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INSTATIONARY NAVIER-STOKES EQUATIONS AND
PARABOLIC SYSTEMS

WOLF VON WAHL

This paper mainly deals with instationary Navier-Stokes
equations in two space dimensions. We derive the regularity
results which are known to be valid for the corresponding
linear system. Moreover, our method applies to parabolic
semilinear systems with one-sided conditions.

()• Introduction and notation* This paper mainly deals with
the strong solvability of the instationary Navier-Stokes equations

υ! — vΔu + uVu + Fp = f ,

( i ) F ' u = 0 '

u(0) = φ

over a cylindrical domain (0, T) x Ω. T is an arbitrary positive
number, Ω is a bounded domain of R2 with smooth boundary. It
is well known, (I) has a uniquely determined weak solution if the
external force f is from L2((0, T) x Ω) and φeH\Ω) (these condi-
tions can be weakened). But if one wants to show that the weak
solution is a strong one, additional conditions are needed, concerning
mainly the differentiability of / with respect to t or the regularity
of u. Lions [5], Ch. 1 requires differentiability of f, as does Lady-
zenskaja [3], Gh. 6. In one of their papers, Shinbrot and Kaniel
[6], p. 313, require additional regularity of u; Serrin [8] requires
even more and then only obtains interior regularity of u. The
method of Shinbrot and Kaniel [7] yields a strong solution under
exactly the conditions we want, namely, feL\(0, T),L\Ω)) and φe
H\Ω), but this solution is only local in time and may not exist, in
general, in the full interval 0 ^ t <* T, unless f and φ are small
enough. Fujita and Kato [2] also obtain a strong solution, under even
weaker conditions on f and ψ, but, again, their solution is only local.
In this paper we show that none of these additional conditions is
necessary and that for every f eL2((0, T) x Ω), φeH\Ω) there exists
a pair

(M, p)eL2((0, Γ), H\Ω)) n L"((0, Γ), H\Ω)) x L2((0, Γ), H\Ω))

with

M(0) - Φ ,
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W'eL2((0, T),L\Ω)),

F-u = 0,

and

uf — vΔu + uVu + Fp = f

in the distributional sense, u is determined uniquely. If feLp((0,
T) x Ω), Φ e H2>P(Ω) Π Hhp(Ω)f (u, p) correspondingly is in Lp((0, T)9

H2>P(Ω)) x Lp((0, T), H^p(Ω))f p > 2. The latter is not proved here
since the proof follows the lines of the proof in the case p — 2.

In the second chapter we prove an analogous result for para-
bolic systems

u' + A(t)u + /(£, χf u, Vu, , Vmu) = £ ,

A(t), 0 ̂  ί ^ Γ, being elliptic operators of divergence structure of
order 2m.

Of course instead of boundary values 0 one can treat the case
where boundary values a are prescribed having the regularity pro-
perties of the solution expected.

We introduce some notation. Let X be a Banach-space
Cv([0, T], X) is then the Banach-space of all v-times continuously
differentiable mappings from [0, T] in X. Lp((0, T), X), 1 ̂  p ^°o,
is the Banach-space of all measurable mappings u: (0, T) —• -X" with
norm

| | ( ) | | Z ) , ess sup||w(£)||χ respectively.
0£^TG77

||

0 '

Ω is a bounded open set of RnΉV}P(Ω) is the Banach-space of all
real valued functions defined on Ω with distributional derivatives in
LV(Ω) up to the order v. Its norm is denoted by

II I U or | H U " *w> .

As usual HV)P(Ω) is the completion of G™{Ω) in the norm of

The norm of C°([0, T], H"'P(Ω)) is denoted by ||| ||LP. Frequently
we will consider functions being continuous on [0, T] x Ω = : Qτ+
For those we introduce the notations

: s sup |f(t, x) - /(β, »)|

+ sup |/(t,»)-/(t,y)|,
ίe[0,Γ],
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||||/!HI.(r): s sup | f(t, x) - f{t, y)\ .
t e [0,Γ],
x,yeί7,
\x-V\£r

For sup{ i iβ)ββ2f |/(ί,a?)| we simply write | | | / | | | . C\Ω), C*+α(i2)_are the
Banach-spaces of all complex valued functions defined on Ω, being
continuously differentiable up to the order v in Ω and having deri-
vatives of order v being continuous in Ώ or Holder-continuous with
exponent a in Ω. The norms of C\Ω), Cv+a{Ω) are denoted by || |L
|| |L+« respectively. Moreover we use the notation

Dal = ft Df ,
3 = 1

where a is a multiindex with components aά 6 N U {0}. N is the set
of positive integers.

