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COMPLETIONS OF REGULAR RINGS II

K. R. GOODEARL

This paper continues earlier investigations into the struc-
ture of completions of a (von Neumann) regular ring R with
respect to pseudo-rank functions, and into the connections
between the ring-theoretic structure of such completions and
the geometric structure of the compact convex set P(R) of
all pseudo-rank functions on R. In particular, earlier results
on the completion of R with respect to a single NeP(R)
are extended to completions with respect to any nonempty
subset X c= P(R). Completions in this generality are proved
to be regular and self-injective by reducing to the case of a
single pseudo-rank function, using a theorem that the lattice
of (/-convex faces of P(R) forms a complete Boolean algebra.
Given a completion R with respect to some X £ P(R), it is
shown that the Boolean algebra of central idempotents of R
is naturally isomorphic to the lattice of those σ-convex faces
of P(R) which are contained in the σ-convex face generated
by X. Consequently, conditions on X are obtained which
tell when R is a direct product of simple rings, and how
many simple ring direct factors R must have. Also, it is
shown that the X-completion of R contains a natural copy
of the completion with respect to any subset of X, so in
particular the P(i2)-completion of R contains copies of all
the X-completions of R. The final section investigates the
question of when a regular self-injective ring is complete
with respect to some family of pseudo-rank functions. It is
proved that a regular, right and left self-injective ring R is
complete with respect to a family X <= P(R) provided only
that the Boolean algebra of central idempotents of R is com-
plete with respect to X.

l Completions* All rings in this paper are associative with

unit, and ring maps are assumed to preserve the unit. This paper
is a direct continuation of [7], and the reader should consult [7] for
definitions which are not discussed here. A family of pseudo-rank
functions on a regular ring R induces a uniform topology on R,
and the purpose of this paper is to study the resulting completion
of R. We begin by recalling the appropriate topological concepts.

Let S be a nonempty set, and let ΰ be a nonempty family of
pseudo-metrics on S. The (uniform) topology induced by D on S
has as a subbasis the balls {x e S \ d(x, y) < ε}, for various y e S,
d eD, ε > 0. Thus the basic open neighborhoods of a point y e S
are the sets {x e S | d^x, y) < ε for i = 1, , n} for various ε > 0
and d19 ••, dneD. A net in S is a Cauchy net (with respect to D)
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provided it is Cauchy with respect to each d e D. The space S is
complete (with respect to D) if the topology on S is Hausdorff and
every Cauchy net in S converges in S.

The completion of S (with respect to D) is constructed from
the set of all Cauchy nets in S by factoring out an equivalence
relation ~, where {&<} ~ {y5} if and only if d(xi9 ys) —> 0 for all deD.
Each deD extends to a pseudo-metric d on the completion S, and
the family {d\deD} induces a complete Hausdorίf uniform topology
on S. There is a natural map φ: S—+S, where φ(x) is the equivalence
class of the constant net {x, x, •••}. This map φ is continuous, and
Φ(S) is dense in S. For x, y eS, φ{x) = φ(y) if and only if d(x, y) — 0
for all deD.

Now consider another space T topologized by a family E of
pseudo-metrics. A function f:S—+T is uniformly continuous (with
respect to D and E) provided that for any ε > 0 and any eeE,
there exist 8 > 0 and d19 , dneD such that for all x9 y eS,
max {dt(x, y)} < 8 implies e(f(x)9 f{y)) < ε. Any such / extends
uniquely to a continuous map / from the completion S to the com-
pletion T9 and / is uniformly continuous.

DEFINITION. Let R be a regular ring, and let X be a nonempty
subset of P(R). Each NeX induces a pseudo-metric δN on R, where
δN(xf y) = N(x - y) [19, pp. 231,232]. The family {8N\NeX} then
induces a uniform topology on R, which we call the X-topology.

In general, the X-topology has a basis of open sets of the form
{x e R \ Ni{x — y) < ε for i — 1, , k} for various y e Rf ε > 0, and
N19 -—9NkeX. However, if X is convex, then the X-topology has
a basis of open sets of the form {xeR\N(x — y) < ε}. Namely,
given an open set U Q R and an element y eU9 we first find ε > 0
a n d N19 , Nk e X s u c h t h a t yeVQU, w h e r e V = {x e R\Ni(x - y)<
ε for i = 1, , fc}. Setting 2SΓ = (JŜ  + + iV4)/fc e X and TΓ =
{x eR\N(x - y)< e/k}9 we obtain y e W £ V Q U.

DEFINITION. Let R be a regular ring, and let X £ P(JB). The
kernel of X, denoted ker (X), is the set {x eR\P(x) = 0 for all Pe X}.
If X is empty, then ker (X) = R9 while if X is nonempty, then we
see from [6, Lemma 5] that ker (X) is a proper two-sided ideal of
R. For nonempty X, note that the X-topology on R is Hausdorίf
if and only if ker (X) = 0.

LEMMA 1.1. Let R be a regular ring, and let X, Y be nonempty
subsets of P(R). Then the following conditions are equivalent:

(a) The identity map (Rf Y-topology) —> (R9 X-topology) is
(uniformly) continuous.
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(b) For each PeX, the map P: (R, F-topology) —> [0, 1] is
(uniformly) continuous.

(c) Given ε > 0 and PeX, there exist δ > 0 and Nίf , Nk e Y
such that for all xe R, max {Niix)} < δ implies P(x) < ε.

Proof, (a) » (c): It is clear from the definitions that if the
identity map (R, Y) —* (R, X) is continuous, then (c) holds; and if
(c) holds, then the identity map (R, Y) —> (iϋ, X) is uniformly con-
tinuous.

(b)<=>(c): If P:(R, F)->[0, 1] is continuous for all PeX, then
(c) clearly holds. Conversely, assume (c) and consider any PeX.
Given ε > 0, there exist δ > 0 and Nlf , Nk e Y as in (c). For any
x,yeR, we see that if max {Nt(x — y)} < δ, then \P(x) — P(y)\ <>
P(x - y) < ε, using [19, Corollary, p. 231]. Thus P: (R, Y) -> [0, 1]
is uniformly continuous.

DEFINITION. Let R be a regular ring, and let X, Y £
We say that X is continuous with respect to Y, denoted X < Y,
provided condition (c) of Lemma 1.1 is satisfied. In particular,
0 < Y ΐor any Y, whereas X < 0 only f or X = 0 . In case X =
{P}, we write P < Y in place of {P} < Y, and similarly when Y —
{Q}. Note in general that X < F if and only if P < Y for all P 6 X.
Note also that X < F implies ker (F) ^ ker (X).

THEOREM 1.2. Let R be a regular ring, and let X, Y
fce following conditions are equivalent:

(a) X < F.
(b) X is contained in the σ-convex face generated by Y in P{R).
(c) X is contained in the σ-convex hull of the face generated

by Y in P(R).

Proof. (b)«(c) by [7, Theorem 3.9].
(b)=>(a): Given P e X , [7, Theorem 3.9] says that P<Q for

some Q in the σ-convex hull of F. There is a σ-convex combination
Q = Σ «*Qib w i t h aU Φfce ^ Given ε > 0, there exists δ > 0 such
that Q(x) < δ implies P(a?) < ε. Choose a positive integer n such
that Σ£U+iak<S/2. Then whenever xeR and max{Q^a?), , Qw(»)}<
δ/2, we have

= Σ Σ *kQk(x) ^ ± ak(δ/2)
+ l A

whence P(x) < ε. Thus P < Y. Since this holds for all P e X , we
obtain X < F.

(a)=^(b): Given P e X , we have P < Y. Thus there exist real
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numbers δlf δ2, > 0, positive integers n(ΐ) = 1 < n(2) < , and
Qif Qz, e Y with the following property: whenever xeR and
O<(&) < $k for i = n(k), , w(fc + 1) - 1, then P(a?) < I/ft. Now set
Q = ΣΓ=i O</2*, which lies in the cr-convex hull of F. We claim that

P<Q.
Given ε > 0, choose a positive integer k > 1/ε, and set n =

n(k + 1) - 1, 5 = 5Λ/2\ Whenever x e R and Q(α>) < δ, we have

0,(0?) ^ 2*0(0?) ^ 2 Q(a?) < 2nδ = £fc

for i = n(k), — ,n, whence P{x) < I/ft < ε. Thus P < Q, hence [7,
Theorem 3.9] says that P lies in the σ-convex face generated by Q.
Therefore P lies in the ^-convex face generated by Y.

COROLLARY 1.3. Let R be a regular ring, let X and Y be non-
empty subsets of P{R), and assume that X and Y generate the
same σ-convex face in P(R). Then the X-topology and the Y-topology
on R are identical. Moreover, Cauchyness and uniform continuity
are the same whether considered relative to X or relative to Y.

Proof. By Theorem 1.2, X < Y and Y < Xf whence Lemma 1.1
shows that the identity map (R, X-topology) —> (R, F-topology) is a
homeomorphism. Thus the topologies are identical. The equivalence
of Gauchyness and uniform continuity relative to X and Y also fol-
lows from the relation X < Y < X.

DEFINITION. Let R be a regular ring, and let X be a nonempty
subset of P(R). The X-completion of R is the completion of R
with respect to the uniform topology induced by X. By the standard
properties of pseudo-rank functions [19, p. 232], the ring operations
on R and the maps Ne X are all uniformly continuous with respect
to X. Thus the X-completion R is a ring, the natural map R—+R
is a ring map, and each NeX extends uniquely to a continuous
map N:R—>[0, 1]. The pseudo-metrics δN on R which are part of
the completion construction are of course induced by the N, i.e.,
δN(x, y) = N(x - y) for all Ne X and all x, yeR.

Because of the continuity of the ring operations, we obtain a
slight simplification in the construction of R. Namely, the set C of
Cauchy nets in R forms a ring, the subset Co of null nets (i.e., nets
which converge to zero) forms a two-sided ideal in C, and R = C/CQ.
The kernel of the natural map φ: R—+R is thus the ideal {x e R | N(x) = 0
for all NeX}, i.e., ker^ = ker (X).

These properties of R are standard consequences of the general
theory of completions of uniform spaces. By analogy with the case
of a single pseudo-rank function—[11, Theorem 3.7] and [6, Corollary
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15]—we should expect R to be a regular self-injective ring, and the
maps N should be pseudo-rank functions on R. While these prop-
erties do hold, the only one we are able to prove directly is that
each N is a pseudo-rank function on R. It is possible to prove
self-injectivity in a fairly straightforward manner once it is estab-
lished that R is regular, but regularity seems impossible to prove
directly, mainly because the proofs in the case of a single pseudo-
rank function depend so heavily on the use of sequences that they
do not generalize to nets.

DEFINITION. Let R be a regular ring, let X be a nonempty
subset of P(R), and let R denote the X-completion of R. Each NeX
extends uniquely to a continuous map N: R-+ [0, 1]. For now, we
refer to N as the natural extension of N to R. Once we have
proved that R is regular and that N is a pseudo-rank function on
R, we shall refer to N as the natural extension of N to P(R).
For all x, y eR, we have N{xy) ^ N(x), N(y) by definition and
N(x + y) ^ N(x) + N(y) by [19, Corollary, p. 231]. By continuity,
we obtain N(xy) ^ N(x), N(y) and N(x + y) ^ N(x) + N(y) for all
x, y eR.

LEMMA 1.4. Let R be a regular ring, let X be a nonempty
subset of P(R), and let R denote the X-completion of R. Any
idempotent eeR can be obtained as the limit of a net of idempotents
from R.

Proof. Let φ:R-+R be the natural map, and for each NeX
let N denote the natural extension of N to R. Now e has basic
open neighborhoods of the form B = {xeR\Nt(x — e) < e for i =
1, •••,&}, for suitable ε > 0 and Nlf •••, NkeX. We must show
that for any such B, there exists an idempotent feR with φf eB.

