric spaces and
g:X—+X an arbitrary mapping. Suppose there exists a closed
mapping /: X—> Y, a lower semicontinuous mapping φ:f(X)—>R+,
and a constant c > 0 such that for each xeX,

d(x, g(x)) ^ φ(f(x)) - φ(f(g{x))) ,
d(f(x), f(g(x))) £ φ(f(x)) - φ(f(g(x))) .

Then there exists x e X such that g(x) = x.

Proof. We introduce a partial order ^ in X as follows. For
xf y e X define x ^ y provided

d(x, y) £ φ(f(x)) - φ(f(y)) , and

Cd(f(x), /(»)) ^ φ(f(x)) - φ(f(y)) .

Let {Xalccei be any chain in X, i.e., suppose (/, ^ ) is a totally
ordered set with xa ^ xβ iff a <Ξ β. Then {φ{f{xa))}a*i is a decreas-
ing net in R+ so there exists r ^ 0 such that φ(f(xa)) \ r. Let ε > 0 .
Then there exists aQe I such that a ^ aQ implies

r ^ φ{f{xa)) ^ r + ε

and so for β ^ a,

d(xa, xβ) ^ φ(f(xa)) - <p(f(Xβ)) ^ s , ^ ώ

)) - φ(f(xβ)) ^ e .

Thus {f(xa)} is a Cauchy net in Y while {xa} is a Gauchy net in X.
By completeness there exist yeY and x e l such that f(xa)-~*y and
#α —>«. Since / is a closed mapping, /(^) = ^ and lower-semicon-
tinuity of ψ yields φ(f(x)) ^ r. Moreover, if a, βel with a <; /S,
then

^ φ(f(χa)) - φ{f{%β)) ̂  φ(f(χ«)) -
, / ( ^ ) ) ̂  φ(f(xa)) - r .

Taking limits with respect to β yields
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d(xa, x) ^ φ{f(xa)) ~ r ^ φ(f(Xa)) - φ(f(x)) \

Cd(f(xa), f{x)) <k φ(f(xa)) - φ(f(x)) .

This proves that xa ^ x, a el.
Having thus shown that every totally ordered set in (X, ^ )

has an upper bound we apply Zorn's lemma to obtain maximal ele-
ment xeX. By (*), x ^ g(x); hence x = g(x).

3* Applications* If X and Y are topological vector spaces
and /: X —> Y, then / is said to be Gateaux differdutiable at x e X
if there exists a (possibly unbounded) linear operator L:X—>Y
such that for each w e X,

t~ι{f{x + tw) - f{x)) > Lw as t > 0+ .

The operator L = dfx is called the Gateaux derivative of / at x
and we use df'x to denote the dual of dfx in the usual sense (e.g.,
[17, p. 194]).

We now state a theorem which is an immediate generalization
of the theorem of the introduction, Notationally, we let Bδi )
denote the closed ball centered at (•) with radius δ. Also, Nidf'x)
denotes the nullspace of dfx in Y*9 the space of all 'continuous
linear functionals on Y, and iNidfx)Y denotes its annihilator in Y.

THEOREM 3.1. Let X and Y be Banach spaces and f:X—>Y
a (nonlinear) closed mapping which is Gateaux differentiate at
each xeX with derivative dfx. Let dfx denote the dual of dfx9 and
suppose for each xeX and fixed c > 0:

( i ) ' N(df.) = {0}.
i ii)' There exists δ = δ(x) > 0 such that if y e Bδ(f(x)) Π f(X),

then for some v e f"ιiy),

\\x - v\\ ^ c | |/0*0 - y\\ .

Then fiX) = Y.

It is obvious that (i)' reduces to (i) in the linear case and it is
a routine matter to show that (ii)' similarly reduces to (ii). In
contrast with the linear case, however, we do not show directly
that (ii)' implies closedness of the range of /. Instead we derive
Theorem 3.1 from the following more general result which follows
quite easily from Theorem 2.1.