Ω or dΩ is said to be of class Cu or Cu+a if dΩ locally admits
a representation

xk = ̂ (a?!- , #*._!, α?fc+1, •••,»»)

with ^eC" or Cv+a respectively and if Ω locally is one one side of
dΩ. If no misunderstanding is possible we often write X instead
of X\ X a vector space. If X has a scalar product (.,.) the scalar
product of X\ namely ΣLi(.,.) is denoted by (.,.) too.

D\Ω) is the space of all distributions over Ω. For functions
ue(H\Ω))n the element u-FueRn is defined as the vector having
the components

Σ u ^ , 1 £ λ ^ n ,

(M has the components u*). If u e (HK(Ω))1 and A is a differential
operator of order K, Au means the vector (Au\ " ,Auι).

1* Instationary Navier^Stokes equations* First we define the
meaning of strong and weak solutions to the instationary Navier-
Stokes system. For that purpose we assume that Ω is a bounded
open set of Rn, n — 2, having a boundary of class C3. Let v, T be
arbitrary >0.

DEFINITION. An element (u, p) of L°°((0f T), L\Ω)) n L2((0, Γ),
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H\Ω)) x D\QT) with F-u(t) = 0 for almost all £e(0, T) is a weak
solution to the problem

u' - vΔu + u Fu + Fp = f ,

F-u = 0 ,
(NS)

H(0) = Φ ,

if

(α(t), ψ'(t))dt + i; I (Fα(t), Fψ(t))dt

o Jo

ψ<£))d£ = Γ(f(t), ^(ί))dt + (φ,
Jo

for all test functions ψ with

0, Γ),

0, Γ), iϊ

f, φ are fixed elements from L2((0, T)L\Ω)) and iΓ(β) respectively.
Moreover, F φ = 0. An element (α, p) of F x L2((0, ϊ7), H 1 ^)) is
a strong solution to the problem (NS) if the equations ur — vz/u +
uFu + p = f, F u = 0 are fulfilled in the distributional sense and if
κ(0) = φ. Here F denotes the Banach space of all u e L2((0, T),
H\Ω)) n 2/°((0, Γ), ffι(X?)) with ^'eL2((0, Γ), L2(i2)) and norm

ess sup ||

Observe that α(0) = ψ makes sense since K 6 V implies that u 6
C°([0, Γ], L\Ω)). For any function from C0{B?) we have

u\x, y) = 2Γ u(ξ, y)ux{ξ, v)dξ
J

and also

Γ ?) I Iux(x, η)\dη ., y) ̂  2Γ
j

Multiplying these last two inequalities and integrating over x and
y, we find, by the Schwarz inequality,

(1.1) I I "
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for all ueH\Ω). Then, by (I.I), it follows that

(1.2) \(u(t)-Fu(t),W))\ ^ II «(

Thus all expressions occuring in the definition of the weak solution
to the problem (NS) are well-defined.

As it is shown in [5], Chap. I, the problem (NS) always has a
weak solution. Moreover, u is determined uniquely.

Our nonlinearity g(x, u, Fu) — wFu has the following properties:
(NS 1): fir is continuous from Ω x Rn x Rn2 to Rn and

[ g(x, u, Fu) udx = 0, ueHHΩ), F-u = 0, % = 2 .

If n = 2, ue H\Ω) we have

(NS 2): ^(firfo M, Fα) - g(x, v, Fv)) (u - v)dx ^ - e ||ic-»||?,8

(NS 3) \g(χ, u, Fu)\ ^ c(n)(\u\1+i/n + 1 + |Fu|1+2/(w+2)) , % = 2 ,

where U,VGH\Ω). (NS 3) follows from Holder's inequality. As for
(NS 2) we have by (I. 1)

f {uFu - v-Fv)'(u - v)dx ^ -ef \F(u - v)\2dx - c(ε)Cf (|u|4

^ - ε | |F(u - v)\\\2(_Q)

- c(e,

Our main result consists in

THEOREM LI. Let n — 2, let {u, p) be a weak solution to the
problem (NS). Then it is a strong solution.

Proof. Let us consiner the problems

ur — vΔu + wFu + Fp = σf ,

(NS.) F ' U = 0 '
M | 3 £ = 0 ,

M(0) = σφ , 0 ^ σ ^ 1 .