There exists a net {a^} £ R such that φa3- —> e, and of course
φ(cή) —+e2 = e as well. Thus there is some a — a3eR such that
Nt(φa - e) < ε/3 and Nlφ{a2) - e) < ε/3 for all i. Note that

Nάa2 -a) = NlΦ(a2) - φa) ^ Nlφ{a2) - e) + Nlφa - e)< 2ε/3

for all i. According to [11, Lemma 2.3], there exists an idempotent
feR such that f-ae aR(a2 - a). Thus Nt(f - a) £ N^a2 - a) <
2ε/3 for all i, and consequently

N<(Φf - e) ύ Nlφf - φa) + N^φa - e) = iV,(/ - α)

for all i. Therefore φfeB.

LEMMA 1.5. Let R be a regular ring, let X be a nonempty
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subset of P{R), let R denote the X-completion of R, and let ψ: R-+R
be the natural map. If e, f are orthogonal idempotents in R, then
there ̂ exists a net {(ejy f,)}QRxR such that {φeh φfό) —• (β, /) in
R x R, and for all j , e3- and f3- are orthogonal idempotents.

Proof. For each NeX, let N denote the natural extension of
N to R. In R x R, (e, f) has basic open neighborhoods of the form

B = {(x,y)eR x R \ N t ( x - e), Nt(y - / ) < ε f o r i = 1, .. , k) ,

for suitable ε > 0 and Nlf , Nk e X. We must show that for any
such B, there exist orthogonal idempotents e', / ' e R such that
(φe',φf')eB.

According to Lemma 1.4, there exist nets {g3}, {h3} (which we
may arrange to be indexed by the same directed set) of idempotents
in R such that ψgj-*e and φhά—*f. In addition, Φig^hj) —+ ef = 0
and Φ(hjgj)—+fe = 0. Thus there exist idempotents g = g3- and h = h3-
in #_such that Nlφg - e)< ε/2, Nt(φh - / ) < ε/2, Nt(φ(gh)) < e/2,
and NMhg)) < ε/2 for all i. Note that JSΓXflrΛ), JV,(fcflr) < ε/2 for all
i. According to [11, Lemma 2.4], there exist orthogonal idempotents
e', f'eR such that e' - g e ghR and f - he hgR. Thus Nle' - g) ^
Ni(gh) < ε/2 and likewise iV^/' — h) < ε/2 for all i. Consequently,
ΛΓ^̂ β' - e) ̂  iV^β' - g) + ΛΓ,(^ - β)< ε and likewise Nlφf - / ) < ε
for all i. Therefore (φe'f φf) e B.

PROPOSITION 1.6. Let R be a regular ring, let X be a nonempty
subset of P(R), and let R denote the X-completion of R. For each
N 6 X, let N denote the natural extension of N to R. Then N is a
pseudo-rank function on R.

Proof. Let φ: R—>R denote the natural map, and note that
N(l) = N(φ(ΐ)) = N(ΐ) = 1. We have observed above that N(xy) ̂
N(x)9 N(y) for all x, y eR. Now consider any orthogonal idempotents
e,feR. By Lemma 1.5, there exists a net {(ejf /,-)} C R x R such
that φe3-+e, φfj—*f, and ejffs are orthogonal idempotents for each j .
Observing that Nφ(ej+fi) = Nφ(ej) + Nφ(fj) for all j , we conclude that
N(e + /) = N(e) + N(f). Thus iV is a pseudo-rank function on R.

In order to prove that the X-completion R of a regular ring R
is a regular self-injective ring, we must use the following circuitous
procedure. The first step, which we develop in the next section, is
to prove that the lattice of cr-convex faces of P(R) is a complete
Boolean algebra. Using this, we reduce the problem to the case
when the NeX are facially independent. In this case, we prove
that R is isomorphic to the direct product of the iV-completions of
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R, from which the required properties of R are immediate.

PROPOSITION 1.7. Let R be a regular ring, let X and Y be
nonempty subsets of P(R), and assume that X and Y generate the
same σ-convex face in P(R). Then ker (X) = ker(Y) and the X-
completion of R coincides with the Y-completion.

Proof. By Theorem 1.2, X < Y and Y < X, hence we see that
ker (X) = ker (Y). In addition, Corollary 1.3 shows that the X-
topology and the Y-topology on R are the same, and that nets in
R are Cauchy (null) with respect to X exactly when they are Cauchy
(null) with respect to Y. Thus the two completions of R, con-
structed as the ring of Cauchy nets modulo the ideal of null nets,
are identical.

THEOREM 1.8. Let R be a regular ring, let X be a nonempty
subset of P{R), and let R denote the X-completion of R. For each
N e X, let RN denote the N-completion of R. If X is a facially
independent subset of P(R), then R = JINSXRN'

Proof. For each NeX, let ψN:R-+RN be the natural map, and
let N be the natural extension of N to P(RN). Set S = ILvez^,
and for each NeX let pN denote the projection S—*RN. The maps
φN induce a map φ: R —+ S, and we note that ker φ = f\ ker φN =
Π ker (N) = ker (X).

For each NeX, we have a pseudo-rank function ΛΓ* = NpN on
S, and we note that N*φ = NpNφ = NφN — N, i.e., N* is an exten-
sion of N to P(S). Setting X* - {N*\NeX}, we see also that S
is complete with respect to X*. Thus to show that S = R, it
suffices to show that φ(R) is dense in S in the X*-topology.

Now let 8 e S, ε > 0, and N19 , Nk e X. Set JSΓ = (iSΓx H h Nk)/k
in P(R). Inasmuch as the Nt are facially independent, [7, Theorem
4.3] says that the natural map from the iV-completion of R into
T = RNi x x RNk is an isomorphism. We have a natural map
ψ:R~+T (induced by φNl, •••, φNk), and we have a rank function i\Γ
on T defined by the rule N'(x19 •••, xk) = [N^x,) + ••• + Nk(xk)]/k.
By virtue of the isomorphism of the iSΓ-completion of R onto T, we
see that ψ(R) is dense in T in the iV'-metric. Applying this in-
formation to the element t = (pNl(s), , pNk(s)) in Γ, there must
exist an element r e R such that N\ψ(r) — t) < e/k. Inasmuch as

- t) = N\φNl(r) - pNl(s), , φNk{r) - p^(β))

- P2rι(β)) + + iV,(^^(r) - pNk(s))]/k

- β) + + NkpNk(φ(r) -

β) + - - + JSΓf (^(r
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we conclude that N*(φ(r) — s) < ε for all i — 1, , k.
Therefore <ρ{R) is dense in S in the X*-topology, as desired.

2* (T-Convex faces in P(R). We show in this section that for
any regular ring R, the lattice of ^-convex faces of P(R) forms a
complete Boolean algebra.

LEMMA 2.1. Let R be a regular ring, and let {JPJ be a collec-
tion of faces of P(R).

(a) The convex hull of \J Ft is a face of P(R).
(b) The σ-convex hull of \J Ft is a σ-convex face of P(R).
(c) If the Ft are all σ-convex and only finitely many of them

are nonempty, then the convex hull of \J Ft is a σ-convex face of
P(R).

Proof (a) Since P{R) is a Ghoquet simplex by [7, Corollary
3.6], this follows from [2, Proposition 3].

(b) In view of (a), the σ-convex hull of U Ft is also the σ-
convex hull of a face of P{R). By Theorem 1.2, this is a ^-convex
face of P{R).

(c) We may assume that there are only finitely many Fi9 say
Fίf •••, Fn. Let F denote the convex hull of \J Ft, which is a face
of P(R) by (a).

Now consider any σ-convex combination N= Σ a*Pk where all Pk 6 F.
For each &, there is a convex combination Pk = βkιPkl + + βknPkn

with each Pki e Ft. Set 7< = Σ f c o:kβki ^ 0 for each i = 1, , n, and
note that 7t + + 7Λ = 1. After renumbering, we may assume
that Ύίf , 7r > 0 and 7r+1, , 7Λ = 0, for some 1 < r ^ ^. For
each i — 1, , r, set iV̂  = Σ& (akβkilΎi)Pki, which lies in ^ because
F έ is σ-convex. Then iSΓ = 7 ^ + ••• + 7rAΓr is a convex combina-
tion of the Ni9 whence NeF.

Therefore F is σ-convex.

DEFINITION. AS in [7, 8], we use B(R) to denote the Boolean
algebra of central idempotents in a ring R. In case R is regular
and right (or left) self-injective, B(R) is complete [8, Proposition
4.1]: for {e^QBiR), Λ ^ is the central idempotent which generates
the ideal Π e{R.

LEMMA 2.2. Let R be a regular ring, let NeP(R), and let
E Q B(R). If e0R Π ker (N) = 0 for some eQeE, then there exists a
countable sequence {elf e2, •} £ E such that C[eeE^ — Π ^ U ^ ^

Proof. Replacing E by {eQe\ezE}, we may assume that eR D



COMPLETIONS OF REGULAR RINGS II 431

ker (N) = 0 for all e e E. Thus we may transfer the problem to
R/ker (JV), i.e., we may assume, without loss of generality, that
ker (JV) = 0. Now N is a rank function on R, from which it follows
that R does not contain any uncountable direct sums of nonzero
right ideals.

Set F= {1 - e\eeE} and X = {xR\xe\JfeFfR}. Given any
nonzero y eFR = Σ/ef/B> we must have yfΦΰ for some feF,
whence yfR is a nonzero member of X which is contained in yR.
Thus every nonzero submodule of {FR)R contains a nonzero member
of X, hence (FR)R must have an essential submodule which is a
direct sum of members of X. Inasmuch as R contains no uncount-
able direct sums of nonzero right ideals, this direct sum must be
countable, hence we obtain an independent sequence {xjt, x2R, •} £ X
such that φxnR is an essential submodule of (FR)R.

Since R is a right nonsingular ring, the left annihilator of
φ xnR must coincide with the left annihilator of FR. For each n,
xnR <£ (1 — en)R for some en e E. Consequently, we see that Πn=i e*R
is contained in the left annihilator of FR, i.e., Π?=iβ»i2£ Γ\eeEeR.
The opposite inclusion is automatic.

PROPOSITION 2.3. Let R be a regular ring, let NeP(R), and
let R denote the N-completion of R. Let X, Y £ P(R) such that
X, Y < N, and for each Pe Xl) Y let P be the continuous extension
of P to P(R). Set X = {P\PeX) and Ϋ={P\PeY}. Then the
following conditions are equivalent:

(a) X«F.
(b) X«F.
(c) ker ( Γ ) ^ ker (X).

Proof. Let Φ denote the natural map R-+R, and let N denote
the natural extension of N to P{R).

(a) => (b): Given P e X and ε > 0, there exist δ > 0 and Q19 ,
QkeY such that_ for all y e R, max {Qt(y)} < δ implies P{y) < ε/2.
Since P, Qlf , Qk < JV, there also exists δ' > 0 such that for all
zeR, N(z) < d' implies both P(z) < ε/2 and max {(}&)} < S/2.

Now consider any xeR for which max{Qi(x)} < δ/2. There is
some y e R for which N(φy — x) < δ\ whence P(φy — x) < ε/2 and
max {Qlφy - x)} < δ/2. Then Qt(y) = Qlφy) ^ Qt(φy - x)_+ Qt(x) < δ
for all i = 1, , k, whence P(y) < ε/2 and so P(x) ^ P(x - ^y) +
P ( ^ ) = p(φy - x) + p(^) < ε . Thus for all x e Rf max {Qt(x)} < δ/2
implies P(x) < ε.

(b) => (a) and (b) => (c) are clear.
(c) ==> (b): According to [7, Lemma 3.7], each ker (Q) (for QeY)

is generated by a central idempotent. Since we have a rank func-
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tion N on R, we see from Lemma 2.2 that there exists a countable
sequence {Qίf Q2, •} £ Y such that ker (?) = ΠϊUjεer (QJ. Set Q =
ΣJUQn/2*, which lies in the σ-convex hull of Ϋ, and note from
Theorem 1.2 that Q < Ϋ. Inasmuch as each QΛ < JV, we also see
from Theorem_1.2 that Q < N.

