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COMPLETIONS OF REGULAR RINGS 1II

K. R. GOODEARL

This paper continues earlier investigations into the struc-
ture of completions of a (von Neumann) regular ring R with
respect to pseudo-rank functions, and into the connections
between the ring-theoretic structure of such completions and
the geometric structure of the compact convex set P(R) of
all pseudo-rank functions on R. In particular, earlier results
on the completion of R with respect to a single Ne P(R)
are extended to completions with respect to any nonempty
subset X & P(R). Completions in this generality are proved
to be regular and self-injective by reducing to the case of a
single pseudo-rank function, using a theorem that the lattice
of o-convex faces of P(R) forms a complete Boolean algebra.
Given a completion R with respect to some X C P(R), it is
shown that the Boolean algebra of central idempotents of R
is naturally isomorphic to the lattice of those s-convex faces
of P(R) which are contained in the s-convex face generated
by X. Consequently, conditions on X are obtained which
tell when R is a direct product of simple rings, and how
many simple ring direct factors R must have. Also, it is
shown that the X-completion of R contains a natural copy
of the completion with respect to any subset of X, so in
particular the P(R)-completion of R contains copies of all
the X-completions of E. The final section investigates the
question of when a regular self-injective ring is complete
with respect to some family of pseudo-rank functions. It is
proved that a regular, right and left self-injective ring R is
complete with respect to a family X € P(R) provided only
that the Boolean algebra of central idempotents of R is com-
plete with respect to X.

1. Completions. All rings in this paper are associative with
unit, and ring maps are assumed to preserve the unit. This paper
is a direct continuation of [7], and the reader should consult [7] for
definitions which are not discussed here. A family of pseudo-rank
functions on a regular ring R induces a uniform topology on R,
and the purpose of this paper is to study the resulting completion
of R. We begin by recalling the appropriate topological concepts.

Let S be a nonempty set, and let D be a nonempty family of
pseudo-metrics on S. The (uniform) topology induced by D on S
has as a subbasis the balls {xeS|d(x, y) < e}, for various yeS,
deD, ¢ >0. Thus the basic open neighborhoods of a point yeS
are the sets {xeS|d(x,y) <e for ¢+ =1, ---,n} for various ¢ >0
and d, ---,d,eD. A net in S is a Cauchy net (with respect to D)
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provided it is Cauchy with respect to each deD. The space S is
complete (with respect to D) if the topology on S is Hausdorff and
every Cauchy net in S converges in S.

The completion of S (with respect to D) is constructed from
the set of all Cauchy nets in S by factoring out an equivalence
relation ~, where {z;} ~ {y;} if and only if d(x,, ¥;)—0 for all d € D.
Each d e D extends to a pseudo-metric d on the completion S, and
the family {d|d € D} induces a complete Hausdorff uniform topology
on S. There is a natural map ¢: S— S, where ¢(2) is the equivalence
class of the constant net {z, z, ---}. This map ¢ is continuous, and
#(S) is dense in S. For z, ye8S, ¢@) = ¢(y) if and only if d(z, y) = 0
for all de D.

Now consider another space T topologized by a family E of
pseudo-metrics. A function f:S— T is uniformly continuous (with
respect to D and E) provided that for any € >0 and any eckE,
there exist 6 >0 and d, ---,d,€D such that for all =z, y€S,
max {d;(z, ¥)} < 0 implies e(f(x), f(¥)) <e. Any such f extends
uniquely to a continuous map f from the completion S to the com-
pletion T, and f is uniformly continuous.

DEFINITION. Let R be a regular ring, and let X be a nonempty
subset of P(R). Each N e X induces a pseudo-metric §, on R, where
oy(x, ¥) = N — y) [19, pp. 231, 232]. The family {6y|Ne X} then
induces a uniform topology on R, which we call the X-topology.

In general, the X-topology has a basis of open sets of the form
{xeR|N,(x —y)<e for 1 =1, ---, k} for various yeR, ¢ >0, and
N, .-+, N,e X. However, if X is convex, then the X-topology has
a basis of open sets of the form {re R|N(xz — y) <e¢}. Namely,
given an open set U S R and an element y e U, we first find ¢ > 0
and N, ---, Nye X such that ye V£ U, where V={zc R|N,(z — y) <
¢ for t=1,---,k}. Setting N=(N,+ --- + N)keX and W=
{xe R|N(x — y) < ¢/k}, we obtain ye WS V Z U.

DEFINITION. Let R be a regular ring, and let X £ P(R). The
kernel of X, deneted ker (X), is the set {x € R|P(x) = 0 for all Pe X}.
If X is empty, then ker (X) = R, while if X is nonempty, then we
see from [6, Lemma 5] that ker (X) is a proper two-sided ideal of
R. For nonempty X, note that the X-topology on R is Hausdorff
if and only if ker (X) = 0.

LemMMA 1.1. Let R be a regular ring, and let X, Y be nonempty
subsets of P(R). Then the following conditions are equivalent:

(a) The identity map (R, Y-topology)— (R, X-topology) ts
(uniformly) continuous.
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(b) For each PeX, the map P:(R, Y-topology)—|[0, 1] s
(uniformly) continuous.

(¢) Given € >0 and Pec X, there exist 6 >0and N, --+-, N,e€Y
such that for all e R, max {N,(z)} < 6 tmplies P(xz) < €.

Proof. (a)«=(c): It is clear from the definitions that if the
identity map (R, Y)— (R, X) is continuous, then (¢) holds; and if
(¢) holds, then the identity map (R, Y)— (R, X) is uniformly con-
tinuous.

(b) = (¢): If P:(R, Y)— |0, 1] is continuous for all Pe X, then
(¢) clearly holds. Conversely, assume (¢) and consider any Pe X.
Given ¢ > 0, there exist 6 >0 and N,, ---, N,e€ Y asin (¢). For any
x, ye R, we see that if max{N,(x — y)} <9, then |P(x) — P(y)| =
P(x — y) < ¢, using [19, Corollary, p. 231]. Thus P: (R, Y)— [0, 1]
is uniformly continuous.

DEFINITION. Let R be a regular ring, and let X, Y & P(R).
We say that X is continuous with respect to Y, denoted X Y,
provided condition (¢) of Lemma 1.1 is satisfied. In particular,
@ LY for any Y, whereas X € @ only for X = @&. In case X =
{P}, we write P € Y in place of {P} € Y, and similarly when Y =
{Q}. Note in general that X € Y if and only if P Y for all Pe X.
Note also that X € Y implies ker (Y) < ker (X).

THEOREM 1.2. Let R be a regular ring, and let X, Y = P(R).
Then the following conditions are equivalent:

(a XKY.

(b) X s contained in the g-convex face generated by Y in P(R).
. (¢) X s contained in the o-convexr hull of the face gemerated
by Y in P(R).

Proof. (b)= (¢) by [7, Theorem 3.9].

(b) = (a): Given Pe X, [7, Theorem 3.9] says that P <« @ for
some @ in the o-convex hull of Y. There is a o-convex combination
Q=73 aQ, with all @,€Y. Given ¢ > 0, there exists ¢ > 0 such
that Q(x) < 0 implies P(x) < e. Choose a positive integer n such
that 3% .., @, < 6/2. Then whenever x € R and max {Q,(%), - -, @,(2)} <
0/2, we have

Q) = S @@ + 3 @@@) S S a0/2) + 3 @ <9,

whence P(x) < &. Thus P < Y. Since this holds for all Pe X, we

obtain X K Y.
(a) = (b): Given Pec X, we have P« Y. Thus there exist real
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numbers 4, d,, --- > 0, positive integers n(l) =1 < n@) < ---, and
Q, @y --- €Y with the following property: whenever ze R and
Qx) < o, for © = n(k), ---, n(k + 1) — 1, then P(x) < 1/k. Now set
Q = 32, Q,/2%, which lies in the o-convex hull of Y. We claim that
P<L Q.

Given ¢ > 0, choose a positive integer k > l/e, and set » =
nk +1) —1, 0 = 0,/2". Whenever x € R and Q(x) < d, we have

Q(z) = 2'Q(x) = 2"Q(x) < 2"0 = 0,

for ¢ = n(k), ---, m, whence P(x) < 1/k < e. Thus P < Q, hence [7,
Theorem 3.9] says that P lies in the o-convex face generated by Q.
Therefore P lies in the o-convex face generated by Y.

COROLLARY 1.8. Let R be a regular ring, let X and Y be non-
empty subsets of P(R), and assume that X and Y generate the
same o-convex face in P(R). Then the X-topology and the Y-topology
on R are identical. Moreover, Cauchyness and uniform continwity
are the same whether considered relative to X or relative to Y.

Proof. By Theorem 1.2, X € Y and Y € X, whence Lemma 1.1
shows that the identity map (R, X-topology)— (R, Y-topology) is a
homeomorphism. Thus the topologies are identical. The equivalence
of Cauchyness and uniform continuity relative to X and Y also fol-
lows from the relation X € Y € X.

DEFINITION. Let R be a regular ring, and let X be a nonempty
subset of P(R). The X-completion of R is the completion of R
with respect to the uniform topology induced by X. By the standard
properties of pseudo-rank functions [19, p. 232], the ring operations
on R and the maps Ne X are all uniformly continuous with respect
to X. Thus the X-completion R is a ring, the natural map R— R
is a ring map, and each Ne X extends uniquely to a continuous
map N: R—[0,1]. The pseudo-metrics 6, on R which are part of
the completion construction are of course induced by the N, i.e.,
6y(@, y) = N(@ — y) for all Ne X and all 2, y € R.

Because of the continuity of the ring operations, we obtain a
slight simplification in the construction of R. Namely, the set C of
Cauchy nets in R forms a ring, the subset C, of null nets (i.e., nets
which converge to zero) forms a two-sided ideal in C, and R = C/C,.
The kernel of the natural map ¢: R— R is thus the ideal {x ¢ R| N(z) =0
for all Ne X}, i.e., ker ¢ = ker (X).

These properties of R are standard consequences of the general
theory of completions of uniform spaces. By analogy with the case
of a single pseudo-rank function—[11, Theorem 3.7] and [6, Corollary
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15]—we should expect R to be a regular self-injective ring, and the
maps N should be pseudo-rank functions on R. While these prop-
erties do hold, the only one we are able to prove directly is that
each N is a pseudo-rank function on R. It is possible to prove
self-injectivity in a fairly straightforward manner once it is estab-
lished that R is regular, but regularity seems impossible to prove
directly, mainly because the proofs in the case of a single pseudo-
rank function depend so heavily on the use of sequences that they
do not generalize to nets.

DEFINITION. Let R be a regular ring, let X be a nonempty
subset of P(R), and let R denote the X-completion of B. Each Ne X
extends uniquely to a continuous map N: R —[0,1]. For now, we
refer to N as the natural extension of N to R. Once we have
proved that R is regular and that N is a pseudo-rank function on
R, we shall refer to N as the natural extension of N to P(R).
For all z,yeR, we have N(zy) < N(z), N(y) by definition and
N(z + y) £ N(z) + N(y) by [19, Corollary, p. 231]. By continuity,
we obtain N(zy) < N(), N(y) and N(z + y) < N&) + N(y) for all
z, Yy €R.

LEMMA 1.4. Let R be a regular ring, let X be a monempty
subset of P(R), and let R denote the X-completion of R. Any
idempotent e € R can be obtained as the limit of a net of idempotents
from R.

Proof. Let ¢: R— R be the natural map, and for each Ne X
let N denote the natural extension of N to E. Now e has basic
open neighborhoods of the form B = {xeR|N,(x —¢e) <& for i=
1, ---, &k}, for suitable ¢ >0 and N, ---, N,e X. We must show
that for any such B, there exists an idempotent fe R with ¢feB.