We introduce two sets Σ, Σ* c [0,1]. Σ is the set of all a for
which (NSσ) has a strong solution, J* is the set of all σ with
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1. [0, σ](zΣ

2. V\\u'τ{t)\\\tW)dt + ess sup ||ur(έ)llf,2

+ Γn «.(*) ιιs.«d*+Γn i>,(ί) ιι;.^ί
Jo Jo

^ C(σ, Ω, v) ( jV(ί) | l i,< f tdί + 1 + 11*11?,,) , 0 ^ τ <Ξ σ .

Obviously 0 6 Σ, Σ*.
Now let σγ e Σ*, σ2 eΣ, σz> σx. Using (NS 2) we get by scalar

multiplication of our equations for uo% — uσι with u,2 — uaι:

\uH(Jt) - uβ I(ί)| |i, ( f l ) + (V - s)j[ \\P(μH - ua){τ

V , - σ t | \\f(τ)\\L2(!}) \\uu(τ) - uai(τ)\\LHΩ)dτ

r + \σt-σι\ \\φ\\*ίt(tt) , te[0, Γ] .

The possibility of choosing a uniform C is seen as follows: Using
(NS 1) we get by scalar multiplication of our equation for uσ with uσ

\u,,(t)\\lHΩ) + ^

\uXτ)\\Li{Ω)dτ + | |φ | | 2

i 2 ( ί ? ) , ί 6[0,1], σ e

Thus we see that we can bound the L\(0, Γ))-norm of IIF
and the L~((0, Γ))-norm of ||«,(έ)||Lί(fl) independently of σ. Combining
this with the previous inequality we see that

(1.3) 11«.,(«) - « . 2 ( ί) l l i 2 ( β ) ^ W, - <r2| φ , | | ψ | | i t ( Λ ) , I I ^ I U , , ^ , , ) .

On using the lemma proved after Remark 1.3 below we get

ess(sup |

£ c(v)(\σi - σ2 | jo

Γ | | f(t) | |* I ( f l ) dί + \σt - σt\ \\φ\\\Λ

+ \l \\uσι Fuσi(t) - ua2 F

We have by Soboler ([1], p. 27)
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+ \\uH Vun{t)\\^ιOi ,

\uσjFuσi(t)\\L2{Ω) ,

\Uo2 uOίI Ili2(jj) i | | \Vuθ2

+ II III | 1 + 4 / w | | _|- II \PΊι U+a/C»+2) i

^ c(n, Ω)(\\uH - I ^ H M | |«, 2 - uffι||
4/2»(

_|_ I! \yu ιi+ϊ/(«+«|i

Thus we see that in view of (1.3) uθ2 can be estimated as in part
2 of the definition of Σ* if \σx - σt\ ^ δ = δ(n, v, Ω, | | / Ί U ( 0 , Γ ) ) ,
||Φ||L2 ( ί? )). Observe that δ does not depend on cr1# Now we want to
prove that [0, σx + δ] Π ̂ * = [0, σ1 + ί ] . Let τ e [0,1], σ e [0, σt + δ].
Let w be an element of W = {ιι? | u?'e L2((0, Γ), L%Q)), ιι?eL2((0, T),
ff2(β)) n L°°((0, Γ), fiΓ1^))}, (2Vr, pw) the uniquely determined ele-
ment of V x L2((0, Γ), H\Ω)) (cf. the lemma) with

Fu? + Fpw = σf ,

= 0 ,

Γα?(0) = σφ .

Let {u?J be a sequence from i£ = {w\we W, esssup o s ; ^ Γ | |u7(ί)||1 > 2+

\w'(tyL2{Ω)dt + \o Wwmizdt <ί 1} with

wl - ιc' in L\φ, T), J

wu-^w in L2((0, Γ ) , iί"2(i2)) .

By Sobolev we have

|H?J 2 | F I P , - Fw^ |2da;dί ^ ( ( Γ | |M? 1 / | |^ 1 ( f l )iii) 1 / ? 1 .
\ J 0 /

CT

•α.
Here
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l + ̂ i ^ i + i , =JL + ( 1 α ) !
Qi Q2 Pi V2 2q2 2 q 2

It is easily verified that we can choose q2, pίf α, pif q in such a
way that the relations above and the following ones are fulfilled:
1 < q < 6, (1 — a)2qip1 < 6, a2q2px <* 2. Now we have to observe
that H\Ω) c LP{Ω), p ^ 1, with a continuous imbedding and that
H\QT) c Lq{Qτ), q < 6, with a completely continuous imbedding.
Since the term I | wμ — wJ21 Vwμ |

2 dxdt can be treated quite similarly
we see t h a t 1 \\wJPwy — wμFwβ\\2

L2{Ω)dt~*0, v, μ—>°o. So far we have

shown that ΐ is a completely continuous mapping of W in itself.
Moreover, we have just proved that all fixed points of τT, 0 ^ τ <;
1, remain uniformly bounded in the norm of W. Schaefer's fixed
point theorem now yields that [0, σ1 + δ] Π Σ* = [0, 0̂  + δ]. Since
<5 does not depend on σx we finally arrive at [0, 1] = Σ = J*. Thus
our theorem is proved.