Now ker (Q) = Π~=iker(<2J - ker(Γ) ^ ker(X), hence ker(Q) ^
ker(P) for all PeX. According to [7, Proposition 3.8], X is con-
tained in the σ-convex hull of the face generated by Q. Therefore
X < Q by Theorem 1.2, whence X < Ϋ.

LEMMA 2.4. Let R be a regular ring, and let F Q G be σ-
convex faces of P(R). If F Φ G, then there exists QeG such that
the σ-convex face generated by Q is disjoint from F.

Proof. Choose some NeG — F, and let H be the intersection
of F with the σ-convex face generated by N. We are done if H is
empty, hence we may assume that H is nonempty. Let R denote
the iV-completion of R, and let N denote the natural extension of
N to P(R). By Theorem 1.2, H < N, hence each PeH extends
continuously to some PeP(R). Set H = {P\PeH}.

Inasmuch as N does not lie in the σ-convex face H, we see from
Theorem 1.2 that N is not continuous with respect to H. According
to Proposition 2.3, it follows that ker (8) g£ ker (N), whence ker (H) Φ
0. Using [7, Lemma 3.7], we thus obtain a nonzero central idempotent
e e B(R) such that eR = ker (H).

Since e Φ 0, N(e) Φ 0, hence we can define a pseudo-rank func-
tion QeP(R) by the rule Q(x) = N(ex)/N(e). Pulling Q back to Qe
P(R), we have Q <;.[l/N(e)]N, whence Q lies in the face generated
by N [7, Corollary 3.3]. Thus QeG.

Now consider any P in the σ-convex face generated by Q, and
note that P also lies in the σ-convex face generated by N. By
Theorem 1.2, P < Q, N, hence P extends continuously to some Pe
P(R). According to Proposition 2.3, (1 - e)R = ker (Q) ̂  ker (P),
hence P(e) = 1. Since eR = ker (H), we conclude that P i H and so
PίF.

Therefore the σ-convex face generated by Q is disjoint from F.

LEMMA 2.5. Let R be a regular ring, let F, G be faces in P(R),
and let Flf Gx be the σ-convex hulls of F, G. If F and G are dis-
joint, then Fx and Gx are disjoint.

Proof. Suppose there exists N^F1Γ\G1. Then there is a σ-
convex combination N = Σ <*Λ w ^ h all Pk e F. By renumbering,
we may assume that aλ > 0. If ax — 1, then Pλ = NeG19 If ax < 1,
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then

a,Px + (1 - ax) Σ «Λ/(1 - α j = Σ « Λ = NeGλ.

Since Gx is a face of P(i2) by Theorem 1.2, Pi 6 Gx in this case also,
hence we obtain a σ-convex combination P t = Σ &.Q* with all Qk e G.
Again, we may assume that β1 > 0. Since Σ PkQk = -Pi ϋ e s *n the
face F, we conclude as above that Qt e F. But then Q^FnG,
which is impossible.

THEOREM 2.6. Let R be a regular ring, and let ^ denote the
lattice of σ-convex faces of P{R). Then &~ is a complete Boolean
algebra. For {Ft} £ ^ 7 Λ Ft = Π ^ and V Ft is the σ-convex hull
of U Ft. For F9Ge^f F V G is the convex hull of Fl)G.

Proof. It is clear that ά?" is a complete lattice in which arbi-
trary infima are given by intersections. For {Ft} £ ^ 7 Lemma 2.1
shows that the σ-convex hull of U Fi belongs to ^ 7 whence the σ-
convex hull of U Ft equals V Ft. For F, Ge ^ Lemma 2.1 shows
that the convex hull of F U G belongs to _^7 whence the convex
hull of F U G equals F V G.

Given F,G,He<β^ we automatically have (F A G) V (F A H) Q
F A (G V H). Now consider any NeF A (G V £Γ). Since NeGv H,
we obtain a convex combination iSΓ = aP + (1 — a)Q with P e G,
QeH. If α = 0, then N= QeF A H, while if a = 1, then AT =
PeF A G. If 0 < α < 1, then since JV lies in the face F, we obtain
P,QeF, and consequently PeFAG, QeFAH. Thus Ne(FAG)V
(F A H) in any case, whence F A (G V H) = (F A G) V (F A H).
Therefore Jίf is a distributive lattice.

Now let F e ^ and let X denote the set of those G e J^~ which
are disjoint from F. Given any nonempty chain {GJ £ X, we see
that U G< is a face of P(i2) which is disjoint from F. According
to Lemma 2.5, the ^-convex hull of U G< is also disjoint from F.
Thus V Gt 6 X, which provides the chain {GJ with an upper bound
in X. Now Zorn's Lemma gives us a maximal element GeX.

If F V GΦP(R), then by Lemma 2.4 there is a nonempty He^
which is disjoint from F V G. In particular, i ϊ is disjoint from both
F and G. Inasmuch as &~ is distributive, we obtain F A(G V H) =
(F AG) V (F A H) = 0 and so Gv HeX, which contradicts the
maximality of G. Thus F V G = P(R), whence G is a complement
for ί7 in ^ .

Therefore &~ is a complete, complemented, distributive lattice,
i.e., a complete Boolean algebra.

COROLLARY 2.7. Let R be a regular ring, and let X £ P(R).
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Then there exists a facially independent set Y £ P(22) such that Y
and X generate the same σ-convex face in P(R). In particular,
any σ-convex face in P(R) can be generated by a facially independ-
ent subset of P(22).

Proof. If X is empty, then X itself is facially independent,
hence we may assume that X is nonempty. Let ^~ denote the
lattice of σ-convex faces of P(R), which is a complete Boolean alge-
bra by Theorem 2.6. For each PeP(R), let F(P) denote the σ-
convex face generated by P in P(R), and set ^ = {F(P)\PeP(R)}.

Note that every nonempty face in j ^ ~ contains a (nonempty) face
from &l. Since J?" is a complete Boolean algebra, we may thus ex-
press F as the supremum of some family {F{P^} of pairwise disjoint
members of ^l. Since the F(Pt) are pairwise disjoint, the set Y={Pt}
is facially independent. Since each Pt generates F(Pt), we see that
Y generates -\ZF(Pt) = F. Thus Y and X generate the same σ-convex
face in P{R).

The results of Theorem 2.6 and Corollary 2.7 do not hold in
general for non-σ-convex faces. That is, the lattice of faces of
P(R) may not be a complete Boolean algebra (although it must be
a complete distributive lattice), and there may exist faces in P{R)
which cannot be generated by facially independent sets. In fact,
in the following example we construct a regular ring R such that
P{R) cannot be generated (as a face) by facially independent pseudo-
rank functions.

Let K be a field, let K19 K2, be copies of K, and let R be
the if-subalgebra of Π K» generated by 1 and J = 0 2fn. Note that
R is regular and that R/J ~ K.

Since R/J = K, there exists a unique Po e P(R) such that
ker(P0) — J For n = 1, 2, •••, let en denote the identity of Kn.
Since 22/(1 — βJ22 — K, there exists a unique Pn e P(R) such that
ker (PJ = (1 - en)R. Given any P 6 P(22) and n = 1, 2, , we claim
that P(enx) = P(en)Pn(x) for all x e R, which is clear if P(en) = 0. If
P( β J ^ 0, then the rule Q(x) = P(enx)/P(en) defines Q e P(R) such
that ker (Q) = (1 — O-S. In this case, we obtain Q = Pn by unique-
ness of Pn, from which the claim follows.

We now claim that every P 6 P(R) is a σ-convex combination of
Po, P19 P2, . More specifically, we claim that

P = [1 - Σ P(0]Po + Σ P(eJPn .

If Σ Pifif) = 0, then P(J) = 0, whence P = Po by uniqueness and
the claim holds. Now assume that Σ -P(β») = T > 0, and set Q —
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Σ » = i [ P ( O / 7 ] P » i n P{R). G i v e n xeR a n d n = 1, 2, , w e h a v e
fax + + enx)R ^ xR and so P{eιx) + + P(enx) ^ P(x)9 whence

yQ(χ) = Σ P{en)Pn{χ) = Σ P(βn») ^ P(<«0,

using the claim above. As a result, ΎQ ̂  P, hence [7, Proposition
3.2] says that P - ΎQ = βQ' for some β ^ 0 and some Q' e P(R).
Note that £ = 1 - 7 = 1 - Σ =iP(O If £ = 0, then 7 = 1 and
P = Q = Σϊ=iP(OP.. If £ > 0 , then Q\J) = β~\P - lQ)(J) = 0,
whence Q' = Po (by uniqueness) and so

P = 7Q + βP0 = βP0 + Σ P(en)Pn ,

as required.
Since every P e P(i2) is a cr-convex combination of the P Λ , every

nonempty face of P(i?) must contain at least one Pn. As a result,
any collection of nonempty pairwise disjoint faces of P{R) must be
countable, whence every facially independent subset of P{R) must
be countable.

Now consider any facially independent subset X Q P(R). We
claim that the face F generated by X is not equal to P(R). Write
X = {Qlf Q2f ...}, repeating some Qύ if necessary in order to get an
infinite sequence. For each i = 1, 2, , there is a σ-convex com-
bination Qi = Σ^U ainPn. Inasmuch as lim^oo ain = 0 for each i, we
can find positive integers n(l) < n(2) < such that for all k =
1, 2, , α l ιn(fc), α2fW(fc), , aktn{k) < l/22fc. Define ft, β2, by setting
/SΛ(fc) = 1/2* for all k and all other βn = 0, and set Q = ΣSU ̂ ^ ^ in
P(J2). We shall prove that Q$F.

If Q e F, then by [1, (1.9)] there are convex combinations aQ +
(1 - a)Qf = α ^ H + atQt for some 0 < a < 1, some Q' e P(S), and
some t. Now choose a positive integer k^t such that 2fe > a~\ Then

£ n ( W - 1/2* - 2V22fc > ar'aUnm

for i = 1, •••,&, whence

> α-^α^it) + + ^Λ,n(fe))

- a-ι[aQ(enik)) + (1 - α)Q'(βn(fc))] ^ Q(en{k)) ,

which is impossible. Thus Q £ F, hence F Φ P(R).
Thus the faces generated by facially independent subsets of

P(JR) are all proper, so that P(R) cannot be generated (as a face)
by facially independent pseudo-rank functions.
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Also, if X is a maximal facially independent subset of P(R),
then X generates a face F which is proper, yet F intersects every
nonempty face of P{R). Thus F has no complement in the lattice
of faces of P(R), hence the lattice of faces of P{R) is not a Boolean
algebra.

3* Structure of completions*

THEOREM 3.1. Let R be a regular ring, let X be a nonempty
subset of P{R), and let R denote the X-completion of R. For each
NeX, let N denote the natural extension of N to R.

(a) R is a regular, right and left self-injective ring.
(b) For each NeX, N is a pseudo-rank function on R.
(c) If X — {N\NeX}, then ker (X) = 0 and R is complete with

respect to X.

Proof, (a) According to Corollary 2.7, there exists a facially
independent set Y Q P(R) such that Y and X generate the same
σ-convex face in P(R). Then Proposition 1.7 shows that R coincides
with the F-completion of R. For each NeY, let RN denote the
JV-completion of R, which by [11, Theorem 3.7] and [6, Corollary
15] is a regular, right and left self-injective ring. According to
Theorem 1.8, R = ELer^.v, whence R is regular and right and left
self-injective.

(b) Proposition 1.6.
(c) is clear from the completion process.

Our major tool for investigating the structure of an X-comple-
tion R is Theorem 3.7, which provides a complete description of the
Boolean algebra B{R) of central idempotents of R. In order to
prove this theorem, we first require generalizations of several of
the results of [7].