There exists a net {a;} & R such that ¢a; —e, and of course
#(a}) — ¢ =e¢ as well. Thus there is some a = a;e R such that
N.(¢a — e) < ¢/3 and N,(¢(a®) — ¢) < ¢/3 for all i. Note that

N(@ — a) = Ny(g(a*) — ¢a) = Ny4(a®) — ¢) + Ni(ga — o) < 2¢/3

for all ¢. According to [11, Lemma 2.3], there exists an idempotent
feR such that f— acaR(a® — a). Thus N,(f — a) < N;(a* — a) <
2¢/3 for all ¢, and consequently

Ny¢f — €) < N(¢f — ¢a) + Ny(ga — e) = N(f — @) + Ni(ga — ¢) < ¢
for all 7. Therefore 4f ¢ B.

LEMMA 1.5. Let R be a regular ring, let X be a nonempty
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subset of P(R), let R denmote the X-completion of R, and let ¢: R— R
be the natural map. If e, f are orthogonal idempotents in R, then
there exists a met {(e;, [;)} S R X R such that (ge;, ¢f;)— (e, ) in
R x R, and for all j, e; and f; are orthogonal idempotents.

P'r_oof. Fgr ea_ch Ne X, let N denote the natural extension of
N to R. In R X R, (e, f) has basic open neighborhoods of the form

B={@9y)eR x RIN(x—e),N@y—f)<efori=1---,k},

for suitable e >0 and N,, ---, N,€ X. We must show that for any
such B, there exist orthogonal idempotents ¢/, f'e¢ R such that
(¢¢, 6f") € B.

According to Lemma 1.4, there exist nets {g;}, {h;} (which we
may arrange to be indexed by the same directed set) of idempotents
in R such that ¢g; —e¢ and ¢h; —f. In addition, ¢(g;h;) —ef =0
and ¢(h;g9;) — fe = 0. Thus there exist idempotents g = g; and h = h;
in R such that N,(¢g — e) < ¢/2, N,¢h — f) < ¢/2, N(s(gh)) < ¢/2,
and N,(#(hg)) < ¢/2 for all 5. Note that N,(gh), Ni(hg) < ¢/2 for all
1. According to [11, Lemma 2.4], there exist orthogonal idempotents
¢, f'e R such that ¢ — geghR and f" — hehgR. Thus N,(¢ — g) <
N(gh) < ¢/2 and likewise N,(f’ — h) < ¢/2 for all 7. Consequently,
N,¢¢ — e) < Nj(¢ — g) + Ni(sg — e) < ¢ and likewise N,(of — f)<e¢
for all ©. Therefore (g€, ¢f”) € B.

PROPOSITION 1.6. Let R be a regular ring, let X be a nonempty
subset of P(R), and let R denote the X-completion of R. For each
Ne X, let N denote the natural extension of N to R. Then N is a
pseudo-rank function on R.

Proof. Let ¢: R— R denote the natural map, and note that
N@) = N(¢(1)) = N1) =1. We have observed above that N(zy) <
N(z), N(y) for all 2, yc R. Now consider any orthogonal idempotents
e, feR. By Lemma 1.5, there exists a net {(¢;, f;)} € R X B such
that ge; — e, ¢f; — f, and e;, f; are orthogonal idempotents for each j.
Observing that Ng(e;+f;)=Ng(e;)+ Ng(f;) for all j, we conclude that
N(e + f) = N(e) + N(f). Thus N is a pseudo-rank function on E.

In order to prove that the X-completion R of a regular ring R
is a regular self-injective ring, we must use the following circuitous
procedure. The first step, which we develop in the next section, is
to prove that the lattice of o-convex faces of P(R) is a complete
Boolean algebra. Using this, we reduce the problem to the case
when the Ne X are facially independent. In this case, we prove
that R is isomorphic to the direct product of the N-completions of
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R, from which the required properties of R are immediate.

PROPOSITION 1.7. Let R be a regular ring, let X and Y be
nonempty subsets of P(R), and assume that X and Y generate the
same o-convex face in P(R). Then ker (X) = ker (Y) and the X-
completion of R coincides with the Y-completion.

Proof. By Theorem 1.2, X € Y and Y <« X, hence we see that
ker (X) = ker (Y). In addition, Corollary 1.3 shows that the X-
topology and the Y-topology on R are the same, and that nets in
R are Cauchy (null) with respect to X exactly when they are Cauchy
(null) with respect to Y. Thus the two completions of R, con-
structed as the ring of Cauchy nets modulo the ideal of null nets,
are identiecal.

THEOREM 1.8. Let R be a regular ring, let X be a monempty
subset of P(R), and let R denote the X-completion of R. For each
NeX, let R, denote the N-completion of R. If X is a facially
independent subset of P(R), then R = [[ycx Ry-

Proof. For each Ne X, let ¢,: R — R, be the natural map, and
let N be the natural extension of N to P(R,). Set S = [Iyex Ry,
and for each Ne X let p, denote the projection S — E,. The maps
6y induce a map ¢: R— S, and we note that ker ¢ = [) ker ¢, =
N ker (N) = ker (X).

For each Ne X, we have a pseudo-rank function N* = Np, on
S, and we note that N*¢ = Npyé = Ngy = N, i.e., N* is an exten-
sion of N to P(S). Setting X* = {N*|Ne X}, we see also that S
is complete with respect to X*. Thus to show that S=R, it
suffices to show that ¢(R) is dense in S in the X *-topology.

Now let s€S,e>0,and N,, ---, N,e X. Set N=(N,+---+ Np/k
in P(R). Inasmuch as the N, are facially independent, [7, Theorem
4.3] says that the natural map from the N-completion of R into

T = Rm X +«++ X Ry, is an isomorphism. We have a natural map
4: R— T (induced by ¢y, -+, é5,), and we have a rank function N’
on T defined by the rule N'(x, ---, 2,) = [N.(x,) + -+ + Ny@))/k.

By virtue of the isomorphism of the N-completion of R onto 7', we
see that (R) is dense in T in the N'-metric. Applying this in-
formation to the element ¢ = (py(s), -+, py,(8)) in T, there must
exist an element r € R such that N'(4(r) — t) < ¢/k. Inasmuch as

N'(p(r) —t) = N,<¢N1("') - le(S), MR ¢Nk(7') - ka<3))
= [Npn,(r) — Dx,(8)) + -+ + Nulgw, (1) — oy, ()
= [Npy,(3(r) — 8) + -+« + Nipy,(8(r) — 9)/k
= [N¥(g(r) — 8) + -« + Ni(g(r) — 9k ,
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we conclude that N}(¢(r) —s) <e forall e =1, ---, k.
Therefore ¢(R) is dense in S in the X*-topology, as desired.

2. 0-Convex faces in P(R). We show in this section that for
any regular ring R, the lattice of o-convex faces of P(R) forms a
complete Boolean algebra.

LEMMA 2.1. Let R be a regular ring, and let {F} be a collec-
tion of faces of P(R).

(a) The convex hull of U F; is a face of P(R).

(b) The o-convex hull of U F; is a o-convex face of P(R).

(¢) If the F; are all o-convex and only finitely many of them
are nonempty, then the convex hull of U F,; is ¢ o-convex face of
P(R).

Proof. (a) Since P(R) is a Choquet simplex by [7, Corollary
3.6], this follows from [2, Proposition 3].

(b) In view of (a), the o-convex hull of U F; is also the o-
convex hull of a face of P(R). By Theorem 1.2, this is a o-convex
face of P(R).

(¢) We may assume that there are only finitely many F), say
F,-.--,F,. Let F denote the convex hull of |J F,, which is a face
of P(R) by (a).

Now consider any o-convex combination N=3" P, whereall P, € F'.
For each k, there is a convex combination P, = B, Py + +++ + BruPra
with each P,eF,. Set v,=>,, a8, =0 for each ¢t =1, ---, n, and
note that v, + --- + v, = 1. After renumbering, we may assume
that 7, +--,7. >0 and 7,., ---,7, =0, for some 1 <» <n. For
each 1 =1, ---, 7, set N, = 3, (@.B::/7)Pr;, Which lies in F'; because
F, is o-convex, Then N = v,N, + --- + 7, N, is a convex combina-
tion of the N,, whence N¢ F.

Therefore F' is o-convex.

DEFINITION. As in [7, 8], we use B(R) to denote the Boolean
algebra of central idempotents in a ring R. In case R is regular
and right (or left) self-injective, B(R) is complete [8, Proposition
4.1]: for {e;}< B(R), A e; is the central idempotent which generates
the ideal N e.R.

LeEMMA 2.2. Let R be a regular ring, let Ne P(R), and let
EC BR). If e¢RNker(N)=0 for some ¢, € E, then there exists a
countable sequence {e, e, ---} S K such that ..z ¢R = N ¢, R.

Proof. Replacing E by {ee|ec E}, we may assume that eRN
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ker (N) =0 for all ec E. Thus we may transfer the problem to
R/ker (N), i.e., we may assume, without loss of generality, that
ker (N) = 0. Now N is a rank function on R, from which it follows
that R does not contain any uncountable direct sums of nonzero
right ideals.

Set F={lL—¢elecE} and X = {zR|xcU,;.rfR}. Given any
nonzero y<€ FR = >;.r fR, we must have yf+# 0 for some fecF,
whence yfR is a nonzero member of X which is contained in yR.
Thus every nonzero submodule of (FR), contains a nonzero member
of X, hence (FR); must have an essential submodule which is a
direct sum of members of X. Inasmuch as R contains no uncount-
able direct sums of nonzero right ideals, this direct sum must be
countable, hence we obtain an independent sequence {z,R, z,R, ---} S X
such that @ z,R is an essential submodule of (FR);.

Since R is a right nonsingular ring, the left annihilator of
@ z,R must coincide with the left annihilator of FFR. For each u,
2, R <1 —e,R for some ¢, ¢ E. Consequently, we see that ;¢ R
is contained in the left annihilator of FR, i.e., N ¢.R & M.z ¢R.
The opposite inclusion is automatic.

PROPOSITION 2.3. Let R be a regular ring, let Ne P(R), and
let R denote the N-completion of R. Let X,Y < P(R) such that
X, Y € N, and for each Pe XU Y let P be the continuous extension
of P to P(R). Set X={P|PcX} and Y ={P|PeY). Then the
following conditions are equivalent:

(a) XKY.

(b) X«7Y. ~

(¢) ker(Y) < ker (X).

Proof. Let ¢ denote the natural map R — R, and let N denote
the natural extension of N to P(R).

(a) = (b): Given Pe X and ¢ > 0, there exist 6 >0 and Q,, ---,
Q.€Y such that for all ye R, max {Q,y)} <& implies P(y) < &/2.
Since P, Q, -+, Q. < N, there also exists &’ > 0 such that for all
ze R, N(z) < & implies both P(z) < ¢/2 and max {Q,(2)} < §/2.

Now consider any ze R for which max {Q,(®)} < §/2. There is
some y € R for which N(¢y — 2) < &', whence P(¢y — z) < ¢/2 and
max {Q(¢y — @)} < 6/2. Then Q) = Qugy) = Qugy — ) + Quw) <
for all 1 =1, ---, k, whence P(y) < ¢/2 and so P(x) = P(x — ¢y) +
P(¢y) = P(¢y — x) + P(y) < e. Thus for all zc R, max {Q,()} < /2
implies P() < e.

(b) == (a) and (b) = (¢) are clear.