THEOREM 3.2. Suppose X is a complete metric space, Y a
Banach space, and f: X—>Y a closed mapping. Suppose for yoeY
there exist constants c > 0, p < 1 such that:
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(a) Corresponding to each xeX there exists 3 = 3(x) > 0 such
that if ye Bδ(f(x)) f] f{X)f then

d(x,v)^c\\f(x)-y\\

for some v e f~ι(y).
(b) For each y e f(X) there exists a sequence {y3-} in f(X)

with y3 Φ y for each j such that y3 —> y and a sequence {ξ3} of
nonnegative real numbers such that for each j

\\ζj(Vj - y) - (J/O - y)\\ ^ v Ili/o - y\\

Then yQef(X).

The following geometric lemma, implicit in [12], will facilitate
the proof of Theorem 3.2.

LEMMA. Let Y be a normed linear space with a, 6, c e Y.
Suppose for ξ ^ 1 and p < 1,

( * ) \\ς(a-b)-(c-b)\\^p\\c-b\\.

Then

] \ a - 6 [ | <£ ( 1 + p ) ( l - p Γ [ \ \ b - c | ( - | | α - c\\] .

Proof.

\\ξ(a-c)\\- | | ( l - f ) ( δ - c ) | |

T h u s | i $ ( α . - c)\\ ̂  (ζ - 1 + p ) \\b - o | l , i . e . ,

from which (using (*) and the triangle inequality)

||b - o]| - | |α - o|| ^ {1 - [1 - rV- - P)]}\\ b - c\

= Γ1(l-p)\\b-c\\

Proof of Theorem 3.2. Suppose y0 <Z f(X). Let xe X and
V = /(*) . and let {y^} be the sequence defined by (b). Since yj—*y,
j may be chosen so large that \\y} — y\\ ^ δ(x). We also assume
1 / ^ 1 . (Note that since y0 Φy, (b) implies ξj—*+°°.) With j
thus fixed we apply the lemma to the inequality in (b) and obtain



A GENERALIZATION OF CARISTΓS THEOREM 343

( 1 ) o < \\y - Vj\\ ^ ( l + j>χi - PΓIWV - voll - WVJ - 3/oII].

By (a) t h e r e exists v e f~ι(yi) such t h a t

( 2 ) d(x,v)£c\\y-yi\\.

Define g:X—*X by taking g(x) = v with v obtained as above, and
define φ:f(X)-*R+ by

ψ{f{x)) = c(l + p)(l - p)"111/(a?) - »o|| .

Then clearly φ is continuous on /(X) and together (1) and (2) yield

(d(x, g(x)) ̂  φ{f(x)) - φ(f(g(x))), and

\c \\f(x) ~ f(g(x))\\ ̂  φ{f{x)) - φ{f{ΰ{x)))

By Theorem 2.1 there exists xeX such that g(x) = x, contradicting

(1).

In order to derive Theorem 3.1 from Theorem 3.2 we need an
elementary fact from linear algebra. Let X and Y be locally con-
vex topological vector spaces and suppose L:X—+Y is a linear
operator. The dual V of L (cf. [17, p. 194]) is defined on a subset
D of Γ* by the relation

( x , L'y*> = < L x , y ' ) , y ' e D , x e X

where X* and F* denote respectively the spaces of continuous
linear functionals on X and Y and where by assumption < , LV) e
X*. If (N(L'))L denotes the annihilator of N(L') in Y it routinely
follows from the Hahn-Banach theorem that (iV(L'))1 c L(X). (For,
suppose there exists yoe(N(L'))L with yo&L(X). Then there exists
/ e 7 * such that (yQ, yr) Φ 0 while (z, y') = 0 for all s 6 L(X); hence
<Lu, yf) — (u, LV) = 0 for all u e X yielding LV = 0, i.e., y'eN(Lf).
Since 2/0 € (N(L'))L implies <y0, / > = 0, we have a contradiction.)