DEFINITION. Let {e^ie 1} be a nonempty family of pairwise
orthogonal idempotents in a ring R. There is a standard net of
idempotents in R formed from {βj as follows. For index set, we
take the family Jf~ of all nonempty finite subsets of /, ordered by
inclusion. For each F e ^ we write eF = Σie^^, thus obtaining a
net {eF} of idempotents indexed by the directed set JΓ. We abbre-
viate this net as Σ eu a n d refer to it as the net of partial sums
of the et.

LEMMA 3.2. Let R be a regular ring, let X be a nonempty
subset of P{R) such that ker (X) = 0, and assume that R is complete
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with respect to X. Let J be a right ideal of R which is closed in
the X-topology, and let {ej be a nonempty family of orthogonal
idempotents in J.

(a) Σ βi converges to an idempotent eeJ.
(b) If 0 βiR is essential in J, then eR = J. If, in addition,

J is a two-sided ideal, then e is central in R.
(c) J is generated by an idempotent. If J is a two-sided ideal,

then J is generated by a central idempotent.

Proof, (a) Let I be the index set for the ei9 let ^ be the
family of all nonempty finite subsets of I, and set eF = Σ<e* βi for
all F e J^. We claim that the net Σ et = {eF} is Cauchy with respect
to any NeX.

Whenever FQ G in J^, we have eF — eFeG and so N(eF) <; N(eβ) ^ 1.
Thus the net {N(eF)} of real numbers is increasing and bounded
above, hence it must converge. As a result, given any ε > 0 there
must exist Fe,/' such that \N(eG) - N(eH) \ < ε/2 whenever G, H^F
in ^ 7 In particular, when G 2 F we see that eF and eG — eF are
orthogonal idempotents, whence N(eG — eF) = N(eG) — N(eF) < ε/2.
Consequently, N(eG — eH) < ε whenever G, H^F in ^ . Thus the
net Σ eι is indeed Cauchy with respect to N.

By completeness, Σ et converges to some e e R, and of course e
is an idempotent. Since each eF lies in the closed set J, we also
have eeJ.

(b) Given any i e I, we have eFet = et for all F 2 {i} in ^
whence ee< = et. Thus 0^i2 <:βR<LJ. Since 0 6 ^ is essential in J, it
follows that &R is essential in J, from which we infer that eR — J.

If J is two-sided, then eR is a two-sided ideal in a semiprime
ring, whence e must be central.

(c) Choose a maximal independent family {xdR} of principal right
ideals contained in /, so that φxdR is essential in J. Also, choose
a right ideal K such that JφK is essential in RR, whence ( 0 xdR) 0 K
is essential as well. Inasmuch as R is regular and right self-injec-
tive by Theorem 3.1, we see that for each k,

RR = E((® VsR) 0 K) = x*R 0 E(( φ <M2) 0 X)

As a result, there exists an idempotent fkeR such that fkR = xkR
and fkXj = 0 for all j Φ k. Thus we obtain orthogonal idempotents
ft such that @fβR = 0^yi2 is essential in J.

According to (a) and (b), Σ/y converges to an idempotent /
such that fR = J, and if / is two-sided, then / is central.

LEMMA 3.3. Let R be a regular ring, let X be a nonempty



438 K. R. GOODEARL

subset of P(R), and let R denote the X-completion of R. If Pe
P{R) and P < X, then P extends (uniquely) to a continuous PeP(R).
In addition, ker (P) is generated by a central idempotent in R.

Proof. By continuity, P extends uniquely to a continuous map
P: R-+[0, 1]. Exactly as in Proposition 1.6, we infer that PeP(R).
Now ker (P) is a two-sided ideal of R which is topologically closed,
hence Lemma 3.2 says that ker (P) is generated by a central idem-
potent.

LEMMA 3.4. Let R be a regular ring, let X be a nonempty
subset of P(R) such that ker (X) = 0, and assume that R is complete
with respect to X. Let P e P(R) such that P < X.

(a) If x, x19 x2, e R such that xLR rg x2R ̂  and U xnR is
essential in xR, then P(x) = sup P(xn).

(b) If y, y19 y2, e R such that yxR Ξ> yJR >̂ and Π ynϋ =
yR, then P(y) = inf P(yn).

Proof (a) Proceeding as in [6, Lemma 12], we construct or-
thogonal idempotents e19 e2, e R such that eJR 0 © eJR = xnR
for all n. Each en e xR, and xR is closed in the X-topology (because
it is an annihilator). Thus by Lemma 3.2, Σ en converges to an
idempotent e e R such that eR = xR. Since P is continuous, we
thus obtain

P(x) - P(e) =. Σ P(βJ - sup {P(βJ + + P(eJ} = sup P(xn) .

(b) Choose idempotents el9 e2, e R such that (1 — en)R — y%R
for all nf and note that Rex ̂  Re2 ̂  . Since iϋ is left self-injec-
tive by Theorem 3.1, some left ideal of R is an injective hull for
U Ren. Thus there is an idempotent e e R such that U Ren is es-
sential in Re. Observing that Re and U Ren have the same right
annihilator, we see that (1 — e)R = yR. According to (a), 1 — P(y) =
P(e) = supP(β.) - sup{l ~ P(yn)}, whence P(») = inf P(yn).

PROPOSITION 3.5. Let R be a regular ring, let X be a nonempty
subset of P{R) such that ker (X) = 0, and assume that R is com-
plete with respect to X. Let P, Q e P(B) such that P, Q < X. If
ker (Q) ^ ker (P), £ftew P < Q.

Proof. If not, then there exist ε > 0 and xί9 x2f e R such that
for all n9 Q(xn) < Ij2n but P(xn) ̂  ε. Set ?/fcwi? = xkR + + xnR
for all n^k. Since iϋ is right self-injective by Theorem 3.1, there
exist elements z19 z2y e R such that U£=* Vknϋ is essential in zkR
for all fc, and there exists zeR such that Π?=is*<R = ̂  Using
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Lemma 3.4, we obtain

Q(z) ^ Q(2*) = s u p {Q(ykk), Q { y k , k + ι ) , •-}

^ sup {Q(xk) + • + Q(xn)} = Σ Q(α.) < Σ 1/2" = 1/2*"1

n=k n=k

for all & = 1, 2, . Thus Q{z) = 0, whence P(z) = 0. However,
zkR ^ 2/jfcfcl? = OJfcjR for all k and so P(zk) ^ P(#&) ̂  e for all k, hence
Lemma 3.4 says that P(z) = inf P(sΛ) ^ ε, which is a contradiction.
Therefore P < Q.

COROLLARY 3.6. Let R be a regular ring, let X be a nonempty
subset of P(R), and let R denote the X-completion of R. Let Y, W Q
P{R) such that Y, W <€ X, and for each PeYΌW let P be the con-
tinuous extension of P to P(R). Set Ϋ = {P |PeY} and W =
{P|Pe W}. Then the following conditions are equivalent:

(a) Y « W.
(b) Y€W.
(c) ker(TF) ^ k e r ( F ) .

Proof Let <f>:R-+R be the natural map. For each NeX, let
N denote the natural extension of N to P(R), and set X = {N\Ne X}

(a) ==> (b): Given PeY and ε > 0, there exist δ > 0 and Q19 ,
QkeW_such that forall yeR, max {Qt(y)} < δ implies P(y) < ε/2.
Since P, Qlf , Qk < X, there also exist <5' > 0 and # „ , N8 e X
such that for all zeR, max {AζO)} < <5' implies both P(«) < ε/2 and
max {to} < δ/2.

Now consider any a? e i? for which max {Qi(x)} < δ/2. There is
some yeR for which max{Nά(ψy — a?)} < <?', whence P(^y — α?) < ε/2
and max {Qlφy - x)} < 8/2. Then Qly) = Q^φy) ̂  Q£φy - x)_ + Q,(o;) < δ
for all i = 1, •••,&, whence P(y) < ε/2 and so P(x) S P(x — Φv) +
P ( ^ ) = P ( ^ - x) + P(i/) < ε. Thus for all a e β , max{Qt(x)} < δ/2
implies P(as) < ε.

(b) => (a) and (b) ==> (c) are clear.
(c) => (b):. Given any PeY, Lemma 3.3 gives us a central idem-

potent eeE such that (1 - e)R = ker (P). Since ker (W) ^ ker (P),
we thus obtain ΠQ6^ β[ker (Q)] = 0. Lemma 3.3 also shows that
each of the ideals e[ker (Q)] is generated by a central idempotent,
hence Lemma 2.2 says that there exists a countable sequence
{Qi, Q» ' •} £ W such that ΠϊU ^ker (QJ] - 0, i.e., f|:=i ker (QJ ^
ker(P). Set Q = Σ£=ιQJ2*> which lies in the <τ-convex hull_of W,
and note from Theorem 1.2 that Q < W. Inasmuch as each Qn < X
we also see from Theorem 1.2 that Q < X. Observing that ker (Q) ^
ker (P), we see from Proposition 3.5 that P < Q, whence P <C W.
Therefore Ϋ < W.
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Let if be a convex subset of a real vector space, and let F be
a face of K. It is clear from the definitions that a subset of F is
a face of F if and only if it is a face of K. Thus the lattice of
faces of F is just the lattice of those faces of K which are con-
tained in F.

THEOREM 3.7. Let R be a regular ring, let X be a nonempty
subset of P(R), and let R denote the X-completion of R. Let F be
the σ-convex face generated by X in P{R), and let ά^ be the lattice
of σ-convex faces of F. Then B(R) =

Proof. For each NeF, we have N <€ X by Theorem 1.2, and
we let N denote the continuous extension of N to P(R).

Given eeB(R), set θ(e) = {NeF\N(e) = 1}, and note that θ(e) is
a σ-convex subset of F. Suppose that we have 0 < a < 1 and
Nlf N2eF_ with aN, + (1 - a)N2 e θ(e). Then aNx(e) + (1 - a)N2(e) = 1,
whence N^e) = N2(e) = 1 and so Nlf N2 e θ(e). Thus θ{e) is a face of
F, i.e., θ{e)e^. Now suppose that e <Zf in 5(5), i.e., β = e/. For
any Neθ(e), we have 1 = N(e) <£ N(f) and so JV(/) = 1, whence
Neθ(f). Thus θ(e)QΘ(f). Therefore we have a monotone map

Given any G e ^ set G = {N\NeG}. According to Lemma 3.2,
there is some μ(G) e B(R) such that ker (G) = (1 - μ(G))R. lί GQH
in ^ 7 then (1 - μ(iϊ))jβ - ker (S) ^ ker (G) = (1 - MG))Λ and so
1 - μ(H) ^ 1 - j«(G), whence /i(G) ̂  μ(H). Therefore we have a
monotone map μ: J^" —+B(R).

Consider any eeB(R). Since N(e) = 1 for all Neθ(e), we obtain
JV(1 - e) = 0 for all Neθ(e), whence 1 - β 6 ker (5(i)) - (1 - μθ{e))R.
Thus 1 — β ̂  1 — j«ί(β), hence μθ(e) ̂  β. Set / = e — jw5(β), which is
a central idempotent in R, and assume that / Φ 0. Then Q(/) > 0
for some QeX, and we may define P* e P(R) by the rule P*(#) =
Q{fx)IQ(f) Pulling P* back to PeP(R), we see that P£[l/Q(f)\Q,
whence [7, Corollary 3.3] shows that PeF. Clearly P* < Q and
so P* < {iVIiVeX}, hence P* = P._ Thus P(x) = Q(fx)/Q(f) for all
areiu. Since ef — f, we obtain P(β) = 1, whence Peθ(e) and so
1 - jκ0(e) e ker (P). Now / = /(I - /£β(β)) belongs to ker (P), which
is impossible, because P(f) = 1. Therefore / = 0, i.e., μθ(e) = e.

Finally, consider any G e &*. Since 1 — μ(G) e ker (N) for all
NeG, we have N(μ(G)) = 1 for all NeG, whenceG S θμ{G). Given
any Peβμ(G), we have P(μ(G)) = 1, hence ker (G) = (1 - μ(G))5 ^
ker (P). According to Corollary 3.6, P <ζG, and consequently PeG,
by Theorem 1.2. Therefore θμ(G) = G.