(¢) = (b): According to [7, Lemma 3.7], each ker (Q) (for Q¢ Y)
is generated by a central idempotent. Since we have a rank func-
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tion N on R, we see from Lemma 2.2 that there exists a countable
sequence {Q,, @, ---} Y such that ker (¥) = M. ker (Q,). Set @ =

*_,Q,/2*, which lies in the o-convex hull of Y, and note from
Theorem 1.2 that @ € Y. Inasmuch as each @, < N, we also see
from Theorem 1.2 that Q@ € N.

Now ker (Q) = Nz..ker (Q,) = ker (Y¥) < ker (X), hence ker (Q) <
ker (P) for all Pec X. According to [7, Proposition 3.8], X is con-
tained in the c-convex hull of the face generated by Q. Therefore
X « Q@ by Theorem 1.2, whence X < Y.

LEMMA 2.4. Let R be a regular ring, and let F < G be o-
convex faces of P(R). If F + G, then there exists Q€ G such that
the o-convex face generated by @ is disjoint from F.

Proof. Choose some NeG — F, and let H be the intersection
of F with the o-convex face generated by N. We are done if H is
empty, hence we may assume that H is nonempty. Let R denote
the N-completion of R, and let N denote the natural extension of
N to P(R). By Theorem 1.2, H € N, hence each Pc H extends
continuously to some Pec P(R). Set H = {P|PecH}.

Inasmuch as N does not lie in the o-convex face H, we see from
Theorem 1.2 that N is not continuous with respect to H. According
to Proposition 2.8, it follows that ker (H) £ ker (), whence ker (H) =
0. Using [7, Lemma 3.7], we thus obtain a nonzero central idempotent
¢ € B(R) such that e¢R = ker (H).

Since ¢ # 0, N(e¢) # 0, hence we can define a pseudo-rank func-
tion Q € P(R) by the rule Q(x) = N(ex)/N(e). Pulling @ back to Qe
P(R), we have @ < [1/N(e)]N, whence Q lies in the face generated
by N [7, Corollary 3.3]. Thus QeG.

Now consider any P in the o-convex face generated by @, and
note that P also lies in the o-convex face generated by N. By
Theorem 1.2, P £ @, N, hence P extends continuously to some Pe
P(R). According to Proposition 2.3, (1 — ¢)R = ker (Q) < ker (P),
hence P(e) = 1. Since eR = ker (H), we conclude that P¢ H and so
Pe¢F.

Therefore the o-convex face generated by @ is disjoint from F.

LEMMA 2.56. Let R be a regular ring, let F, G be faces in P(R),
and let F,, G, be the o-convex hulls of F,G. If F and G are dis-
joint, then F, and G, are disjoint.

Proof. Suppose there exists Ne F,NG,. Then there is a o-
convex combination N = 3 @, P, with all P,€F. By renumbering,
we may assume that a, >0. If @, =1, then P,=NeG, If a, <1,
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then
P, + (1 — @) 3 &P/l — @) = 3 &P, = NG, .

Since G, is a face of P(R) by Theorem 1.2, P, €@, in this case also,
hence we obtain a o-convex combination P, = 3 8.Q, with all @,¢€G.
Again, we may assume that B3, > 0. Since > 8.Q. = P, lies in the
face F, we conclude as above that Q ,c€F. But then Q e F NG,
which is impossible.

THEOREM 2.6. Let R be a regular ring, and let F# denote the
lattice of o-convex faces of P(R). Then F s a complete Boolean
algebra. For {F}< #, NF,= NF, and \/ F, is the o-convex hull
of UF,. For F,Ge. &, FF\/ G is the convex hull of F U G.

Proof. It is clear that & is a complete lattice in which arbi-
trary infima are given by intersections. For {F,} £ &, Lemma 2.1
shows that the o-convex hull of U F;, belongs to .&#, whence the o-
convex hull of U F, equals VV F,. For F, Ge.#, Lemma 2.1 shows
that the convex hull of FUG belongs to &, whence the convex
hull of FUG equals F'V G.

Given F, G, He &, we automatically have (FAG)V (FA H)C
F A (GVvV H). Now consider any Ne FFA (GV H). Since NeG V H,
we obtain a convex combination N =aP + (1 — @)@ with PegG,
QeH. If a=0, then N=QeF A H, while if « =1, then N =
PeFANG. If 0< a<1, then since N lies in the face F, we obtain
P, Qc F, and consequently Pe FAG, Qe FAH. Thus Ne(FAG)V
(F A H) in any case, whence FA (GV H)=(FAG VvV (F A H).
Therefore & is a distributive lattice.

Now let Fle.#, and let X denote the set of those G €. &# which
are disjoint from F. Given any nonempty chain {G,} S X, we see
that UG, is a face of P(R) which is disjoint from F. According
to Lemma 2.5, the o-convex hull of UG, is also disjoint from F.
Thus V G,e X, which provides the chain {G,} with an upper bound
in X. Now Zorn’s Lemma gives us a maximal element G € X.

If F\Vv G#P(R), then by Lemma 2.4 there is a nonempty He.&#
which is disjoint from F'\/ G. In particular, H is disjoint from both
F and G. Inasmuch as & is distributive, we obtain FA(GV H) =
(FAGV(FANH)=@ and so GV He X, which contradicts the
maximality of G. Thus F'VV G = P(R), whence G is a complement
for F in #.

Therefore .# is a complete, complemented, distributive lattice,
i.e., a complete Boolean algebra.

COROLLARY 2.7. Let R be a regular ring, and let X & P(R).
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Then there exists a facially independent set Y & P(R) such that Y
and X gemerate the same o-convex face in P(R). In particular,
any o-convex face in P(R) can be gemerated by o facially independ-
ent subset of P(R).

Proof. If X is empty, then X itself is facially independent,
hence we may assume that X is nonempty. Let & denote the
lattice of o-convex faces of P(R), which is a complete Boolean alge-
bra by Theorem 2.6. For each Pec P(R), let F(P) denote the o-
convex face generated by P in P(R), and set #, = {F(P)|P e P(R)}.

Note that every nonempty face in .&# contains a (nonempty) face
from .#,. Since .# is a complete Boolean algebra, we may thus ex-
press F' as the supremum of some family {F(P,)} of pairwise disjoint
members of #,. Since the F(P,) are pairwise disjoint, the set Y={P,}
is facially independent. Since each P, generates F(P,), we see that
Y generates \VF(P,)=F. Thus Y and X generate the same og-convex
face in P(R).

The results of Theorem 2.6 and Corollary 2.7 do not hold in
general for non-g-convex faces. That is, the lattice of faces of
P(R) may not be a complete Boolean algebra (although it must be
a complete distributive lattice), and there may exist faces in P(R)
which cannot be generated by facially independent sets. In fact,
in the following example we construct a regular ring R such that
P(R) cannot be generated (as a face) by facially independent pseudo-
rank functions.

Let K be a field, let K, K,, --- be copies of K, and let R be
the K-subalgebra of [ K, generated by 1 and J = @ K,. Note that
R is regular and that R/J = K.

Since R/J = K, there exists a unique P,c P(R) such that
ker (P) =J. For n=1,2 ..., let e, denote the identity of K,.
Since R/(1 — ¢,)R = K, there exists a unique P,ec P(R) such that
ker (P,) = (1 — e¢,)R. Given any Pe P(R) and n =1, 2,---, we claim
that P(e,x) = P(e,)P,(x) for all € R, which is clear if P(e,) = 0. If
P(e,) # 0, then the rule Q(x) = P(e,x)/P(e,) defines Q< P(R) such
that ker (@) = (1 — ¢,)R. In this case, we obtain @ = P, by unique-
ness of P,, from which the claim follows.

We now claim that every Pe P(R) is a o-convex combination of
P, P, P, ---. More specifically, we claim that

P=[1— 2 P(e,)]P, + i P(e,)P, .

If >, P(e,) =0, then P(J) =0, whence P = P, by uniqueness and
the claim holds. Now assume that 3, P(e,) =7 >0, and set Q =
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S [P(e,)/7]P, in P(R). Given ze¢R and n=1,2,---, we have
(ex + +++ +¢,2)R < 2R and so P(ex) + --- + P(e,x) < P(x), whence

Q@) = 3, Pe)P,(®) = 3, Ple,a) < P(@) ,

using the claim above. As a result, 7Q < P, hence [7, Proposition
3.2] says that P — 7Q = BQ’ for some B =0 and some Q' € P(R).
Note that f=1—-—7v=1— 32 ,Pe,). If =0, then vy =1 and
P=Q=3¢g Pe)P, If >0, then Q(J) =L (P —7Q)J) =0,
whence Q' = P, (by uniqueness) and so

P =17Q + 8P, = BP, + i P(e,)P, ,

as required.

Since every Pe P(R) is a o-convex combination of the P,, every
nonempty face of P(R) must contain at least one P,. As a result,
any collection of nonempty pairwise disjoint faces of P(R) must be
countable, whence every facially independent subset of P(R) must
be countable.

Now consider any facially independent subset X & P(R). We
claim that the face F' generated by X is not equal to P(R). Write
X ={Q, Q,, --+}, repeating some @, if necessary in order to get an
infinite sequence. For each 7=1,2, ---, there is a o-convex com-
bination Q, = >\7, @;,P,. Inasmuch as lim,_. «;, = 0 for each ¢, we
can find positive integers n(l) < n(2) < --- such that for all & =
1’ 2’ cety Oy Contky s Egynir < 1/22k- Define Bu Bz: e by setting
Baw = 1/2% for all k and all other 8, =0, and set @ = >7., B,P, in
P(R). We shall prove that Q ¢ F.

If Qe F, then by [1, (1.9)] there are convex combinations a@ +
1l—-a)Q =aQ,+---+ aQ, for some 0 <a <1, some Q ¢ P(R), and
some t. Now choose a positive integer k =¢ such that 2* > a™'. Then

B = 1/2F = 2*/2% > a ', .,
for 1 =1, --., k, whence

Qesw) = Buw = (@, + <+ + @)Baw
> @m0 QO )
= a [aQenw) + -+ + @,Qie,u)]
= a'[aQ(e,w) + 1 — A)Q'(e.w)] = Qlenw)

which is impossible. Thus Q ¢ F, hence F' = P(R).

Thus the faces generated by facially independent subsets of
P(R) are all proper, so that P(R) cannot be generated (as a face)
by facially independent pseudo-rank functions.
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Also, if X is a maximal facially independent subset of P(R),
then X generates a face F' which is proper, yet F' intersects every
nonempty face of P(R). Thus F has no complement in the lattice
of faces of P(R), hence the lattice of faces of P(R) is not a Boolean
algebra.

3. Structure of completions.

THEOREM 3.1. Let R be a regular ring, let X be a nonempty
subset of P(R), and let R denote the X-completion of R. For each
Ne X, let N denote the natural extension of N to R.

(a) R is a regular, right and left self-injective ring.

(b) For each Nec X, N is a pseudo-rank function on R.

() If X ={N|NeX]}, then ker (X) = 0 and R is complete with
respect to X.

Proof. (a) According to Corollary 2.7, there exists a facially
independent set Y & P(R) such that Y and X generate the same
g-convex face in P(R). Then Proposition 1.7 shows that R coincides
with the Y-completion of R. For each NeY, let R, denote the
N-completion of R, which by [11, Theorem 3.7] and [6, Corollary
15] is a regular, right and left self-injective ring. According to
Theorem 1.8, B = [Iy.r By, Wwhence R is regular and right and left
self-injective.

(b) Proposition 1.6.

(e) is clear from the completion process.

Our major tool for investigating the structure of an X-comple-
tion R is Theorem 8.7, which provides a complete description of the
Boolean algebra B(R) of central idempotents of R. In order to
prove this theorem, we first require generalizations of several of
the results of [7].