REMARK I.I. The proof of Theorem I. 1 of course yields an α-
priori estimate for every strong solution (cf. the introduction of Σ*).
Probably Ω can be unbounded.

REMARK I. 2. Using the same method as in the preceding
theorem one can construct strong solutions to the Navier-Stokes
equations with the property

κ'eL'((0, T),

ueL\(0, Γ), H*»(Ω)) n L»((0, Γ),

peL*((0, Γ), i

if feLp((0,T), L*(Ω))9 φeH2>*(Ω)ΐ\Hι>v(Ω), p^2. The reason is
simply that

Ω) ^ c(n, p, Ω)\\u\\2,p\\u\\^(ΰ) ,

c(n, p, Ω)\\u\\2,p\\u\\%+v , u

and that we liave estimates in Lp-spaces corresponding to that of
our lemma (see [13], Ch. IV). An analogous result for semilinear
parabolic systems will be proved by a very similar method in the
next chapter. We want to state our a priori estimate for strong
solutions of Navier-Stokes equations in the following theorem:

THEOREM 1.2. Let Γ > 0 be arbitrary. Let /el/((θ, Γ), LP(Ω)),
p^2, let φe H2>P(Ω) n Hhp(Ω). Let u e Lp((0, Γ), H2>P(Ω)) n Lp((0, T),
Hhp(Ω)), w'eLp((0, Γ), LP{Ω)), peLp((0,T), Wψ)) and let (u, p)
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fulfill the equations

υ! — vΔu + u Pu + Pp = f ,

Γ iί = 0,

iι(0) - φ .

Then the following a priori estimate holds:

+ esssup| | i ί ( ί) |U £ c(vί, T)(\\φ\\lP + \T\\f(t)\\%,Ω)dt) .

For p — 2 it is sufficient to assume that φeH\Ω) and \\Φ2,P\\ in the
estimate above may be replaced by

REMARK 1.3. Instead of boundary values 0 one can prescribe

boundary values a with aeW, V-a = 0, 1 a-ndω = 0, where n is

the outer normal on dΩ.

We now prove the lemma mentioned in the proof of Theorem

1.1.

LEMMA. Let feL2((0, T), L2(Ω)), φeHι(Ω). Then there exists a

pair (u,p) such that αeL 2((0,Γ), H\Ω)) n I/°°((0, Γ), H\Ω)), u' e

L2((0, Γ), L\Ω)\ peL8((0, T), H\Ω)),

(1.4) M' — ̂ w + Pp = f ,

Pu = 0 ,

the following a-priori estimate holds:

(1.40 \T\\u\t)\\2

l2.Ω)dt + ess sup | |α(έ)| |?,2 -f

Jo ι o^i^r

+ Γl|p(*)llϊ,2dί ^ c(v, w, fl) (| |ΦHϊ, 2 + Γl|f(t) | | 8

L2 ( X ? ) d ί ) .
Jo \ J o /

PROOF. Approximating p we see that

, u')dt = 0 .

Thus scalar multiplication of (1.4) with uf yields the desired a
priori estimate for

\T\\u\t)\\\2{Ω)

Jo ι

dt Λ-
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Let us consider the Stokes-system

(1.5) - vΔu + Vp = -uf + f .

Application of the results of § 4, § 5, Ch. I l l in [3] finally yields
the desired estimate and therefore the lemma.

REMARK 1.4. It is evident, the lemma above implies that for

every feL\(0,T)f L\Ω)) and every φeH\Ω) with F φ = 0 there

exists a unique pair (u, p) with ueL\(0,T), H\Ω)) n L°°((0, T),

), w'eL2((0, Γ), L2(i2)), peL 2 ((0, T), ff(ίϊ)) and (1.4), (1.4').