Therefore θ and μ are inverse order isomorphisms, hence lattice
isomorphisms.
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LEMMA 3.8. Let R be a regular ring, let X be a nonempty
subset of P{R), let R denote the X-completion of R, and let e e B(R).
Then eR is a simple ring if and only if e is an atom of B(R).

Proof. Obviously simplicity of eR implies atomicity of e. Con-
versely, assume that e is an atom, so that eR is indecomposable
as a ring. Since R is a regular, right and left self-injective ring
by Theorem 3.1, [18, Theorems 4.7, 5.1] show that eR is directly
finite, whence [16, Proposition 2.7] shows that eR is simple.

The following corollaries of Theorem 3.7 extend [6, Theorems
19, 22, 23] to the case of X-completions.

COROLLARY 3.9. Let R be a regular ring, and let X be a non-
empty subset of P(R). Then the following conditions are equivalent:

(a) The X-completion of R is a simple ring.
(b) X consists of a single extreme point of P(R).
(c) The σ-convex face generated by X is minimal among the

nonempty σ-convex faces of P(R).

Proof. Let R denote the X-completion of R, let F denote the
^-convex face generated by X in P(R), and let &~ denote the lattice
of 6r-convex faces of F.

(b) => (c): We have X= {N} for some extreme point NeP(R),
hence F = {N} as well, from which minimality is clear.

(c)=^(a): According to (c), &~ = {0, F}, hence Theorem 3.7
shows that B(R) = {0,1}. By Lemma 3.8, R is simple.

(a) =>(b): Obviously B(R) = {0,1}, hence J^~ = {0, F}, by Theo-
rem 3.7. Choosing NeF, we see that F is the σ-convex face gen-
erated by N. According to Proposition 1.7, R equals the iV-comple-
tion of R, whence [6, Corollary 20] shows that N is an extreme
point of P(R). Then {N}e^, whence F = {N}, and consequently

GOROLLARY 3.10. Let R be a regular ring, let X be a nonempty
subset of P(R), and let F be the σ-convex face generated by X in
P{R). Then the set of simple ring direct factors of the X-completion
of R has the same cardinality as the set of extreme points of F.
This is also the same cardinality as that of the set of extreme
points of the face generated by X.

Proof. Let R denote the X-completion of R. According to
Lemma 3.8, the set of simple ring direct factors of R has the same
cardinality as the set of atoms of B(R). Using Theorem 3.7, we
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can put the atoms of B(R) in one-to-one correspondence with the
minimal (nonempty) σ-convex faces of F. Finally, we see from
Corollary 3.9 that the set of minimal σ-convex faces of F has the
same cardinality as the set of extreme points of F.

If G is the face generated by X, then clearly any extreme point
of G is also an extreme point of F. Inasmuch as F is the σ-convex
hull of G (by Theorem 1.2), we conclude that any extreme point of
F must lie in G. Therefore F and G have the same extreme points.

COROLLARY 3.11. Let R be a regular ring, let X be a nonempty
subset of P{R), and let k be a positive integer. Then the following
conditions are equivalent:

(a) The X-completion of R is a direct product of k simple
rings.

(b) The σ-convex face generated by X can be generated by k
distinct extreme points of P(R).

(c) The face generated by X is the convex hull of k distinct
extreme points of P{R).

(d) The face generated by X has dimension k — 1.

Proof. Let R denote the X-completion of R, let F denote the
σ-convex face generated by X in P{R), and let G denote the face
generated by X in P(R).

(a) => (b): Clearly B{R) is an atomic Boolean algebra with k
atoms, hence by Theorem 3.7 the same is true of the lattice of σ-
convex faces of F. Thus F contains k distinct minimal (nonempty)
σ-convex faces F19 9Fk9 and F is generated by F1U U Fk.
According to Corollary 3.9, each Ft = {Nt} for some extreme point
NteP(R). Then Nl9 "-fNk are distinct extreme points of P(R)f

and F is the σ-convex face generated by {Nί9 •••, Nk}.
(b) => (a): There exist distinct extreme points N19 •••9NkeP(R)

such that F is the σ-convex face generated by {Nί9 •• ,iSΓfc}. Then
the lattice of σ-convex faces of F is atomic with k atoms (namely
{iSΓJ, ••, {Nk}), hence by Theorem 3.7 the same is true of B(R).
Thus R is a direct product of k nonzero indecomposable rings, and
by Lemma 3.8 each of these indecomposable rings is simple.

(b) => (c): There exist distinct extreme points N19 ••*, NkeP(R)
such that F is the σ-convex face generated by {N19 •••, JVA}. Since
each {Nt} is a σ-convex face of P(R),'we see from Lemma 2.1 that
F equals the convex hull of {N19 •••, Nk}. Thus F = (?, so that G
is the convex hull of {Nl9 •••, Nk}.

(c) => (b): There exist distinct extreme points N19 , Nk e P(R)
such that G is the convex hull of {N19 •••, Nk}. Since each {Nt} is
a σ-convex face of P(R), we see from Lemma 2.1 that G is σ-
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convex. Thus F = G, and F is the tr-convex face generated by
{Nίf -- ,Nk}.

(c)=>(d): There exist distinct extreme points Nlf * 9NkeP(R)
such that G is the convex hull of {JVΊ, -—,Nk}. Thus the affine
span of G equals the affine span of {N19 •••, Nk}, whence dim (G) ^
k — 1. If dim (G) < k — 1, then the N{ must be affinely dependent.
After renumbering, we obtain Nt = a2N2 + + akNk for some real
numbers α2, •••,«*. whose sum is 1. Renumbering once again, we
obtain an index t with 2 <| £ < k such that α2, , at ^ 0 and

<z*+i> S «* > 0. Now Nx - a2N2 atNt = at+1Nt+1 + + α̂ JV*,
and we note that 1 — a2 — — at = α t + 1 + + αfc = /5 > 0. Thus

{0LtJβ)NM + + (αW/3)iVfc = /S-Wx - (aJβ)N2 (at/β)Nt ,

so that some positive convex combination of Nt+ί, , Nk equals a
convex combination of JVΊ, •••, Nt.

Let H be the convex hull of {N19 •••, Nt}, which is a face of
P(R) by Lemma 2.1. Since a positive convex combination of Nt+1,
• , Nk lies in this face, we obtain Nt+ι, , Nk e i ί , whence G — H.
Using the implication (c) => (a), we find that R is a direct product
of t simple rings as well as a direct product of k simple rings.
Since t < k, this is impossible. Therefore dim (G) = k ~ 1.

(d) ==> (c): Let A denote the affine span of G in RB. Since
dim (A) = k — 1 < oo, A is closed in RR, hence A Π P(i?) is closed in
P(R). Given any PeAf] P(R), we have P = α̂ JVj. + + asiVs for
some JVi, , NseG and some real numbers «„ , as whose sum is
1. After renumbering, we obtain an index t < s such that alf •••,
oit ^ 0 and at+1, , as > 0. Proceeding as above, we obtain a convex
combination β0P + / S ^ + + βtNt with /30 > 0 which equals a
convex combination of JVί+1, , JVβ. Thus β0P + / S ^ + + ^ 8 ^
lies in the face G, whence P e G. Therefore A n P(i2) = G, so that
G is closed in P(R).

Now G is a compact convex subset of JB^, hence the Krein-
Milman Theorem [14, p. 131] says that G is the closure of the con-
vex hull of its extreme points. Suppose G contains k + 1 distinct
extreme points Plf -Pk+1. If H is the convex hull of these extreme
points, then H is a face of P{R) by Lemma 2.1, and the implication
(c) => (d) says that dim (H) = k. Since Hς^G, this is impossible.
Thus G must have only h^k distinct extreme points P19 ••-,Ph.
Since the convex hull of the finite set {P19 •••, Ph} is closed, G must
be the convex hull of {P19 •• ,P A }. Using the implication (c) => (d)
again, we find that dim (G) = h — 1, whence h — k.

COROLLARY 3.12. Let R he a regular ring, let X be a nonempty
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subset of P(R), and let F be the o-convex face generated by X in
P{R). Then the X-completion of R is a direct product of simple rings
if and only if F can be generated by some collection of extreme
points of P(R).

Proof. Let R denote the X-completion of R, and let ά^ denote
the lattice of σ-convex faces of F.

If R is a direct product of simple rings, then B(R) must be
atomic, whence Theorem 3.7 shows that ^ is atomic. Thus there
exist minimal (nonempty) σ-convex faces FtQF such that F = VFi
in ^ 7 According to Corollary 3.9, each Ft consists of a single ex-
treme point Nt9 hence F is the σ-convex face generated by the col-
lection {Ni} of extreme points.

Conversely, assume that F is generated by a collection of extreme
points of P(JR). Then F is the supremum of a collection of atoms
in J^, whence J^~ is atomic. By Theorem 3.7, B(R) is atomic, hence
there exist orthogonal atoms e3- e B(R) such that V eo — 1. Each
e3R is a simple ring by Lemma 3.8. Since Λ (1 — e3) = 0 generates
the ideal Π (1 — e3)Rf we see that the ideal 0 e3R has zero annihi-
lator in R. Consequently, we obtain an injective ring map φ: R—+
Π e3R. As in [5, Theorem 18], we conclude that φ is an isomor-
phism, whence R is a direct product of simple rings.

Let R be the simple regular ring of [6, Example C], According
to [6, Lemma 31], P(R) has uncountably many distinct extreme
points. If F is the σ-convex face generated by the extreme points
of JP(jR), then Corollaries 3.12 and 3.10 show that the F-completion
of R is a direct product of uncountably many simple rings.

4* Decomposition of completions*

PROPOSITION 4.1. Let R be a regular ring, let Xlf X2 be non-
empty subsets of P(R) such that Xλ < X2, and let Rt denote the Xc

completion of R.
(a) The natural map R/ker (X2) —> R/ker (Xx) extends uniquely

to a continuous map φ: R2 —* ΐtx. Moreover, φ is a ring map.
(b) For each NeX19 let N denote the natural extension of N

to P(Ri) and let N* denote the continuous extension of N to P{R2).
Then iV* - NΦ.

(c) If X? = {ΛΓ* \Ne XJ, then ker φ - ker (X ).

Proof, (a) The existence and uniqueness of φ are standard
properties of completions. Since the ring operations in each Rt are
continuous, φ is a ring map.
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(b) is exactly analogous to [7, Lemma 2.4],
(c) If X, = {NINeXJ, then ker(XJ = 0 because Rx is the X-

completion of R. Thus it follows from (b) that ker φ = f\NeXlker (Nψ) =
ker (X*).

DEFINITION. In the situation of Proposition 4.1, we refer to ψ
as the natural map from R2 to Rλ.

THEOREM 4.2. Let R be a regular ring, let Xlf X2 be nonempty
subsets of P(R)f and let Rt denote the X^completion of R. If X1<X2,
then the natural map φ\ R2—*Rι is surjective.

Proof. For all N e Xif let N denote the natural extension of N
to P(Ri). For all NeXlf let N* denote the continuous extension
of N to P{R2), and note from Proposition 4.1 that iV* = JV̂ . Set
X, = {NINeX,} and X* = {JV* \Ne XJ, and note from Proposition
4.1 that kerφ = ker(Xf).

According to Lemma 3.2, there is a central idempotent e eR2

such that (1 — e)R2 — ker (X?), and we note that e Φ 0. Set X2 =
{Ne X2\N(e) Φ 0}, which is nonempty because ker (X2) = 0. For each
NeX't, we may define N'eP(RJ_hγ the rule N'(x) = N(ex)/N(e).
Since JV' ^ [l/iV(e)]iV, we have N' < iV, hence ΛΓ < X2. Setting
X2 = {N'\NeX2}, we thusjiave X[ < X2.