DEFINITION. Let {e;|/t€I} be a nonempty family of pairwise
orthogonal idempotents in a ring R. There is a standard net of
idempotents in R formed from {¢;} as follows. For index set, we
take the family % of all nonempty finite subsets of I, ordered by
inclusion. For each Fe &, we write ¢; = > ,.r¢€; thus obtaining a
net {e¢;} of idempotents indexed by the directed set &#. We abbre-
viate this net as 3¢, and refer to it as the net of partial sums
of the e,.

LeEMMA 3.2. Let R be a regular ring, let X be a nonempty
subset of P(R) such that ker (X) = 0, and assume that R is complete



COMPLETIONS OF REGULAR RINGS II 437

with respect to X. Let J be a right tdeal of R which is closed in
the X-topology, and let {e;} be a momempty family of orthogonal
idempotents in oJ.

(@) 3 e, converges to an idempotent e € J.

(b) If @ e;R is essential in J, then eR = J. If, in addition,
J is a two-sided ideal, then e is central in R.

(e) J is generated by an idempotent. If J is a two-sided ideal,
then J is generated by a central idempotent.

Proof. (a) Let I be the index set for the e; let & be the
family of all nonempty finite subsets of I, and set ¢, = 3., ¢; for
all FFe &#. We claim that the net > ¢, = {e;} is Cauchy with respect
to any Ne X.

Whenever FFC G in #, we have e, = ¢,¢, and so N(e;) < N(es) < 1.
Thus the net {N(e;)} of real numbers is increasing and bounded
above, hence it must converge. As a result, given any ¢ > 0 there
must exist F ¢ % such that | N(e;) — N(ey)| < ¢/2 whenever G, H2 F
in . In particular, when G 2 F we see that ¢, and ¢; — ¢, are
orthogonal idempotents, whence N(e; — ¢r) = N(ez) — Niep) < ¢/2.
Consequently, N(e; — ez) < ¢ whenever G, H2 F in #. Thus the
net > e, is indeed Cauchy with respect to N.

By completeness, > e, converges to some ¢c R, and of course ¢
is an idempotent. Since each ¢, lies in the closed set J, we also
have eeJ.

(b) Given any t¢e€l, we have ¢ze, = ¢, for all F 2 {i} in &,
whence ¢¢;, =¢,, Thus Pe,R<eR<J. Since Pe,R is essential in J, it
follows that ¢R is essential in J, from which we infer that eR = J.

If J is two-sided, then eR is a two-sided ideal in a semiprime
ring, whence ¢ must be central.

(¢) Choose a maximal independent family {«;R} of principal right
ideals contained in J, so that € ;R is essential in J. Also, choose
a right ideal K such that J K is essential in B,, whence (P 2;R)P K
is essential as well. Inasmuch as R is regular and right self-injec-
tive by Theorem 3.1, we see that for each %,

Ry = E(@@;R) © K) = 2R D E(@ «;R) D K) .

As a result, there exists an idempotent f,€ R such that f.R = z,R
and f,z; =0 for all j + k. Thus we obtain orthogonal idempotents
f; such that @ f;R = @ x;R is essential in J.

According to (a) and (b), 3, f; converges to an idempotent f
such that fR = J, and if J is two-sided, then f is central.

LEMMA 3.3. Let R be a regular ring, let X be a monempty
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subset of P(R), and let R denote the X-completion of R. If Pe
P(R)and P < X, then P extends (uniquely) to a continuous Pe P(R).
In addition, ker (P) is gemerated by a central idempotent in R.

Proof. By continuity, P extends uniquely to a continuous map
P: R—10,1]. Exactly as in Proposition 1.6, we infer that Pec P(R).
Now ker (P) is a two-sided ideal of R which is topologically closed,
hence Lemma 3.2 says that ker (P) is generated by a central idem-
potent.

LEMMA 3.4. Let R be a regular ring, let X be a monempty
subset of P(R) such that ker (X) = 0, and assume that R is complete
with respect to X. Let Pe P(R) such that P € X.

(@) If , 2, 2 -+ € R such that 3R < ,R< +++ and Uz,R is
essential in xR, then P(x) = sup P(x,).

(b) If Yy Yy Yoy * = € R such that yxR = yzR = e and N ynR =
yR, then P(y) = inf P(y,).

Proof. (a) Proceeding as in [6, Lemma 12], we construct or-
thogonal idempotents e, ¢, --- € R such that ¢RP --- Pe,R =z, R
for all n. Each e¢,cxR, and xR is closed in the X-topology (because
it is an annihilator). Thus by Lemma 3.2, )¢, converges to an
idempotent ee B such that eR = zR. Since P is continuous, we
thus obtain

P(z) = P(e) = >, P(e,) = sup {P(e,) + ++- + P(e,)} = sup P(z,) .

(b) Choose idempotents ¢, ¢, --- € R such that 1 —¢,)R = y,R
for all n, and note that Re, < Re, < ---. Since R is left self-injec-
tive by Theorem 3.1, some left ideal of R is an injective hull for
U Re,. Thus there is an idempotent ¢€ R such that U Re, is es-
sential in Re. Observing that Re and U Re, have the same right
annihilator, we see that (1 — ¢)R = yR. According to (a), 1 — P(y) =
P(e) = sup P(e,) = sup {1 — P(y,)}, whence P(y) = inf P(y,).

PROPOSITION 3.5. Let R be a regular ring, let X be a nonempty
subset of P(R) such that ker (X) =0, and assume that R ts com-
plete with respect to X. Let P, Qe P(R) such that P,Q < X. If
ker (@) < ker (P), then P L Q.

Proof. If not, then there exist ¢ > 0 and z,, #,, --- € R such that
for all n, Q(z,) < 1/2" but Pz, =e¢. Set y,,R=2,R+ --- + 2,R
for all n = k. Since R is right self-injective by Theorem 3.1, there
exist elements z, 2,, --- € R such that U, ¥..R is essential in z,R
for all %k, and there exists ze R such that M, 2.R = zR. Using
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Lemma 3.4, we obtain

Q(z) = Qz) = sup {QWu)) @Wrrrs)s *-*}
< sup (Q(@) + -+ + Q) = 3, Q) < 3)1/2 = 12+

for all ©=1,2,---. Thus Q) =0, whence P(z) =0. However,
4R = y,R = 2,R for all k and so P(z,) = P(x,) = ¢ for all k, hence
Lemma 3.4 says that P(z) = inf P(z,) = ¢, which is a contradiction.
Therefore P € Q.

COROLLARY 3.6. Let R be a regular ring, let X be a nonempty
subset of P(R), and let R denote the X-completion of R. Let Y, W C
P(R) such that Y, W € X, and for each Pc Y UW let P be the con-
tinuous extension of P to P(R). Set Y ={P|PecY} and W=
{P|Pc W). Then the following conditions are equivalent:

a) YK W_’

(b) Y<W. ~

(¢) ker (W) < ker (Y).

Proof. Let ¢: R— R be the natural map. For each Ne X, let
N denote the natural extension of N to P(R), and set X = {N|N¢e X}

(a) = (b): Given Pe Y and & > 0, there exist 6 >0 and Q,, ---,
Q,c W such that for all ye R, max {Q,(y)} < 0 implies P(y) < &/2.
Since P, Q,, --+, Q. < X, there also exist ¢’ >0 and N,, -+-, N,e X
such that for all ze B, max {N;(z)} < 6’ implies both P(z) < ¢/2 and
max {Q,(2)} < §/2. _ _

Now consider any xR for which max {Q;(®)} < 6/2. There is
some y € R for which max {N,;(¢y — x)} < &', whence P(¢y — ) < ¢/2
and max {Q,(¢y — 2)} <9/2. Then Qu(y) = Q:(¢y) = Qu(gy — @) + Qux) <
for all ¢ =1, ---, k, whence P(y) < ¢/2 and so P(z) < P(x — ¢y) +
P(¢y) = P(py — ) + P(y) < e. Thus for all xc R, max {Q.,(x)} < /2
implies P(x) < e.

(b) = (a) and (b) = (c) are clear.

(¢) = (b):. Given any PeY, Lemma 3.3 gives us a central idem-
potent ec R such that (1 — e)R = ker (P). Since ker (W) < ker (P),
we thus obtain [Ne.w ¢[ker (@)] = 0. Lemma 8.3 also shows that
each of the ideals e[ker (Q)] is generated by a central idempotent,
hence Lemma 2.2 says that there exists a countable sequence
{Qv Qz, o '} S W such that ﬂf:x G[ker (Qn)] = 0: ie., n:;°=1 ker (Qn) =
ker (P). Set @ = 3=, @Q,/2", which lies in the o-convex hull of W,
and note from Theorem 1.2 that @ € W. Inasmuch as each @, < X
we also see from Theorem 1.2 that @ € X. Observing that ker (Q) <
ker (P), we see from Proposition 3.5 that P « @, whence P < W.
Therefore ¥ < W.
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Let K be a convex subset of a real vector space, and let F' be
a face of K. It is clear from the definitions that a subset of F is
a face of F' if and only if it is a face of K. Thus the lattice of
faces of F' is just the lattice of those faces of K which are con-
tained in F.

THEOREM 3.7. Let R be a vegular ring, let X be a nonempty
subset of P(R), and let R denote the X-completion of R. Let F be
the o-convex face gemerated by X im P(R), and let . be the lattice
of o-convex faces of F. Then B(R) = .

Proof. For each NeF, we have N € X by Theorem 1.2, and
we let N denote the continuous extension of N to P(R).

Given ¢ e B(R), set 6(e) = {Ne F|N(e) = 1}, and note that 6(e) is
a o-convex subset of F. Suppose that we have 0 <a <1 and
N,, N, e F with @N, + (1 —a)N, c6(¢). Then aN,(e) + (1 — a)N,(e) =1,
whence N,(¢) = N,(¢) =1 and so N,, N,cf(e). Thus 6(e) is a face of
F, i.e., 6(¢)e #. Now suppose that ¢ < f in B(R), i.e., ¢ = ¢f. For
any Nef(e), we have 1 = N(e) < N(f) and so N(f) =1, whence
Ned(f). Thus 6(e) < 6(f). Therefore we have a monotone map
6: B(R) — 7.

Given any Ge &, set G = {N|NeG}. According to Lemma 3.2,
there is some #(G) € B(R) such that ker (G) = 1 — #(G)R. If GC H
in %, then (1 — u(H))R = ker (H) < ker (G) = (1 — #(@))R and so
1—wH)=<1— mG), whence pu(G) < p#(H). Therefore we have a
monotone map x: % — B(R).

Consider any e € B(R). Since N(e) = 1 for all Ne6d(e), we obtain
N(1 — ¢) =0 for all Necf(e), whence 1 — e cker (8(e)) = (1 — p(e))R.
Thus 1 — e =1 — pf(e), hence pf(e) < e. Set f = e — pb(e), which is
a central idempotent in R, and assume that f= 0. Then Q(f) > 0
for some Qe X, and we may define P*c P(R) by the rule P*(z) =
Q(fx)/Q(f). Pulling P* back to Pec P(R), we see that P < [1/Q(/)]Q,
whence [7, Corollary 3.3] shows that PcF. Clearly P* < Q and
so P* €« {N|Ne X}, hence P* = P. Thus P(x) = Q(fx)/Q(f) for all
xcR. Since ef = f, we obtain P(e) =1, whence Pcf(e) and so
1 — pd(e) eker (P). Now f = f(1 — pb(e)) belongs to ker (P), which
is impossible, because P(f) = 1. Therefore f = 0, i.e., 1f(e) = e.