We now follow an approach of Browder [4, 6]. With X as
above and Y a Banach space the asymptotic direction set of the
mapping / : X —> Y in the direction x e X is the set

The following is a minor variant of Proposition 1 of [4, 6]. We
include the proof to show that continuity of dfx is not essential.

PROPOSITION 3.1. Let X be a locally convex topological vector
space, Y a Banach space, and suppose f is a mapping of X into
Y which is Gateaux differentiable at xeX with derivative dfx. If
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N{df'x) denotes the nullspace in Yf of the dual of dfx and if
{N(dfx))L denotes its annihilator in Y, then

(N(df.)y = df.(X)<zD9(f) .

Proof. The equality is immediate from observations above. To
see that dfx(X)cDx(f) we follow [6]: Let ε > 0 and yedfx(X).
Then y = dfx(w) for some weX and by differentiability

( # ) t~ι{f{x + tw) - f(x)) > y as t > 0+ .

Letting xt — x + tw we have for t > 0 sufficiently small, 11 f(xt) —
f(x)\\ < ε. I t follows from this and (#) that

V e cl{ξ(f(u) - f(x)) ] ί ^ 0, u e X, \\f(u) - f(x)\\ < e}

i.e., yeDx(f). Since Dx(f) is closed, dfx(X) a Dx(f).

Proof of Theorem 3.1. Let ^ O G 7 , p e (0,1). It suffices to
establish (b) of Theorem 3.2. Suppose y = /(#) ef(X), y Φ y0. Since

/0 - {0}, (N(dfx)y = Γ and by Proposition 3.1

Choose εs > 0 with
such that

( 3 ) IIOfGsi)

and

( 4 )

6, — 0.

I - /(*)

11/

For each j

"\ /̂iy -f(ι
/ \ί/θ »/ \

•(Zί)-/(a;)||

i' there exists

r) ) l l^p | |» .-

z3-eX and ^-^

•/(*)ll

Letting yό = /(«i), since p < 1 (3) implies y5 Φ y for all j . By (4)
/̂i —* y as i —> oo and rewriting (3) we have

II fi(ί/i - 2/) - (2/0 - 2/) 11 ̂  ί> 112/0 - v\\.

This completes the proof.

Finally we note that if int f(X) Φ 0 , it is not necessary in
Theorem 3.1 to assume / is differentiate at each xeX.

THEOREM 3.3. Let X and Y be Banach spaces and f: X—>Y a
closed mapping. Let N = {x e X \ f(x) e int f(X)} and suppose for
xeX\N, f is Gateaux differentiate with derivative dfx where
N(dfx) = {0}. Suppose also that there exists c > 0 such that condi-
tion (ii)' of Theorem 3.1 holds for all xeX. Then f(X) = Y.
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Proof. Let y0 e Y and suppose y0 £ f(X). Fix p e (0,1) and let
xeX. If x e X\N, then (N(dfx))λ = Γ and by Proposition 3.1, y0 -
f(x)eDx(f). But also if x eN, i.e., if f(x) eint/(X), then for ε>0
chosen so that Bε(f(x)) c /(X) it is possible to select w eseg [/(#)>2/o]
so that w Φ yQ and 0 < \\f(x) — w\\ < ε, and because wiJiX) there
exists {wy} c /(X) such that wό —* w. Since τ/0 — /(#) — ζ(w — /(#))
for £ > 0 it thus follows that ζ(w, — f(x))-+y0 — f(%) with Hw,- —
/(a?)||<ε for j sufficiently large proving y0 — f{x)eDx{f). Since
yQ — f(p) € Dx(f), the proof now follows the proof of Theorem 3.1.

We remark that as a consequence of the above theorem, if
f:X—> Y is a closed mapping with range dense in Y, then (ii)' of
Theorem 3.1 implies f(X) - Y.
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