Obviously 1 — eeker(XJ). Given any a?eS2 for which ex Φ 0,
we have JV(βa?) ^ 0 for some NeX2. For this iV, N(e) Φ 0 as well,
whence NeX2 and iV'(α ) ^ 0. Thus ker (X'2) = (1 - e)^2 - ker (Xf),
hence Corollary 3.6 shows that X2 < Xf.

Now let ψi denote the natural map R —+ Rίf and note that
φψ2 = ψl# Given any x e Rlf there exists a net {α j} £ i? such that
φψ2{x3) — fι(Xj) —> x in the XΓtopology. Since (1 — e)R2 — ker (X?) =
ker^, we see that φ{eψ2(xό))-^x as well. Now

N*(ef2(Xj) - eψ2{xk)) = N(φ(eψ2(Xj)) - £(βf2(α f t)))

for all i, A; and all NeXίf hence the net {e^2(^i)}£^2 must be Cauchy
with respect to Xf. Inasmuch as X2 < Xf, it follows that {β 2̂( î)}
is also Cauchy with respect to X2. Since

N(ef2(xj) - ef2(xk)) - N{e)N\ef,{xό) - βψ 2(<O)

for all j , k and all NeX2, {eψ2(xj)} is Cauchy with respect to N for
all NeX2. In addition, we have N(ef2(xj) — eψ2(xk)) ^ N(e) = 0 for
all i, & and all NeX2 — X2, hence {e^C î)} is Cauchy with respect
to N in this case as well. Therefore the net {eψ2(xd)} £ R2 is Cauchy
with respect to X2.
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By completeness, there exists yeR2 such that eψ2(x5)—>y in the
X2-topology. Since φ is continuous, Φ(eψ2(xj)) —> φ(y) in the Xr

topology, and consequently φ{y) = x.
Therefore Φ is surjective.

DEFINITION. Let R be a regular ring, let {XJ be a nonempty
family of nonempty subsets of P(R), and for each i let Rι denote
the XΓcompletion of R. If R denotes the (U XJ-completion of R,
then we have natural maps φi:R—*Ri for each i. Together, these
maps induce a map φ: R—>J[ Rif which we of course call the natural
map.

COROLLARY 4.3. Let R be a regular ring, let {XJ be a nonempty
family of nonempty subsets of P(R), and for each i let J?* denote
the Xccompletion of R. If R denotes the (U X^completion of R,
then the natural map φ: R —> Π Rί yields an isomorphism of R onto
a subdirect product of the Rt.

Proof. For each N e U Xif let N denote the natural extension
of N to P(R). Set Xt = {N\NeXt} for each i, and note from Prop-
osition 4.1 that ker (Xt) equals the kernel of the natural map φt:
R -+ Rt. As a result, ker φ = n ker φi = D ker (JQ = ker (U Xt) = 0,
hence φ is injective. Inasmuch as each φi is surjective by Theorem
4.2, φ(R) is a subdirect product of the Rt.

THEOREM 4.4. Let R be a regular ring, let F be a nonempty
o-convex face of P{R), and let R denote the F-completion of R. Let
J^~ denote the lattice of σ-convex faces of F, and for each nonempty
G 6 J^ let RG denote the G-completion of R. Then there is a lattice
isomorphism μ: J^~ —> B(R) such that μ(G)R = RG for all nonempty

Proof. Set G = {N\NeG) for all G e _ ^ Using Theorem 3.7,
we obtain a lattice isomorphism μ: ̂ ~—+B(R) such that (1 — μ(G))R —
ker (G) for all G e ̂  Given a nonempty G e ̂ 7 the natural jnap
φG: R—+ϊiG is surjective by Theorem 4.2. Since ker (φG) — ker (G) =
(1 — μ{G))R by Proposition 4.1, we conclude that φG restricts to an
isomorphism of μ{G)R onto RG.

Taking account of Proposition 1.7, Theorem 4.4 shows that when-
ever X Q Y are nonempty subsets of P(R), then the Y-completion
of R contains a copy of the X-completion of R. In particular, the
P(J?)-completion of R is the "largest" completion, since it contains
copies of all the X-completions of R.
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PROPOSITION 4.5. Let R be a regular ring, let {Xk} be a non-
empty family of nonempty subsets of P(R), amd for each k let Rk

denote the Xk-completion of R. Let R denote the (U Xk) -completion
of R, for each N e {J Xk let N denote the natural extension of N to
P(R), and for each k set Xk = {N\Ne Xk). Then the natural map
φ: R—>ΐ[Rk is an isomorphism if and only if ker (Xt) + ker (X/) = R
for all i Φ j .

Proof. Note that the natural map φ^R—^Ri is the composition
of φ with the projection Π Rk —>Ri9 If φ is an isomorphism, then
clearly ker (φt) + ker (φό) = R for all i Φ j , whence Proposition 4.1
shows that ker (Xt) + ker (Xs) = R for all i φ j .

Conversely, assume that ker (JQ + ker (X/) = R for all i Φ j .
Using Lemma 3.2, we obtain central idempotents ekeR such that
(1 - ek)R = ker (Xk). Inasmuch as (1 - eτ)R + (1 - eά)R = R for all
i φ j9 we see that the ek are pairwise orthogonal. Since R is the
(U Xfc)-completion of R, we have Π ker (Xk) = 0, so that Π (1 — ek)R = 0.
Thus the annihilator of the ideal Q)ekR is zero. Proceeding as in
[5, Theorem 18], we see that the natural map ψ: R —> Π ekR is an
isomorphism.

For each k, ker (φk) = ker (Xk) = (1 — ek)R by Proposition 4.1,
hence φk induces a monomorphism θk: ekR~>R/ker (Xk) —>Rk. Ac-
cording to Theorem 4.2, Φk is surjective, whence θh is an isomorphism.
As a result, these θk induce an isomorphism θ: Π ekR —> Π Rk Ob-
serving that φ = θψ, we conclude that φ is an isomorphism.

THEOREM 4.6. Let R be a regular ring, let {Xk} be a nonempty
family of nonempty subsets of P{R), and let R denote the ([j Xk)-
completion of R. For each k, let Rk denote the Xk-completion of R,
and let Fk be the face generated by Xk in P{R). Then the natural
map φ: R—*ΐ[Rk is an isomorphism if and only if the faces Fk

are pairwise disjoint.

Proof. For each Ne U Xk, let N denote the natural extension
of N to P(R). For each k, set Xk = {N\NeXk}.

First assume that there exists PeFtΠ Fy for some i Φ j . By
[7, Corollary 3.3], there exist Qt in the couvex hull of Xt and Qj
in the convex hull of Fs such that P ^ aQif aQ5 for some a > 0.
Now P < Qi < Xi < U Xk9 hence P has a continuous extension P e
P(R). By continuity, P ^ aQif aQJ9 whence

ker (Xt) + ker (Xd) ^ ker (Qt) + ker (Qd) ^ ker ( P ) < R .

Then Proposition 4.5 says that φ is not an isomorphism.
Conversely, if φ is not an isomorphism, then by Proposition 4.5
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we must have ker (Xt) + ker (Xs) Φ R for some i Φ j . By Lemma
3.2, ker (Xt) and ker (Xj) are each generated by a central idempotent,
hence there is a central idempotent e Φ 0 in R such that (1 — e)R —
ker (Xi) + ker (X, ) Then N(e) Φ 0 for some NeU-X"*, hence we
may define Q e P{R) by the rule Q(x) = N(ex)/N(e). Pulling Q back
to QeP(J2), we see that Q ^ [l/^(β)]iSΓ, whence Q < N< U Xfc.
Inasmuch as ker (JQ + ker (X, ) = (1 - e)R ^ ker (Q), Corollary 3.6
says that Q < Xi9 X, . According to Theorem 1.2, Q lies in the σ-
convex hulls of F{ and Fά. Therefore Ft and F, are not disjoint,
by Lemma 2.5.

COROLLARY 4.7. Let R be a regular ring, and let {Fk} be a
nonempty family of nonempty faces of P(R). Let R denote the
(U F^-completion of R, and for each k let Rk denote the Fk-comple-
tion of R. If the Fk are pairwise disjoint, then R = Π Rk

Theorem 4.6 and Corollary 4.7 are generalizations of [7, Theorem
4.3 and Corollary 4.4], for if NeP(R) is a positive σ-convex com-
bination of some Pk e P(R)9 then the σ-convex face generated by N
coincides with the ί7-convex face generated by the Pk.

5* Extending pseudo-rank functions to completions* [7, Theo-
rem 7.4] gives a description of the closure of the face generated by
a subset X £ P(R). This theorem is a bit awkward, because it is
not constructed in terms of the X-completion of R. A more natural
description of closures of faces is given by the following theorem.

THEOREM 5.1. Let R be a regular ring, let X be a nonempty
subset of P(R), and let R denote the X-completion of R. Let φ:
R—*Rbe the natural map, and let PeP(R). Then P lies in the
closure of the face generated by X in P{R) if and only if P — P'φ
for some Pf e P(R).

Proof. Since R is a regular, right and left self-injective ring
by Theorem 3.1, [17, Theorems 4.7, 5.1] show that R is directly finite.

Assume first that P = P'φ for some P' e P(R). lί X = {N\ N e X}
(where N denotes the natural extension of N to P(R)), then ker (X) =
0 ^ ker (P'), hence [7, Theorem 7.1] says that P' lies in the closure
of the face generated by X in P(R). As a result, we infer that
P = P'φ lies in the closure of the face generated by Xφ = X.

Conversely, let F denote the face generated by X in P(R), and
assume that P lies in the closure of F. By Theorem 1.2, N < X
for each NeF, hence each such N has a continuous extension JV" 6
P{R) such that Nφ = N. If ^*: P(R) -> P(R) is the map induced by
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Φ, we thus have F Q ψ*(P(R)). Now φ*(P(R)) is a continuous image
of a compact space and so is compact, hence closed in P{R). There-
fore φ*(P(R)) contains the closure of F, whence Peφ*(P(R)), i.e.,
P = P'φ for some P' e P{R).

6* Completeness versus self-injectivity* Theorem 3.1 shows
that any regular ring R which is complete with respect to a non-
empty set X of pseudo-rank functions is right and left self-injective.
Since self-injectivity may be viewed as an algebraic completeness
property, it is natural to ask about the converse implication: If R
is a regular, right and left self-injective ring, must R be complete
with respect to some family of pseudo-rank functions? For inde-
composable rings, the next theorem shows that the answer is yes.
In general, we show that the answer depends on whether or not
B(R) is complete, and can be negative.

THEOREM 6.1. Let R be a regular, right and left self-injective
ring which is indecomposable (as a ring). Then there exists a unique
rank function N on R, and R is complete in the N-metric.

Proof. By [18, Theorems 4.7, 5.1], R is directly finite, whence
[16, Proposition 2.7] shows that R is a simple ring. In addition,
[5, Lemma 5', p. 832] shows that for any x,yeR, either xR < yR
or yR < xR, i.e., R satisfies the "comparability axiom" of [9, p. 812].
As a result, [9, Corollary 3.15] shows that there exists a unique
rank function N on R.

According to [17, Corollary to Theorem 1], the lattice L(R) of
principal right ideals of R is continuous, i.e., L(R) is a continuous
geometry. Since R is indecomposable, L(R) is irreducible [19, Theo-
rem 2.9, p. 76]. As a result, [19, Theorem 17.4, p. 230] says that
R is complete in the iV-metric.

In general, a regular ring may be complete with respect to some
families of pseudo-rank functions but not others. As the following
example shows, there exists a regular, right and left self-injective
ring R with rank functions N, N' such that R is complete in the
iV-metric but not in the iV'-metric.