Finally, consider any Ge . #. Since 1 — p(@G)cker(N) for all
NeG, we have N(#(G)) = 1 for all NecG, whence G Z 0p(G). Given
any PcOu(G), we have P(x(@)) =1, hence ker (G) = (1 — p(G))R <
ker (P). According to Corollary 3.6, P € G, and consequently PeG,
by Theorem 1.2. Therefore u(G) = G.

Therefore ¢ and g are inverse order isomorphisms, hence lattice
isomorphisms.
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LeMMA 3.8. Let R be a regular ring, let X be o monempty
subset of P(R), let R demote the X-completion of R, and let e € B(R).
Then eR is a simple ring if and only if e is an atom of B(R).

Proof. Obviously simplicity of eR implies atomicity of e. Con-
versely, assume that e is an atom, so that eR is indecomposable
as a ring. Since R is a regular, right and left self-injective ring
by Theorem 8.1, [18, Theorems 4.7, 5.1] show that eR is directly
finite, whence [16, Proposition 2.7] shows that eR is simple.

The following corollaries of Theorem 3.7 extend [6, Theorems
19, 22, 23] to the case of X-completions.

COROLLARY 3.9. Let R be a regular ring, and let X be a non-
empty subset of P(R). Then the following conditions are equivalent:

(a) The X-completion of R is a simple ring.

(b) X consists of a single extreme point of P(R).

(¢) The o-convex face generated by X is minimal among the
nonempty o-convex faces of P(R).

Proof. Let R denote the X-completion of R, let F denote the
o-convex face generated by X in P(R), and let .# denote the lattice
of o-convex faces of F.

(b) = (e): We have X = {N} for some extreme point N e P(R),
hence F = {N} as well, from which minimality is clear.

(¢) = (a): According to (¢), & = {@, F'}, hence Theorem 3.7
shows that B(R) = {0,1}. By Lemma 3.8, E is simple.

(a) = (b): Obviously B(R) = {0, 1}, hence .# = {@, F'}, by Theo-
rem 3.7. Choosing Ne F, we see that F is the o-convex face gen-
erated by N. According to Proposition 1.7, B equals the N-comple-
tion of R, whence [6, Corollary 20] shows that N is an extreme
point of P(R). Then {N}e %, whence F = {N}, and consequently
X = {N}.

COROLLARY 3.10. Let R be a regular ring, let X be a nonempty
subset of P(R), and let F be the o-convex face generated by X in
P(R). Then the set of simple ring direct factors of the X-completion
of R has the same cardinality as the set of extreme points of F.
This 1s also the same cardinality as that of the set of extreme
points of the face generated by X.

Proof. Let R denote the X-completion of R. According to
Lemma 3.8, the set of simple ring direct factors of R has the same
cardinality as the set of atoms of B(R). Using Theorem 3.7, we
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can put the atoms of B(R) in one-to-one correspondence with the
minimal (nonempty) o-convex faces of F. Finally, we see from
Corollary 3.9 that the set of minimal o-convex faces of F' has the
same cardinality as the set of extreme points of F.

If G is the face generated by X, then clearly any extreme point
of G is also an extreme point of F. Inasmuch as F' is the o-convex
hull of G (by Theorem 1.2), we conclude that any extreme point of
F must lie in G. Therefore F and G have the same extreme points.

COROLLARY 3.11. Let R be a regular ring, let X be a nonempty
subset of P(R), and let k be a positive integer. Then the following
conditions are equivalent:

(a) The X-completion of R is a direct product of k simple
rings.

(b) The o-comvex face generated by X can be generated by k
distinct extreme points of P(R).

(¢) The face generated by X is the convexr hull of k distinct
extreme points of P(R).

(d) The face generated by X has dimension k — 1.

Proof. Let R denote the X-completion of R, let F denote the
o-convex face generated by X in P(R), and let G denote the face
generated by X in P(R).

(a) = (b): Clearly B(R) is an atomic Boolean algebra with %
atoms, hence by Theorem 3.7 the same is true of the lattice of o-
convex faces of F. Thus F contains k distinct minimal (nonempty)
o-convex faces F, ---, F,, and F is generated by F,U---UF,.
According to Corollary 3.9, each F, = {N,} for some extreme point
N,e P(R). Then N, ---, N, are distinct extreme points of P(R),
and F' is the o-convex face generated by {N, ---, N.}.

(b) = (a): There exist distinct extreme points N, «--, N, € P(R)
such that F' is the o-convex face generated by {N, :---, N}. Then
the lattice of o-convex faces of F' is atomic with %k atoms (namely
(N}, -+, {N.}), hence by Theorem 3.7 the same is true of B(R).
Thus R is a direct product of k nonzero indecomposable rings, and
by Lemma 3.8 each of these indecomposable rings is simple.

(b) = (¢): There exist distinct extreme points N,, -+, N, € P(R)
such that F is the o-convex face generated by {N, :--, N,}. Since
each {N;} is a o-convex face of P(R), we see from Lemma 2.1 that
F equals the convex hull of {N, ---, N;}. Thus F = @, so that G
is the convex hull of {N, ---, N,}.

(¢) = (b): There exist distinct extreme points N,, ---, N, € P(R)
such that G is the convex hull of {N,, ---, N}. Since each {N,} is
a o-convex face of P(R), we see from Lemma 2.1 that G is o-
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convex. Thus F =G, and F is the o-convex face generated by
{NU Tt Nk}'

(¢) = (d): There exist distinct extreme points N,, ---, N, € P(R)
such that G is the convex hull of {N, ---, N,}. Thus the affine
span of G equals the affine span of {N,, ---, N,}, whence dim (G) <
kE—1. If dim(G) <k — 1, then the N, must be affinely dependent.
After renumbering, we obtain N, = a,N, + --- + «, N, for some real
numbers «,, ---, @, whose sum is 1. Renumbering once again, we
obtain an index ¢t with 2<t< %k such that «, ---,a, <0 and
Qspyy %y O > 0. Now N1 - azNz — atNt = at+1Nt+1 + -+ apN,,
and we note that 1 —a, — +-- —a, = a,,, + -+ + a, = > 0. Thus

(aft+1/:8)Nt+1 + o+ (ak/B)Nk = B_lNl - (az/B)Nz —_ (at/B)Nt )

so that some positive convex combination of N,., ---, N, equals a
convex combination of N,, ---, N,.

Let H be the convex hull of {N, ---, N,}, which is a face of
P(R) by Lemma 2.1. Since a positive convex combination of N,,,,
-++, N, lies in this face, we obtain N,,, ---, N, € H, whence G = H.
Using the implication (¢) = (a), we find that R is a direct product
of ¢ simple rings as well as a direct product of % simple rings.
Since ¢ < k, this is impossible. Therefore dim (G) =k — 1.

(d)=(¢): Let A denote the affine span of G in RZ.  Since
dim (A) =%k — 1< o, A is closed in R?, hence AN P(R) is closed in
P(R). Given any Pec AN P(R), we have P = a,N, + --- + a,N, for
some N, -+, N,€G and some real numbers «,, ---, @, whose sum is
1. After renumbering, we obtain an index t < s such that «, ---,
a, =<0 and «,,,, --+, a, > 0. Proceeding as above, we obtain a convex
combination B,P + B,N, + --- + BN, with B, >0 which equals a
convex combination of N,., ---, N,. Thus Z,P + BN, + --- + BN,
lies in the face G, whence Pe(G. Therefore AN P(R) = G, so that
G is closed in P(R).

Now G is a compact convex subset of RZ, hence the Krein-
Milman Theorem [14, p. 131] says that G is the closure of the con-
vex hull of its extreme points. Suppose G contains k + 1 distinct
extreme points P, :--P,,,. If H is the convex hull of these extreme
points, then H is a face of P(R) by Lemma 2.1, and the implication
(¢) = (d) says that dim (H) = k. Since H < G, this is impossible.
Thus G must have only h < k distinet extreme points P, «--, P;.
Since the convex hull of the finite set {P, ---, P,} is closed, G must
be the convex hull of {P, ---, P,}. Using the implication (c) = (d)
again, we find that dim (G) = h — 1, whence & = L.

COROLLARY 3.12. Let R be a regular ring, let X be a nonempty
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subset of P(R), and let F be the o-convex face gemerated by X in
P(R). Then the X-completion of R s a direct product of simple rings
iof and only if F can be generated by some collection of extreme
points of P(R).

Proof. Let R denote the X-completion of R, and let . denote
the lattice of o-convex faces of F.

If R is a direct product of simple rings, then B(R) must be
atomic, whence Theorem 3.7 shows that &% 1is atomic. Thus there
exist minimal (nonempty) g-convex faces F;,Z F such that F' = VV F;
in #. According to Corollary 3.9, each F, consists of a single ex-
treme point N,, hence F' is the o-convex face generated by the col-
lection {N,} of extreme points.

Conversely, assume that F' is generated by a collection of extreme
points of P(R). Then F is the supremum of a collection of atoms
in ., whence & is atomic. By Theorem 3.7, B(R) is atomic, hence
there exist orthogonal atoms e;c B(R) such that Ve, =1. Each
¢;R is a simple ring by Lemma 3.8. Since A (1 — ¢;) = 0 generates
the ideal N (1 — ¢,)R, we see that the ideal @ e;R has zero annihi-
lator in RB. Consequently, we obtain an injective ring map ¢: R —
M e;R. As in [5, Theorem 18], we conclude that ¢ is an isomor-
phism, whence R is a direct product of simple rings.

Let R be the simple regular ring of [6, Example C]. According
to [6, Lemma 31], P(R) has uncountably many distinct extreme
points. If F is the o-convex face generated by the extreme points
of P(R), then Corollaries 3.12 and 3.10 show that the F-completion
of R is a direct product of uncountably many simple rings.

4. Decomposition of completions.

PROPOSITION 4.1. Let R be a regular ring, let X, X, be non-
empty subsets of P(R) such that X, < X,, and let R, denote the X.-
completion of R.

(@) The natural map R/ker (X,) — R/ker (X)) extends uniquely
to @ continuous map ¢: R,— R,. Moreover, ¢ is a ring map.

(b) For each NcX,, let N denote the natural extension of N
to P(R,) and let N* denote the continuous extension of N to P(R)).
Then N* = N9.

(¢) If X* ={N*|NelX,}, then ker ¢ = ker (X7).

Proof. (a) The existence and uniqueness of ¢ are staBdard
properties of completions. Since the ring operations in each R, are
continuous, ¢ is a ring map.
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(b) is exactly analogous to [7, Lemma 2.4].

(e) If X, ={N|NeX,]}, then ker (X,) = 0 because R, is the X-
completion of R. Thus it follows from (b) that ker ¢={y.x, ker (Ng)=
ker (X}).

DEFINITION. In the situation of Proposition 4.1, we refer to ¢
as the natural map from R, to R,.

THEOREM 4.2. Let R be a regular ring, let X,, X, be nonempty
subsets of P(R), and let B, denote the X,-completion of R. If X, <X,
then the natural map ¢: B, — R, is surjective.

Proof. For all Ne X,, let N denote the natural extension of N
to P(R). For all Ne X, let N* denote the continuous extension
of N to P(R,), and note from Proposition 4.1 that N* = Ng. Set
X, ={N|NeX)} and X ={N*|NecX,}, and note from Proposition
4.1 that ker ¢ = ker (X7).

According to Lemma 3.2, there is a central idempotent ec R,
such that (1 — ¢)R, = ker (X7), and we note that e = 0. Set X} =
{N e X,|N(e) # 0}, which is nonempty because ker (X,) = 0. For each
Ne X!, we may define N'c P(R,) by the rule N'(z) = N(ex)/N(e).
Since N’ <[1/N(e)]JN, we have N’ « N, hence N’ ¢ X,. Setting
X, ={N'|Ne X;}, we thus have X, < X,.