II* Parabolic System* In this section we want to carry over
our results from §1 to parabolic systems in diagonal form. Let
T > 0 but otherwise arbitrary, let Ω be a bounded open set of Rn

whose boundary is of class C 4 w for an meN. For each pair of
multi-indices α, β of Rn with \a\, \β\^m, let functions

Air. [Of T] XΩ >C

be given with

Moreover we assume that

M\ζ\*m^JΣ Atΐ(ίf x)ίa+?^M~1\ξ\2m

 f (t,x)e[0,T]xΩ, ζeRn,
\cc\=m,
\β\=m

with a positive constant ikf. We set for p > 1

Ap(t)u = ^ Σ D«{A~j(t, x)D>u) , u e H2m>\Ω) n i ί " ' 2 3 ^) .

For our purposes it means no loss of generality if we assume that
Garding's inequality

(A2(t)u, u) ^ c(Ω, m, n, M, \\\A~a?\\\ , \\\\A-aj\\\\x)\\u\\l,2

holds with a positive constant c(Ω, m,n, •••)•
Let f be a mapping from [0, T] x Ω x Rι x Rln* x xiί z ? ι^

{nu = number of multi-indices α with | α | = v) in Λ1, where Ms a
fixed number, f is supposed to have the following properties:

(Fl) f is Lipschitz continuous and f(t9 x, 0, , 0) = 0 ,

(F2) [ f(t, x9 uyVu, , Pmu)*udx ^ 0 , ue Hm(Ω) .
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In particular ύ,f(t,Vu," ,Fmu) is supposed to be integrable for
ueHm(Ω), ύeHm(Ω).

(F3) ( (f(t, x, u, Vu, , F «) - f(t, x, u,Vv, •-, Fmv)) (u - v)dx

^ - e | | « _ r | | i , , ϊ - β ( e , C ) ( | | u | | i , 1 + \\v\\U\\u - v

for all ε, 1 ^ ε > 0, C ^ \\U\\L2(Ω) + \\v

(F4) + Σ IA

λ = 0,1, (t, a?) 6 [0, Γ] x Ω, pve Rln» - {0} ,

As an example we can take the nonlinearity with components

(II.l) fλ(t, x, u, Vu, , Vmu) = uλ \Vmu\ , 1 ^ λ ^ Z ,

if we assume that n ^ 2m. If one uses the Sobolev-inequality

\\u\\Lt{0) ^ c(n, m, Ω) \\u\\l,2 \\u\\ι~2

a

{Ω)

with a = w/4m ^ 1/2 the validity of (F3) for the nonlinearity (II.l)
can be shown in the same way as we did with (NS 2). As for
(F 4) we have

l+n/im\

\uλ\Vmu\ \^\u\ \Vmu\

^ c(n, m)(\u\1+4m/n + \Vmu

since 1 + n/4m ^ 1 + 2m/(n + 2m) if n <̂  4m.
Now we want to prove the main result of this section, namely.

THEOREM II. 1. Let g e Lp((0, T), LP(Ω)) for a p^ 2. Let

φ e H2m>p(Ω) Π Hm>p(Ω). Then there exists a unique u with the follow-

ing properties:

u'eLp((0,T), Lp{Ω)),

ueLp((0, T), H2m>%Ω)) n Lp((0, T), Hm>p(Ω)) ,

M(0) = Φ ,

u' + A(t)u + f(t, u,Fu,- , Vmu) = ^ .

Proof. Since the proof is very similar to that of Theorem I.I
we only sketch it. Σ, 21* can be introduced as in Theorem I.I.
The decisive point is of course the estimate of uσ2 — uOι, σ2 > σι e
2r*. Application of Theorem 10.4, Ch. VII in [4] yields:
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+ \T\\ua2(t) - uai(t)\\!m,pdt
Jo

^ c(n, m, Ω, p, M, T, \\\Anr\\\, , | | |PVL~ α ? | | | , \\\\Anr\\\\)

x (jT\\f(t, uβι, Vuaί, , Vmuσ)\Yd

+ \ T \ \ f ( t , u O 2 , V u H , -•-, F * u a 2 ) \ \ l
Jo

As in Theorem I.I we can prove that

(II.2) \\ua2(t) - uσι(t)\\LHΩ) ^ \σt -

\\Φ\\L>(Q), Ω, n, m, M, \\\A~aϊ

Moreover

\T\\f(t,uH,Fuat, - F-uJ
Jo

^ c(K, p, n, Ω)(l +

+ Σ ΓII \v*uai{t)
v = 0 Jo

Since (cf. [1], p. 27)

we see that for | σ2 — σ11 sufficiently small (the bound does not
depend on erj the norm

Γ| |u β l ( ί) - uOί{t)\\lm,vdt
Jo

can be estimated a priori. Thus the rest of the proof can be com-
pleted as the corresponding one in Chapter I.
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