Choose fields F19 F2, and set R = H Fn, which is a regular
self-injective ring. If en denotes the unit of Fn, then R/(l — en)R=Fn,
hence there exists a unique pseudo-rank function Pn e P{R) with
ker (PJ = (1 - en)R. Setting N = ΣϊU PJ2n, we obtain a rank func-
tion N on R, and it is clear that R is complete in the ΛΓ-metric.
Now choose a maximal ideal M of R which contains 0 Fn. There
is a unique pseudo-rank function P e P(R) with ker (P) = M, and
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we set N' = (N + P)/2 which is a rank function on R. If R is
complete in the i\Γ'-metric, then we see from Lemma 3.2 then Σ e f t ^ l
in the iSΓ'-metric. However, Σ~=i -W'(O = 1/2, hence this is impossi-
ble. Therefore R is not complete in the iSP-metric.

We now proceed to show that a regular ring R is complete with
respect to a family X of pseudo-rank functions provided only that
B{R) is complete with respect to X. As with Theorem 3.1, we must
first prove the case of a single pseudo-rank function. In this case,
the proof of [19, Theorem 17.4, p. 230] may be applied, once we
have shown that the pseudo-rank function involved satisfies a certain
countable additivity property, as follows.

DEFINITION. Let R be a regular ring, let NeP(R), and let J
be a right ideal of R. We shall say that N is countably additive
on J provided that whenever xjt, x2R, is a countable sequence
of independent principal right ideals contained in J and 0 xnR is
essential in xR for some xe J, then N(x) = Σ NζίO If this holds
for J = R, then we simply say that N is countably additive.

LEMMA 6.2. Let R be a regular ring, let NeP(R), let J be a
right ideal of R, and assume that N is countably additive on J. If
x, xιt x2, 6 J and Σ xnR is essential in xR, then N(x) ̂  Σ N(xn).

Proof. We may choose independent principal right ideals
V,R, 2/2#, ^ J such that yjt 0 0 ykR = xjt + + xkR for
all k. Since N is countably additive on J, we obtain N(x) = Σ A%J.
In addition, we have yxR 0 0 ykR < x,R 0 0 xkR for each k
and so N(yt) + + N(yk) ^ Nix,) + + iVfe), by [7, Lemma 6.6].
Thus N(x) = Σ # ( l θ ^ Σ ΛΓ(<O.

LEMMA 6.3. Le£ R be a regular, right and left self-injective
ring with a rank function N. Let e be an idempotent in R such
that N is countably additive on (1 — e)R. Then (1 — e)Re is com-
plete in the N-metric.

Proof. Let L(R) denote the lattice of principal right ideals of
R, which is continuous by [17, Corollary to Theorem 1].

Let {xn} be a Cauchy sequence in (1 — e)Re. By passing to a
subsequence, we may assume that N(xt — xs) < Il2k+ι whenever
i, j ^ k. Now define anR, bkR, cR e L(R) as follows: anR = (β + xn)R,
bkR = E(Σΐ=k anR)f cR = Γl?=i KR' Note that akR ^ bkR for all &
and that bjt ^ 62i2 ^ . Since % 6 (1 — e)R and β + xk 6 αfci2, we
see that akR + (1 - β)Λ = i2, whence 6fcJR + (1 - e)R = i? for all fc.
Inasmuch as L(JB) is lower continuous, we thus obtain



COMPLETIONS OF REGULAR RINGS II 451

cR + (X- e)R = ( Π bkR) + (1 - e)R = f\ [bkR + (1 - e)R] = R .
k=i k=i

As a result, there exists an idempotent feR such that fR <S ci? and
(1 - f)R = (i - β)2j.

Since (1 — /)i? = (1 — e)R, we have i?/ = Re, hence / = fe and
e = e/. As a result, we see that the element x •= f — e lies in
(1 — e)Re. Note also that e + x = fe cR. We shall show that xn —> x.

Whenever n ^ k,

anR = (β + xJR = [e + a?A + Σ (»i ~ »y-i)l#
i=/s-f-i

^ (β + a?»)Λ + Σ (% - xi-dR ^ a,kR + Σ (*i - *ί-i) B

Defining dkR — ί?(ΣΓ=*+i (^i ~~ XJ-I)R) ^ (X — e)R> w e ^ u s have αwi2 ^
αfci2 + dkR for all n^k. As a result, Σ^U α%i2 ̂  akR + d^i?, whence
δfci? ^ ^ i? + cίfci?. We also have bkR = akR 0 ukR for some %fc,
whence akR 0 %i2 ^ akR + ώfci2 < αAi2 0 dkR. According to [18,
Theorems 4.7, 5.1], R is directly finite, hence [8, Corollary 3.9] im-
plies that ukR < dkR. Since c^ e (1 — e)R and all x, — xά_x e (1 — β)J?,
we may use Lemma 6.2 to obtain

for all k.
Now fecR^ bkR=akR + %i2 = (e + xk)R + %iϋ, hence / = (β + xk)r +

^fcs for some r, s e R. Since »fc 6 (1 - e)iZe, e + xk is idempotent, so
that (e + xk)f = (e + %)r + (e + xk)uks. We also have e + α;fc 6 i?e =
Rf, hence β + xk = (e + α;fc)/ = (β + a?*)r + (e + α J ^ s = / — ufcs +
(e + %) f̂cs = / + (β + £fc — l)uk8. Consequently,

ook — x = (e -\- xk) — (e + x) = e + xk — f = (e + xk — l)uks ,

and so N(xk - x) ^ iV(^) < l/2fe.
Therefore xn —• α;.

THEOREM 6.4. Lβί R be a regular, right and left self-injective
ring with a rank function N. Then N is countably additive if
and only if R is complete in the N-metric.

Proof. First assume that R is complete, and let xtR, x2R,
be independent principal right ideals such that 0 xJR is essential in
some principal right ideal xR. For each k, choose ykzR such that
ykR = xtR 0 0 xkR. Then yjt <: y2R <: and U ykR is essential
in xR, whence Lemma 3.4 says that N(x) — sup N(yk). Since N(yk) =
Nix,) + . . . + N(xk) for all k, we obtain N(x) = Σ,N(xn). Thus N
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is countably additive.
Conversely, assume that N is countably additive, and let T

denote the ring of all 2 x 2 matrices over R. By [12, Theorem 1],

N induces a rank function P on T such that P ( Λ 2) = N(χ) f o r a 1 1

( x 0\ /0 0\ ^ .

Q Q)T and u Γ are isomorphic principal right

ideals of T such that ( j o ) Γ φ (o S ) Γ = (o S) T ' f r o m w h i c h w e

see that p ( j jj) = tf(»)/2. Also, (J j ) r s ( j g)τ, h e n c e P ( θ o) =

N(x)/2 as well.

The rule xR\-+ ί? ^jΓ defines an isomorphism from the lattice of

principal right ideals of R onto the lattice of those principal right

ideals of T which are contained in Q jjjϊ\ Inasmuch as P(Q Q) =

N(x)/2 for all xeR, we infer from the countable additivity of N

that P must be countably additive on ( i JίjΓ. As a result, Lemma
/0 R\ ^ '

6.3 shows that (Q Q j is complete in the P-metric, from which we
conclude that R is complete in the iV-metric.

The result of Theorem 6.4 is used in the proof of [10, Corollaire
2.8], although the reference quoted there only covers the case in
which the ring is indecomposable.

DEFINITION. Let R be a regular ring, and let X be a nonempty
subset of P{R) such that ker (X) = 0. We shall say that B(R) is
orthogonally complete with respect to X provided that for any
orthogonal family {ei}QB(R)f^ei converges to some eeB(R). Note
that when Xe*—>β, we have e = Vβ*. Thus if B(R) is orthogonally
complete with respect to X, then B{R) is also complete as a lattice.

For the case of a rank function N, we proceed to show that if
R is self-injective and B(JR) is orthogonally complete with respect
to N, then R is complete in the iSΓ-metric. In order to accomplish
this, we must consider the Type I and Type II cases separately.
(See [8, 15] for the definitions.)

PROPOSITION 6.5. Let R be a regular, right and left self-injec-
tive ring of Type I with a rank function N. If B(R) is orthogo-
nally complete with respect to N, then R is complete in the N-metric.

Proof. Case I. R is abelian.
Let xjt, x2R, be an independent family of principal right

ideals of R, and let 0 xnR be essential in some principal right ideal
xR. Choose idempotents e, eίf e2, 6 R such that eR = xR and
enR = xnR for all n. Since R is abelian, we have e, elf β2, 6 B(R)f
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the en are pairwise orthogonal, and e ~ Ven. Inasmuch as B(R) is
orthogonally complete with respect to N, Σ β » ~ * \/en = e in the
ΛΓ-metric, whence Σ N(xn) = Σ N(eJ = JV(e) = N(x). Therefore N is
countably additive, hence Theorem 6.4 says that R is complete in
the JV-metric.

Case II. R is Type Iw for some n.
There exist w x n matrix units eiό e iϋ such that the ring T =

βniZβn is abelian. We may define a rank function P on ϊ7 by the
rule P(x) - N(x)/N(en). Inasmuch as the rule e H* ene defines an
isomorphism of B(R) onto B{T)9 we infer that B{T) must be or-
thogonally complete with respect to P. As a result, Case I shows
that T is complete in the P-metric, hence also in the iV-metric. For
any i, j , there is an additive isomorphism of T onto euRedj given by
the rule x ι-> etίxe13 , and we observe that JV(a?) = Nie^xe^) for all a elΓ.
Thus each e^Rβjj must be complete in the JV-metric, whence R is
complete in the iSΓ-metric.

Case III. General case.
According to [17, Theorems 4.7, 5.1], iϋ is directly finite, hence

Type If. Consequently, R is isomorphic to a direct product of rings
of Type In [8, Corollary 6.5], [16, Corollaire 3.5]. Thus there exist
orthogonal central idempotents elf e2, 6 B{R) such that V en = 1,
each enR is Type Jw, and R = Π ^%^

Whenever βΛ ^ 0, we may define a rank function P% on enR by
the rule Pn(x) = N(x)/N(en). Since J5(β%i2) = B(R) n e.i2, B(eΛJB) is
orthogonally complete with respect to Pn9 whence Case II shows that
enR is complete in the P^-metric and thus in the iV-metric.

Given any Cauchy sequence {xn} £ R, it follows that for each
n, the sequence {enx19 enx2, } converges to some yn e enR. Inasmuch
as R = Π e

nR, we thus have ye R such that eny = yn for all ny i.e.,
enxk-^eny for each w. Also, because B(i?) is orthogonally complete,
we have Σ en~+ Ve% = 1, whence Σ^ enxk—>xk for all k and Σ^ eny—>y.
Thus 9h—*y-

LEMMA 6.6. Let R be a regular, right self-infective ring, and
let X be a nonempty subset of P(R) such that ker (X) = 0. Let
x, y e R and g 6 B(R).

(a) If N(ex) ̂  N(ey) for all e <* g in B(R) and all NeX, then
gxR < gyR.

(b) If N(ex) = N(ey) for all e ^ g in B(R) and all NeX, then
gxR ^ gyR.

Proof, (a) By [16, Theoreme 1.1] or [8, Theorem 3.3], there
exists e e B(R) such that egyR < egxR and (1 — e)gxR < (1 — e)gyR.
Then egxR = aR®bR with aR = egyR, and N(b) = N(egx) - N{egy) ^ 0
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for all N e X. Since ker (X) = 0, we obtain b = 0, hence egxR ~
egyR. Thus gxR < gyR.

(b) is proved in the same manner.

LEMMA 6.7. Let R be a regular ring, let X be a nonempty
subset of P{R) such that ker (X) = 0, and assume that B(R) is or-
thogonally complete with respect to X. Let φ: B(R) -+ R be a con-
tinuous map such that φ(e + f) = φ(e) + φ(f) for all orthogonal
e, fe B(R). Then there exists geB(R) such that φ(e) ^ 0 for all
e ^ 1 — g in B(R) and φ{e) < 0 for all nonzero e <> g in B(R).

Proof. Set A = {feB(R)\φ(e) ^ 0 for all e <, f in B(R)}, and
choose a maximal orthogonal family {/&J £ A. By orthogonal com-
pleteness, Σ /̂  converges to some h e B{R). Given e <>h m B(R),
we note that {βfcj is an orthogonal family in B(R) such that Σ β^i ~~* e

For any finite set F of indices, we have ^(Stej-βAJ = ΣieF0(βfti) = 0
since each /̂  6 A. Thus 0(e) ^ 0, by continuity.