Obviously 1 — ecker (X,). Given any xe R, for which ex # 0,
we have N(ew) = 0 for some Ne¢ X,. For this N, N(¢) # 0 as well,
whence Ne X, and N'(z) = 0. Thus ker (X)) = (1 — ¢)R, = ker (X¥),
hence Corollary 3.6 shows that X, € X*.

Now let «, denote the natural map R — R, and note that
¢, = 9. Given any xeR,, there exists a net {x;} & R such that
¢rs(2;) = W, (x;) — x in the X ,-topology. Since (1 — ¢)R, = ker (X}) =
ker ¢, we see that é(ey,(2,)) — 2 as well. Now

N*(evs(@;) — evro(we)) = N(g(evs(@)) — $(evs(wi)))

for all j, & and all Ne X,, hence the net {ey,(2,)} =R, must be Cauchy
with respect to X7. Inasmuch as X, € X, it follows that {evrs(2;)}
is also Cauchy with respect to X,. Since

Neyrs(z;) — edrs(m1)) = N(©)N"(evrs(w;) — evru(@,))

for all 4,k and all Ne X}, {evy(2;)} is Cauchy with respect to N for
all NeX;. In addition, we have N(eyy(x;) — ey,(%;,)) = N(e) = 0 for
all 7,k and all Ne X, — X;, hence {ey,(x;)} is Cauchy with respect
to N in this case as well. Therefore the net {ey,(x,)} S R, is Cauchy
with respect to X,.
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By completeness, there exists y € R, such that ey,(w;)—y in the
X,-topology. Since ¢ is continuous, ¢(ed,(x;) — o(y) in the X-
topology, and consequently #(y) = =.

Therefore ¢ is surjective.

DEFINITION. Let R be a regular ring, let {X;} be a nonempty
family of nonempty subsets of P(R), and for each i let R, denote
the X,-completion of R. If R denotes the (U X,)-completion of R,
then we have natural maps ¢,: R — R, for each i. Together, these
maps induce a map ¢: R — [] R,, which we of course call the natural
map.

COROLLARY 4.3. Let R be a regular ring, let {X,;} be @ nonempty
Jamily of nonempty subsets of P(R), and for each i let R, denote
the X,-completion of R. If R denotes the (U X,)-completion of R,
then the natural map ¢: R — [ R, yields an isomorphism of R onto
a subdirect product of the R,.

Proof. For each Ne U X,, let N denote the natural extension
of N to P(R). Set X, ={N|NeX,) for each i, and note from Prop-
osition 4.1 that ker (X,) equals the kernel of the natural map ¢,
R— R, As a result, ker¢ = Nkerg¢, = Nker (X, = ker(UX,) =0,
hence ¢ is injective. Inasmuch as each ¢, is surjective by Theorem
4.2, ¢(R) is a subdirect product of the R,.

THEOREM 4.4. Let R be a regular ring, let F be a nonempty
o-convex face of P(R), and let R denote the F-completion of R. Let
 denote the lattice of o-convex faces of F, and for each monempty
Ge Z let R; denote the G-completion of R. Then there is a lattice
isomorphism p: . — B(R) such that p(G)R = R, for all nonempty
Ge 7.

Proof. Set G ={N|NeG) for all Ge.&#. Using Theorem 3.7,
we obtain a lattice isomorphism p: . — B(R) such that (1 — #(G)R =
ker (G) for all Ge. <. Given a nonempty Ge.%, the natural map
¢o: R — R, is surjective by Theorem 4.2. Since ker (¢;) = ker (G) =
(1 — (@R by Proposition 4.1, we conclude that g, restricts to an
isomorphism of #(G)R onto R,.

Taking account of Proposition 1.7, Theorem 4.4 shows that when-
ever X £ Y are nonempty subsets of P(R), then the Y-completion
of R contains a copy of the X-completion of R. In particular, the
P(R)-completion of R is the “largest” completion, since it contains
copies of all the X-completions of R.
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PROPOSITION 4.5. Let R be a regular ring, let {X,} be a mon-
empty family of monempty subsets of P(R), amd for each k let R,
denote the X,-completion of R. Let R denote the (U X,)-completion
of R, for each Ne U X, let N denote the natural extension of N to
P(R), and for each k set X, = {N|Ne X,}. Then the natural map
¢: R—TI R, is an isomorphism if and only if ker (X,) + ker (X;) =R
for all ©+ 7.

Proof. Note that the natural map ¢,: R— R, is the composition
of ¢ with the projection [[ B,— R,. If ¢ is an isomorphism, then
clearly ker (¢,) + ker (¢,) = R for all 7 # j, whence Proposition 4.1
shows that ker (X,) + ker (X,) = R for all 4 = j.

Conversely, assume that ker (X,) + ker (X,) = R for all ¢ # j.
Using Lemma 3.2, we obtain central idempotents e¢,c R such that
(1 — ¢)R = ker (X,). Inasmuch as (1 — ¢)R + (1 — ¢;))R = R for all
i+ j, we see that the e, are pairwise orthogonal. Since R is the
(U X,)-completion of R, we have Nker (X,) =0, so that N(1 —¢,)R =0.
Thus the annihilator of the ideal @e,R is zero. Proceeding as in
[5, Theorem 18], we see that the natural map +: R — ][] ¢.R is an
isomorphism.

For each k, ker (¢, = ker (X,) = (1 — ¢,)R by Proposition 4.1,
hence ¢, induces a monomorphism 6,:e,R — R/ker (X,)— R,. Ac-
cording to Theorem 4.2, ¢, is surjective, whence 6, is an isomorphism.
As a result, these 6, induce an isomorphism 6: [] ¢,B — [[ B,. Ob-
serving that ¢ = 6+, we conclude that ¢ is an isomorphism.

THEOREM 4.6. Let R be a regular ring, let {X,} be a nonempty
family of monempty subsets of P(R), and let R denote the (U X)-
completion of R. For each k, let R, denote the X,-completion of R,
and let F, be the face generated by X, in P(R). Then the natural
map ¢: R— Tl R, is an isomorphism if and only if the faces F,
are pairwise disjoint.

Proof. For each Ne U X,, let N denote the natural extension
of N to P(R). For each %, set X, = {N|Ne X,}.

First assume that there exists P F; N F; for some ¢ # j. By
[7, Corollary 3.3], there exist @, in the couvex hull of X, and Q;
in the convex hull of F; such that P =< aQ,, aQ; for some a > 0.
Now P« Q, < X, < UZX,, hence P has a continuous extension P¢
P(R). By continuity, P < aQ,, @Q;, whence

ker (X)) + ker (X,) < ker (Q,) + ker (Q;) <ker(P)<R.

Then Proposition 4.5 says that ¢ is not an isomorphism.
Conversely, if ¢ is not an isomorphism, then by Proposition 4.5
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we must have ker (X,) + ker (X,) = R for some i # j. By Lemma
3.2, ker (X)) and ker (X;) are each generated by a central idempotent,
hence there is a central idempotent e % 0 in R such that (1 — ¢)R =
ker (X,) + ker (X;). Then N(e) # 0 for some Ne U X, hence we
may define Q@ ¢ P(R) by the rule Q(z) = N(ex)/N(e). Pulling @ back
to Qe P(R), we see that Q < [1/N(¢)]N, whence Q < N € U X,.
Inasmuch as ker (X,) + ker (X;) = (1 — ¢)R < ker (Q), Corollary 3.6
says that @ € X, X;. According to Theorem 1.2, @ lies in the o-
convex hulls of F;, and F;. Therefore F, and F'; are not disjoint,
by Lemma 2.5.

COROLLARY 4.7. Let R be a regular ring, and let {F,} be a
nonempty family of monempty faces of P(R). Let R denote the
(U F,)-completion of R, and for each k let R, denote the Fi-comple-
tion of R. If the F, are pairwise disjoint, then R = [] R,.

Theorem 4.6 and Corollary 4.7 are generalizations of [7, Theorem
4.3 and Corollary 4.4], for if Ne P(R) is a positive o-convex com-
bination of some P, e P(R), then the o-convex face generated by N
coincides with the o-convex face generated by the P,.

5. Extending pseudo-rank functions to completions. [7, Theo-
rem 7.4] gives a description of the closure of the face generated by
a subset X & P(R). This theorem is a bit awkward, because it is
not constructed in terms of the X-completion of B. A more natural
description of closures of faces is given by the following theorem.

THEOREM 5.1. Let R be a regular ring, let X be a nonempty
subset of P(R), and let R denote the X-completion of R. Let ¢:
R — R be the natural map, and let Pe P(R). Then P lies in the
closure of the face generated by X in P(R) if and only if P = P'¢
for some P'e P(R).

Proof. Since R is a regular, right and left self-injective ring
by Theorem 8.1, [17, Theorems 4.7, 5.1] show that R is directly finite.

Assume first that P = P'¢ for some P'c¢ P(R). If X={N|Ne X}
(where N denotes the natural extension of N to P(R)), then ker (X) =
0 < ker (P’), hence [7, Theorem 7.1] says that P’ lies in the closure
of the face generated by X in P(R). As a result, we infer that
P = P'g lies in the closure of the face generated by X¢ = X.

Conversely, let F' denote the face generated by X in P(R), and
assume that P lies in the closure of F. By Theorem 1.2, N X
for each N e F, hence each such N has a continuous extension N ¢
P(R) such that Ng = N. If ¢*: P(R) — P(R) is the map induced by
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#, we thus have F C ¢*(P(R)). Now ¢*(P(R)) is a continuous image
of a compact space and so is compact, hence closed in P(R). There-
fore ¢*(P(R)) contains the closure of F, whence Peg¢*(P(R)), i.e.,
P = P’ for some P’ e P(R).

6. Completeness versus self-injectivity. Theorem 3.1 shows
that any regular ring R which is complete with respect to a non-
empty set X of pseudo-rank functions is right and left self-injective.
Since self-injectivity may be viewed as an algebraic completeness
property, it is natural to ask about the converse implication: If R
is a regular, right and left self-injective ring, must R be complete
with respect to some family of pseudo-rank functions? For inde-
composable rings, the next theorem shows that the answer is yes.
In general, we show that the answer depends on whether or not
B(R) is complete, and can be negative.

THEOREM 6.1. Let R be a regular, right and left self-injective
ring which s tndecomposable (as a ring). Then there exists a unique
rank function N on R, and R is complete in the N-metric.

Proof. By [18, Theorems 4.7, 5.1], R is directly finite, whence
[16, Proposition 2.7] shows that R is a simple ring. In addition,
[5, Lemma 5, p. 832] shows that for any z, ¥ € R, either xR < yR
or yR < xR, i.e., R satisfies the “comparability axiom” of [9, p. 812].
As a result, [9, Corollary 3.15] shows that there exists a unique
rank function N on R.

According to [17, Corollary to Theorem 1], the lattice L(R) of
principal right ideals of R is continuous, i.e., L(R) is a continuous
geometry. Since R is indecomposable, L(R) is irreducible [19, Theo-
rem 2.9, p. 76]. As a result, [19, Theorem 17.4, p. 230] says that
R is complete in the N-metrie.

In general, a regular ring may be complete with respect to some
families of pseudo-rank functions but not others. As the following
example shows, there exists a regular, right and left self-injective
ring R with rank functions N, N’ such that R is complete in the
N-metric but not in the N’-metric.

Choose fields F, F,, --- and set R = [[ F,, which is a regular
self-injective ring. If ¢, denotes the unit of F',, then R/(1—e,)R=F,,
hence there exists a unique pseudo-rank function P,c P(R) with
ker (P,) = (1 — e¢,)R. Setting N = >, P,/2", we obtain a rank func-
tion N on R, and it is clear that R is complete in the N-metric.
Now choose a maximal ideal M of R which contains @ F,. There
is a unique pseudo-rank function Pe P(R) with ker (P) = M, and
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we set N’ = (N + P)/2 which is a rank function on R. If R is
complete in the N'-metric, then we see from Lemma 3.2 then 3 ¢,—1
in the N’-metric. However, Y.o, N'(e,) = 1/2, hence this is impossi-
ble. Therefore R is not complete in the N’-metric.

We now proceed to show that a regular ring R is complete with
respect to a family X of pseudo-rank functions provided only that
B(R) is complete with respect to X. As with Theorem 3.1, we must
first prove the case of a single pseudo-rank function. In this case,
the proof of [19, Theorem 17.4, p. 230] may be applied, once we
have shown that the pseudo-rank function involved satisfies a certain
countable additivity property, as follows.

DEFINITION. Let R be a regular ring, let Ne P(R), and let J
be a right ideal of R. We shall say that N is countably additive
on J provided that whenever xR, z,R, --- is a countable sequence
of independent principal right ideals contained in J and @ z,R is
essential in xR for some ze.J, then N(x) = 3, N(z,). If this holds
for J = R, then we simply say that N is countably additive.

LEMMA 6.2. Let R be a regular ring, let Ne P(R), let J be a
right 1deal of R, and assume that N is countably additive on J. If
X, Xy, Xy o €J and >, R is essential in xR, then N(z) £ 3, N(z,).

Proof. We may choose independent principal right ideals
¥R, YR, -+ = J such that yRP--- Dy, R=sR + --- + 2,R for
all k. Since N is countably additive on J, we obtain N(z) = >, N(%..).
In addition, we have yRP :-- Py, R S 2, RP --- P «x,R for each k
and so N(y,) + -+ + N:) < N(®,) + --+ + N(z,), by [7, Lemma 6.6].
Thus N(@) = 3 N(y.) = > N(z,).

LEMMA 6.3. Let R be a regular, right and left self-injective
ring with a rank function N. Let e be an idempotent in R such
that N is countably additive on (1 — e)R. Then (1 — e)Re ts com-
plete in the N-metric.

Proof. Let L(R) denote the lattice of principal right ideals of
R, which is continuous by [17, Corollary to Theorem 1].

Let {x,} be a Cauchy sequence in (1 — ¢)Re. By passing to a
subsequence, we may assume that N(z; — ;) < 1/2*** whenever
i, J = k. Now define ¢,R, bR, cR e L(R) as follows: a,R = (¢ + x,)R,
bR =ES s a,R), cR =N bR. Note that R < bR for all k
and that bR = bR = ---. Since z,€(1 — ¢)R and ¢ + z,ea,R, we
see that ¢,R + (1 — ¢) R = R, whence bR + (1 — e)R = R for all k.
Inasmuch as L(R) is lower continuous, we thus obtain
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cR+<1—e)R=<ﬁka>+<1—e>R=fj[b,,R+<1—-e)R]:R.

As a result, there exists an idempotent f e R such that fR < ¢R and
A - R =01 - ¢R.
Since (1 — f)R = (1 — ¢)R, we have Rf = Re, hence f = fe and
e =-¢f. As a result, we see that the element = =f — e lies in
(1 — e¢)Re. Note also that ¢ + 2 = fecR. We shall show that z, — 2.
Whenever n = k,

a,R=(¢+w)R=c+a+ 2 @; — ;IR
j=k+1
<(e+m)R + g @5~ 5, )RS 0.k + % (@ — @, )R .

Defining d,R = EQ 7k, (2; — 2;_)R) = (1 — ¢)R, we thus have a,R <
a,R + d,R for all n = k. As aresult, >v,a,R = a,R + d,R, whence
bR<aR+d,R. We also have bR = a,RPu,R for some u,
whence ¢, RPu,R=a,.R+ R S a,RHd,R. According to [18,
Theorems 4.7, 5.1], R is directly finite, hence [8, Corollary 3.9] im-
plies that u,R < d,R. Since d, e (1 —¢)R and all z; —z;_, € (1 — ¢)R,
we may use Lemma 6.2 to obtain

Nw) < N = 33 Niw; — ;) < 3, 1/20 = 1/2*

for all k.

Now fecR<b,R=a,R+wuw,R=(¢+x,)R+u,R, hence f= (e+x,)r+
u,s for some 7, s€ R. Since z,€ (1 — ¢)Re, ¢ + x, is idempotent, so
that (e + #,)f = (¢ + x,)r + (¢ + x,)u,s. We also have ¢ + x,€ Re =
Rf, hence e+, = (¢ + x,)f = (e + 2,)r + (¢ + )Us = [ — w8 +
(e + z)u,s = f + (e + ., — Du,s. Consequently,

o, —rv=(C+x)—(e+ax)=¢+2x,—f=(€+ 2, — Dus,

and so N(z, — 2) = N(u,) < 1/2%.
Therefore z, — x.

THEOREM 6.4. Let R be a regular, right and left self-injective
ring with o ronk function N. Then N is countably additive if
and only if R is complete in the N-metric.

Proof. First assume that R is complete, and let 2,R, 2,R, ---
be independent principal right ideals such that @ x,R is essential in
some principal right ideal zR. For each %, choose y,€ R such that
YyR=2RP---PwR. Then yyR<y,R< --- and Uy, R is essential
in xR, whence Lemma 3.4 says that N(z) = sup N(y,). Since N(y,) =
N(z) + --- + N(z,) for all k, we obtain N(z) = 3, N(x,). Thus N
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is countably additive.

Conversely, assume that N is countably additive, and let T
denote the ring of all 2 X 2 matrices over B. By [12, Theorem 1],
N induces a rank function P on T such that P<g 2) = N(z) for all

zeR. Given ze R, (8’ 8>T and <8 2)T are isomorphic principal right

ideals of T such that <g 8>T@<8 2>T = <g 2>T, from which we

x 0\ _ 02\;n _ (20 02\ _
see that P(O 0> = N(z)/2. Also, <0 O)T = (0 0>T, hence P<O 0) =
N(z)/2 as well.

The rule zR — (g 8>T defines an isomorphism from the lattice of

principal right ideals of R onto the lattice of those principal right

ideals of T which are contained in <(1) 8>T Inasmuch as P(ﬁ 8) =

N(z)/2 for all x€ R, we infer from the countable additivity of N

that P must be countably additive on (1 O>T. As a result, Lemma

00
6.3 shows that 8 183) is complete in the P-metric, from which we

conclude that R is complete in the N-metric.

The result of Theorem 6.4 is used in the proof of [10, Corollaire
2.8], although the reference quoted there only covers the case in
which the ring is indecomposable.

DEFINITION. Let R be a regular ring, and let X be a nonempty
subset of P(R) such that ker (X) =0. We shall say that B(R) is
orthogonally complete with respect to X provided that for any
orthogonal family {e;} = B(R), 3, e; converges to some ¢ € B(R). Note
that when >)e,—e¢, we have ¢ = Ve,. Thus if B(R) is orthogonally
complete with respect to X, then B(R) is also complete as a lattice.

For the case of a rank function N, we proceed to show that if
R is self-injective and B(R) is orthogonally complete with respect
to N, then R is complete in the N-metric. In order to accomplish
this, we must consider the Type I and Type II cases separately.
(See [8, 15] for the definitions.)

PROPOSITION 6.5. Let R be a regular, right and left self-injec-
tive ring of Type I with a rank function N. If B(R) is orthogo-
nally complete with respect to N, them R is complete in the N-metric.

Proof. Case 1. R is abelian.

Let z,R, 2,R, --- be an independent family of principal right
ideals of R, and let @ z,R be essential in some principal right ideal
2R. Choose idempotents e, e, e, -+- € R such that e¢R = xR and
¢e,R = x,R for all n. Since R is abelian, we have ¢, ¢, €, -+ € B(R),
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the ¢, are pairwise orthogonal, and ¢ = Ve,. Inasmuch as B(R) is
orthogonally complete with respect to N, Y,e¢,— Ve, =e¢ in the
N-metric, whence >, N(z,) = 3, N(e,) = N(¢) = N(x). Therefore N is
countably additive, hence Theorem 6.4 says that R is complete in
the N-metric.

Case I1I. R is Type I, for some n.

There exist n X n matrix units e¢;; € R such that the ring T =
e, Re,, is abelian. We may define a rank function P on T by the
rule P(z) = N(x)/N(e,). Inasmuch as the rule er—e,e defines an
isomorphism of B(R) onto B(T), we infer that B(T) must be or-
thogonally complete with respect to P. As a result, Case I shows
that 7 is complete in the P-metric, hence also in the N-metric. For
any 1, j, there is an additive isomorphism of T onto ¢;Re;; given by
the rule x> e, e ;, and we observe that N(x) = N(e,we,;) for all ze T.
Thus each ¢;Re;; must be complete in the N-metric, whence R is
complete in the N-metric.

Case III. General case.

According to [17, Theorems 4.7, 5.1], R is directly finite, hence
Type I;. Consequently, R is isomorphic to a direct product of rings
of Type I, [8, Corollary 6.5], [16, Corollaire 3.5]. Thus there exist
orthogonal central idempotents e, ¢, --- € B(R) such that Ve, =1,
each ¢, R is Type I,, and R = [] e, R.

Whenever ¢, # 0, we may define a rank function P, on ¢,R by
the rule P,(x) = N(x)/N(e,). Since B(e¢,R) = B(R)Ne,R, B(e,R) is
orthogonally complete with respect to P,, whence Case II shows that
e, R is complete in the P,-metric and thus in the N-metric.

Given any Cauchy sequence {z,} & R, it follows that for each
n, the sequence {e,z, e,%,, *-+} converges to some y, €¢,R. Inasmuch
as R = [[ ¢,R, we thus have y € R such that e,y = y, for all =, i.e.,
e, %, — e,y for each n. Also, because B(R) is orthogonally complete,
we have 3 ¢,— Ve, =1, whence >, ¢,2,—w, for all £ and >}, e,y—v.
Thus z, — .

LEMMA 6.6. Let R be a regular, right self-injective ring, and
let X be a monempty subset of P(R) such that ker (X) = 0. Let
z, Y€ R and g€ B(R).

(a) If N(ex) = N(ey) for all e < g in B(R) and all Ne X, then
grxR < gyR.

(b) If N(ex) = N(ey) for all e < g in B(R) and all Ne X, then
gxR = gyR.

Proof. (a) By [16, Théoréme 1.1] or [8, Theorem 3.3], there
exists ee B(R) such that egyR < egxR and (1 — e)gzR < (1 — e)gyR.
Then egaoR =aR@bOR with aR = egyR, and N(b) = N(egx) — N(egy) <0
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for all Ne X. Since ker (X) =0, we obtain b = 0, hence egaR =
egyR. Thus gzR < gyR.
(b) 1is proved in the same manner.

LEMMA 6.7. Let R be a regular ring, let X be a monempty
subset of P(R) such that ker (X) = 0, and assume that B(R) is or-
thogonally complete with respect to X. Let ¢: B(R)— R be a con-
tinuous map such that ¢le + f) = ¢(e) + ¢(f) for all orthogonal
e, fe B(R). Then there exists ge B(R) such that ¢(e) =0 for all
e<1— g in B(R) and ¢(e) <0 for all nonzero e < g in B(R).

Proof. Set A ={feB(R)|¢(e) =0 for all ¢ <f in B(R)}, and
choose a maximal orthogonal family {h,;} & A. By orthogonal com-
pleteness, > h; converges to some h e B(R). Given ¢ < h in B(R),
we note that {eh,} is an orthogonal family in B(R) such that > eh,—e.
For any finite set F' of indices, we have ¢(3creh;) = Scrdleh) =0
since each h,€ A. Thus ¢(¢) = 0, by continuity.