Setting g = 1 — heB(R), we now have φ(e) ^ 0 for all e ̂  1 — g
in 5(5).

Now consider any nonzero e ̂  g in B(R). Since e is orthogonal
to each hi9 it follows from the maximality of the family {h,} that e
does not lie above any nonzero member of A. As a result, each
nonzero / ^ e in JB(i2) must lie above some member of the set B =

< 0}. Consequently, there exists an orthogonal family
B such that V Λ = e, and by orthogonal completeness we

obtain Σ / i ~*β Choose a particular index &. Given any finite set
F of indices such that JceF, we have Φ(ΣjjeFfj) = Σie
since each /,• 6 JS. By continuity, ^(e) ^ ^(/fc) < 0.

PROPOSITION 6.8. Let R be a regular, right self-infective ring
of Type II with a rank function N. If B{R) is orthogonally com-
plete with respect to N, then N is countably additive.

Proof. Let x^R, x2Rf be independent principal right ideals
of R, and let (&xnR be essential in some principal right ideal xR.
For k — 1, 2, , we have xjt 0 0 xkR ̂  xR, whence N(Xj) +
. . . + N(xk) £ N(x). Thus Σ N(xn) ^ N(x). Suppose that Σ NM <
N(x), and choose a positive integer t such that Σ N(xn) < N(x) — (1/έ).

The rule φ(e) = Σ N(exn) — N(ex) + N(e)/t defines a continuous
map φ: B(R) —• R such that φ{e + /) = 0(e) + ̂ (/) for all orthogonal
idempotents e,feB{R). Applying Lemma 6.7, we obtain geB(R)
s u c h t h a t Σ N ( e x n ) ^ N(ex) - N(e)/t f o r a l l e ^ l - g i n B{R) a n d
Σ N(exn) < N(ex) — N(e)/t for all nonzero e ^ gf in 2?(2ί). Inasmuch
as Σ N(xn) < N(x) - {Ijt), we see that g Φ 0.
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Since R is Type II, it contains no nonzero abelian idempotents,
hence [8, Proposition 5.8] says that there is some yeR for which
t(yR) = R. Note that t(gyR) = gR Φ 0, whence gy Φ 0. Note also
that N(ey) = N(e)/t for all e e B(R). For all nonzero e <. g in B(R),

N(ey) = N(e)/t ^ N(e)/t + Σ #(*» J < #(«*) ,

hence N(ey) ^ N{ex) for all β <i </ in B(R). According to Lemma 6.6,
gyR < #a,\R, hence gyR = zR for some nonzero z e (/aλR. Write #a;i2 =
zi? 0 wi2 for some w, and note that

Σ #(β<O < ΛΓ(ea?) - N(e)/t = N(ex) - N(ez) = N(ew)

for all nonzero e ^ g in B(R).
In particular, N{ex^) :g N(ew) for all e ^ fif in B(R), hence Lemma

6.6 shows that ^ ϋ ? = wλR for some ^i e wR. Next,
utR for some ^ , and

N(ex2) ̂  Σ ^(β^ ) ~ N(exύ ^ iSΓ(ew) - N(ewx) =

for all e ^ ^ in 5(i2), hence Lemma 6.6 shows that gxJR = ^2i2 for
some w2 e ^xi2. Continuing in this manner, we obtain an independent
sequence wxR> w2R, ^ wR such that gxnR ~ wnR for all n. Thus
0 gxnR < wJ?. Inasmuch as 0 gxnR is essential in gxR, it follows
that gxR < wi2. But then N(z) + JV(w) = iV(^) ^ iV(^) and so iV(«) = 0,
which contradicts the fact that z Φ 0.

Therefore Σ N(%») = ^W* so that ΛΓ is countably additive.

THEOREM 6.9. Let R be a regular, right and left self-injective
ring with a rank function N. Then R is complete in the N-metric
if and only if B{R) is orthogonally complete with respect to N.

Proof. Obviously completeness of R implies orthogonal com-
pleteness of B(R). Conversely, assume that B(R) is orthogonally
complete.

According to [18, Theorems 4.7, 5.1], R is directly finite, hence
[8, Corollary 7.6] shows that there is some geB(R) such that gR
is Type If and (1 — g)R is Type Πf. If g Φ 0, then we may define
a rank function P on gR by the rule P(x) = N(x)/N(g). Observing
that B(gR) is orthogonally complete with respect to P, we see from
Proposition 6.5 that gR is complete in the P-metric, hence also in
the iV-metric. If 1 — g Φ 0, then we may define a rank function Q
on (1 — g)R by the rule Q(x) — N(x)/N(l — g). According to Proposi-
tion 6.8, Q is countably additive, whence Theorem 6.4 shows that
(1 — g)R is complete in the Q-metric, and thus also in the iV-metric.

Therefore gR and (1 — g)R are both complete in the iSΓ-metric,
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whence R is complete in the iV-metric.

THEOREM 6.10. Let R be a regular, right and left self-injective
ring, and let X be a nonempty subset of P(R) such that ker(X) = 0.
Then the following conditions are equivalent:

(a) R is complete with respect to X.
(b) B(R) is orthogonally complete with respect to X.
(c) Every ideal of B(R) which is closed in the X-topology is

principal.

Proof, (a) => (c): If I is an ideal of B{R) which is closed in the
X-topology, then we check that IR is a two-sided ideal of R which
is closed in the X-topology. According to Lemma 3.2, IR = eR for
some eeB(R), whence / = eB{R).

(c)=»(b): Let {et\iel} be a family of pairwise orthogonal
idempotents in B{R). Let JF be the family of nonempty finite
subsets of I, and set eF = ̂ jieF et for all F e JFI Set J — {e e B(R)\e <Ξ eF

for some F e ^ } , and note that J is an ideal of B{R). If K is the
X-closure of J, then K is an ideal of B(R), and (c) says that K is
generated by some feB(R). In particular, note that eF <; / for all
FejT.

Given Ne X and ε > 0, there is some eeJ such t h a t N(e — f) < ε,

and e ^ eF for some F e ̂ . Whenever G 2 F in ^ , we have e <£

βF ̂ eG^f, hence / - % = (f-eG)(f-e) and so JV(/ - eσ) ̂  N(f -e)<ε.
Thus Σ ^ ' ^ / ? s o that B(R) is orthogonally complete.

(b) => (a): According to Corollary 2.7, there exists a facially in-
dependent set Y = {i^} £ P(i2) such that Y and X generate the same
(7-convex face in P(R). In view of Corollary 1.3 and Proposition 1.7,
we see that B(R) is orthogonally complete with respect to Y, and
that it suffices to prove that R is complete with respect to Y.
Therefore we may assume, without loss of generality, that X — Y.
For each k, let Fk be the face generated by Nk in P(R).

For each k, ker (Nk) is a two-sided ideal of R which is closed in
the X-topology. Using (b), we see (as in Lemma 3.2) that kev(Nk) =
(1 — ek)R for some ekeB(R). Now JV* restricts to a rank function
on ekR, and since B(R) is orthogonally complete with respect to X
we see that B{ekR) is orthogonally complete with respect to Nk. As
a result, Theorem 6.9 shows that ekR is complete in the iV^-metric.
If φk denotes the natural map from R into its iV^-completion Rk,
we thus have shown that φk is surjective. Recall that ker (φk) =

Suppose that e ^ Φ 0 for some i Φ k. Then we may define pseudo-
rank functions N'if Nk e P(R) by the rules N'ά(x) = Njieje^lN^e^k)
and N]&) = Nh(efihx)INh{e5eh). By [7, Corollary 3.3], iSΓ^eF,- and
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Nk e Fk. Set N = (Nj + N'k)/2, and note that N, Nj, and N'k all
restrict to rank functions on e, ekR. Given orthogonal idempotents
{/Λ} S B(e5ekR), (b) says that Σ / n must converge (in the X-topology)
to some feB(R), and we note that feB{eόekR). In particular,
Έifn—*/ in the iVrmetric and the iV^-metric, from which we infer
the Σ Λ ^ / in the iV-metric. Therefore B(e3 ekR) is orthogonally
complete with respect to N, hence Theorem 6.9 says that e3ekR is
complete in the iV-metric. Note that N'j9 Nk < N. Inasmuch as N'3
and N'k both restrict to rank functions on e3 ekR, it now follows
from [7, Lemma 4.1] that these restrictions are facially dependent
in P(e3ekR). Consequently, there exist PeP(e3ekR) and a>0 such
that P <£ aNj, aN'k on e3ekR. Defining P to be zero on (1 — eόek)R,
we obtain PeP(R) such that P^aN3, aNk. Using [7, Corollary 3.3]
again, we find that PeF3 Π Fk, which is impossible.

Therefore e3ek = 0 for all jφk. We thus have pairwise orthogonal
central idempotents ek such that the annihilator of the ideal ®βkR
is n (1 - ek)R = n ker (Nk) = ker (X) = 0. As in [5, Theorem 18],
it follows that the natural map R —* Π ekR is an isomorphism. In-
asmuch as each φk:R-+Rk is surjective with kernel (1 — ek)R, we
now see that the map ψ: R —> Π Rk induced by the ψk must be an
isomorphism.

Finally, let R denote the X-completion of R, let ψ: R~+R and
#• R —+ Π Rk be the natural maps, and note that θψ = ^. Since the
faces Fk are pairwise disjoint, we conclude from Theorem 4.6 that
θ is an isomorphism. Therefore the inclusion map ψ = θ~1φ:R—>R
is an isomorphism, whence R is complete with respect to X.

Returning to our original question, we now see that in order
for a regular self-injective ring R to be complete with respect to
some nonempty X £ P(R), we need only find such an X such that
B{R) is orthogonally complete with respect to X. However, this is
not always possible, as the following example shows.

By [4, Theorem 2.2], there exists a nonzero Boolean algebra B
with the countable chain condition such that no direct summand of
B has a strictly positive finitely additive measure. Considering B
as a (commutative) regular ring in the usual way, this says that B
contains no uncountable direct sums of nonzero ideals, and that there
does not exist a rank function on any direct summand of B.

Now let R be the maximal quotient ring of B, which is a regu-
lar self-injective ring. In fact, R is the Boolean completion of B
[3, Theorem 5], so that B(R) = R. Since BB is essential in RBf we
see that R does not contain any uncountable direct sums of nonzero
ideals (i.e., as a Boolean algebra, R satisfies the countable chain
condition). Suppose there is an idempotent e e R such that there is
a rank function N on eR. Then e Φ 0, hence there exists a nonzero



458 K. R. GOODEARL

idempotent feeRπB. But then N induces a rank function on fB,
which cannot happen. Thus there does not exist a rank function
on any direct summand of R.

If R is complete with respect to some family of pseudo-rank
functions, then using Theorem 4.6 we see that R must be isomorphic
to a direct product Π Rk, where each Rk is complete with respect
to a rank function Nk. But then there exist rank functions on some
direct summands of R, which is false. Therefore R is not complete
with respect to any family of pseudo-rank functions.

Returning to the general case, we are left with the following
problem: Given a regular, right and left self-injective ring R, when
is B(R) orthogonally complete with respect to some family of pseudo-
rank functions? Since all pseudo-rank functions on B(R) extend to
pseudo-rank functions on R by [7, Corollary 6.10], we need only
look for a suitable family of pseudo-rank functions on B(R). This
reduces the problem to Boolean algebras. For the case of a single
pseudo-rank function, we thus have the following problem: Given a
Boolean algebra B, when does there exist a rank function N on B
such that B is complete in the iV-metric? Obviously B must be
complete and satisfy the countable chain condition, but the example
above shows that these conditions are not sufficient. Rather com-
plicated necessary and sufficient conditions on B may be found in
[13, Theorems 4, 9] and [15, Theorem 4].
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