Setting ¢ =1 — he B(R), we now have ¢(¢) =0 foralle<1—g
in B(R).

Now consider any nonzero ¢ < g in B(R). Since ¢ is orthogonal
to each h,, it follows from the maximality of the family {A,} that e
does not lie above any nonzero member of A. As a result, each
nonzero f < e¢ in B(R) must lie above some member of the set B =
{fe B(R)|¢(f) < 0}. Consequently, there exists an orthogonal family
{f;} € B such that V f; =e¢, and by orthogonal completeness we
obtain >} f;—e. Choose a particular index k. Given any finite set
F of indices such that ke F, we have ¢(3;crf;) = Diero(f) < ¢(f2)
since each f;e B. By continuity, ¢(e) < 4(f,) < 0.

PROPOSITION 6.8. Let R be a regular, right self-injective ring
of Type II with a rank function N. If B(R) is orthogonally com-
plete with respect to N, then N is countably additive.

Proof. Let xR, 2,R, --- be independent principal right ideals
of R, and let @ x,R be essential in some principal right ideal xR.
For k=1,2,---, we have 2, R --- xR =< xR, whence N(z,) +
«++ + N(z,) = N(z). Thus > N(z,) = N(x). Suppose that >, N(z,) <
N(x), and choose a positive integer ¢ such that > N(z,) < N(=) — (1/¢).

The rule ¢(e) = 3, N(ex,) — N(ex) + N(e)/t defines a continuous
map ¢: B(R) — R such that ¢(e + f) = ¢(e) + ¢(f) for all orthogonal
idempotents e, fe B(R). Applying Lemma 6.7, we obtain ¢< B(R)
such that > N(ex,) = N(ex) — N(¢)/t for all e <1 — ¢ in B(R) and
>, N(ex,) < N(ew) — N(e)/t for all nonzero ¢ < g in B(R). Inasmuch
as >, N(z,) < N(z) — (1/t), we see that g + 0.
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Since R is Type II, it contains no nonzero abelian idempotents,
hence [8, Proposition 5.8] says that there is some y e R for which
t(yR) = R. Note that t(gyR) = gR * 0, whence gy # 0. Note also
that N(ey) = N(e)/t for all ee B(R). For all nonzero e < g in B(R),

N(ey) = N(e)/t = N(e)/t + >, N(ex,) < N(ex) ,

hence N(ey) < N(ex) for all ¢ < ¢ in B(R). According to Lemma 6.6,
gy R < gxR, hence gyR = zR for some nonzero z € gxR. Write g2R =
2R @ wR for some w, and note that

> N(ex,) < N(ex) — N(e)/t = N(ex) — N(ez) = N(ew)

for all nonzero ¢ < g in B(R).

In particular, N(ex,) < N(ew) for all ¢ < ¢ in B(R), hence Lemma
6.6 shows that gx,R = w,R for some w,c€wR. Next, wR = w,R®
u, R for some u,, and

Nlez,) = 3. N(ew,) — N(ex,) = N(ew) — N(ew,) = N(eu,)

for all ¢ < g in B(R), hence Lemma 6.6 shows that gz,R = w,R for
some w, € u,B. Continuing in this manner, we obtain an independent
sequence w, R, w,R, -+ < wR such that gz,R = w,R for all n. Thus
P gz, R < wR. Inasmuch as € gz,R is essential in gzR, it follows
that g2R < wR. But then N(z) + N(w) = N(gz) < N(w) and so N(z) =0,
which contradicts the fact that z # 0.

Therefore >, N(z,) = N(z), so that N is countably additive.

THEOREM 6.9. Let R be a regular, right and left self-injective
ring with a rank function N. Then R is complete in the N-metric
if and only if B(R) is orthogonally complete with respect to N.

Proof. Obviously completeness of R implies orthogonal com-
pleteness of B(R). Conversely, assume that B(R) is orthogonally
complete.

According to [18, Theorems 4.7, 5.1], R is directly finite, hence
[8, Corollary 7.6] shows that there is some g€ B(R) such that gR
is Type I; and (1 — g)R is Type II;. If g # 0, then we may define
a rank function P on gR by the rule P(xz) = N(x)/N(g). Observing
that B(gR) is orthogonally complete with respect to P, we see from
Proposition 6.5 that gR is complete in the P-metric, hence also in
the N-metric. If 1 — g # 0, then we may define a rank function @
on (1 — g)R by the rule Q(x) = N(x)/N(1 — g). According to Proposi-
tion 6.8, @ is countably additive, whence Theorem 6.4 shows that
(1 — 9)R is complete in the Q-metric, and thus also in the N-metric.

Therefore gR and (1 — g)R are both complete in the N-metric,
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whence R is complete in the N-metric.

THEOREM 6.10. Let R be a regular, right and left self-injective
ring, and let X be a nonempty subset of P(R) such that ker(X) = 0.
Then the following conditions are equivalent:

(a) R 1is complete with respect to X.

(b) B(R) ts orthogonally complete with respect to X.

(¢) Every ideal of B(R) which is closed tn the X-topology ts
principal.

Proof. (a)=1(c): If I is an ideal of B(R) which is closed in the
X-topology, then we check that IR is a two-sided ideal of R which
is closed in the X-topology. According to Lemma 8.2, IR = e¢R for
some e € B(R), whence I = ¢B(R).

(¢)=(b): Let {e;]ieI} be a family of pairwise orthogonal
idempotents in B(R). Let & be the family of nonempty finite
subsets of I, and set ¢, =3 ,;.-¢; forall Fe &. Set J={ecB(R)¢e=e;
for some Fe.#}, and note that J is an ideal of B(R). If K is the
X-closure of J, then K is an ideal of B(R), and (¢) says that K is
generated by some fe B(R). In particular, note that ¢, < f for all
Fe 7.

Given Ne X and ¢ > 0, there is some ¢ € J such that N(¢ — f) <e,
and ¢ < ¢, for some F'e &#. Whenever G2 F in &#, we have ¢ =<
exr <6<, hence [ —e; = (f—es)(f —e) and so N(f —es) < N(f —e¢) <e.
Thus 3¢, — f, so that B(R) is orthogonally complete.

(b) = (a): According to Corollary 2.7, there exists a facially in-
dependent set Y ={N,} S P(R) such that Y and X generate the same
g-convex face in P(R). In view of Corollary 1.3 and Proposition 1.7,
we see that B(R) is orthogonally complete with respect to Y, and
that it suffices to prove that R is complete with respect to Y.
Therefore we may assume, without loss of generality, that X — Y.
For each %, let F', be the face generated by N, in P(R).

For each k&, ker (N,) is a two-sided ideal of R which is closed in
the X-topology. Using (b), we see (as in Lemma 3.2) that ker (N,) =
(1 — ¢, )R for some ¢,c B(R). Now N, restricts to a rank function
on ¢, R, and since B(R) is orthogonally complete with respect to X
we see that B(e,R) is orthogonally complete with respect to N,. As
a result, Theorem 6.9 shows that ¢,R is complete in the N,-metric.
If ¢, denotes the natural map from R into its N,-completion E,,
we thus have shown that ¢, is surjective. Recall that ker (¢,) =
ker (N,) = (1 — e,)R.

Suppose that e;e, = 0 for some j # k. Then we may define pseudo-
rank functions N, N;e€ P(R) by the rules Nj(z) = Nj(e;e.x)/N;(ese,)
and Ni(x) = N,(e;e.x)/Ny(eje,). By [7, Corollary 3.3], N;€F; and
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N,eF,. Set N=(Nj+ N.)/2, and note that N, N;, and N, all
restrict to rank functions on e;e,R. Given orthogonal idempotents
{f.} S Blese,R), (b) says that >\ f, must converge (in the X-topology)
to some feB(R), and we note that fe B(ee,R). In particular,
> f.—f in the N;-metric and the N,-metric, from which we infer
the ) f,—f in the N-metric. Therefore B(e,e,R) is orthogonally
complete with respect to N, hence Theorem 6.9 says that e;e, R is
complete in the N-metric. Note that Nj, N, < N. Inasmuch as N;
and N, both restrict to rank functions on ¢, R, it now follows
from [7, Lemma 4.1] that these restrictions are facially dependent
in P(ese,R). Consequently, there exist Pe P(eje,R) and a > 0 such
that P < aNj, N, on e, R. Defining P to be zero on (1 — ¢;e,)R,
we obtain Pe P(R) such that P<aN}, aN,. Using [7, Corollary 3.3]
again, we find that Pe F; N F,, which is impossible.

Therefore e;e,=0 for all j=k. We thus have pairwise orthogonal
central idempotents e, such that the annihilator of the ideal @ e, R
is N1 —¢)R= Nker(N,) =ker(X)=0. As in [5, Theorem 18],
it follows that the natural map R — ][] ¢,R is an isomorphism. In-
asmuch as each ¢,: R— R, is surjective with kernel (1 — ¢,)R, we
now see that the map ¢: R— [[ B, induced by the ¢, must be an
isomorphism.

Finally, let R denote the X-completion of R, let «: R— R and
0: R— [ R, be the natural maps, and note that f4 = ¢. Since the
faces F', are pairwise disjoint, we conclude from Theorem 4.6 that
# is an isomorphism. Therefore the inclusion map + = 67'¢: R — R
is an isomorphism, whence R is complete with respect to X.

Returning to our original question, we now see that in order
for a regular self-injective ring R to be complete with respect to
some nonempty X & P(R), we need only find such an X such that
B(R) is orthogonally complete with respect to X. However, this is
not always possible, as the following example shows.

By [4, Theorem 2.2], there exists a nonzero Boolean algebra B
with the countable chain condition such that no direct summand of
B has a strictly positive finitely additive measure. Considering B
as a (commutative) regular ring in the usual way, this says that B
contains no uncountable direct sums of nonzero ideals, and that there
does not exist a rank function on any direct summand of B.

Now let R be the maximal quotient ring of B, which is a regu-
lar self-injective ring. In fact, R is the Boolean completion of B
[3, Theorem 5], so that B(R) = R. Since B; is essential in R;, we
see that R does not contain any uncountable direct sums of nonzero
ideals (i.e., as a Boolean algebra, R satisfies the countable chain
condition). Suppose there is an idempotent ¢ € R such that there is
a rank function N on eR. Then e # 0, hence there exists a nonzero
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idempotent feeR N B. But then N induces a rank function on fB,
which cannot happen. Thus there does not exist a rank function
on any direct summand of R.

If R is complete with respect to some family of pseudo-rank
functions, then using Theorem 4.6 we see that R must be isomorphic
to a direct product J] R,, where each R, is complete with respect
to a rank function N,. But then there exist rank functions on some
direct summands of R, which is false. Therefore R is not complete
with respect to any family of pseudo-rank functions.

Returning to the general case, we are left with the following
problem: Given a regular, right and left self-injective ring R, when
is B(R) orthogonally complete with respect to some family of pseudo-
rank functions? Since all pseudo-rank functions on B(R) extend to
pseudo-rank functions on R by [7, Corollary 6.10], we need only
look for a suitable family of pseudo-rank functions on B(R). This
reduces the problem to Boolean algebras. For the case of a single
pseudo-rank function, we thus have the following problem: Given a
Boolean algebra B, when does there exist a rank function N on B
such that B is complete in the N-metric? Obviously B must be
complete and satisfy the countable chain condition, but the example
above shows that these conditions are not sufficient. Rather com-
plicated necessary and sufficient conditions on B may be found in
[13, Theorems 4, 9] and [15, Theorem 4].
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