TANGENT WINDING NUMBERS AND BRANCHED MAPPINGS

J. R. Quine

Abstract

The notion of tangent winding number of a regular closed curve on a compact 2 -manifold M is investigated, and related to the notion of obstruction to regular homotopy. The approach is via oriented intersection theory. For N, a 2-manifold with boundary and $F: N \rightarrow M$ a smooth branched mapping, a theorem is proved relating the total branch point multiplicity of F and the tangent winding number of $\left.F\right|_{\partial N}$. The theorem is a generalization of the classical RiemannHurwitz theorem.

1. Introduction. Let M be a smooth, connected, oriented 2manifold and let f and g be regular closed curves on M with the same initial point and tangent direction. An integer obstruction to regular homotopy $\gamma(f, g)$ is derived which is uniquely defined if $M \neq S^{2}$ and defined $\bmod 2$ if $M=S^{2}$. Let $F(t, \theta)$ be any homotopy such that $F(0, \theta)=f(\theta)$ and $F(1, \theta)=g(\theta)$ and F is smooth on the interior of the unit square. It is shown that $\gamma(f, g)=I\left(\partial F / \partial \theta, M_{0}\right)$, where M_{0} is the zero section as a sub-manifold of $T M$, and I denotes the total number of oriented intersections. This is given interpretation as the number of loops acquired by curves $F(t)=,f_{t}$ in homotopy.

If M is compact and y is not on the image of f, then we define twn $(f ; y)$, a generalization of the tangent winding number. We show that $\gamma(f, g)=\operatorname{twn}(g ; y)-\operatorname{twn}(f ; y)+I(F, y) \chi(M)$, where is the Euler characteristic. If N is a 2-manifold with boundary and $F: N \rightarrow M$ is a smooth branched mapping and $\partial F=\left.F\right|_{\partial N}$, we show that $\operatorname{twn}(\partial F ; y)+I(F, y) \chi(M)=\chi(N)+r$, where r is the total branchpoint multiplicity and y is not in $F(\partial N)$. We show that the Riemann-Hurwitz theorem follows as a corrollary.
2. The obstruction to regular homotopy. Let M be a smooth, connected 2 -manifold with Riemannian metric. Let $T M$ be the tangent bundle and $\widetilde{T} M$ the unit tangent or sphere bundle. Let $f: R \rightarrow M$ with $f(\theta)=f(\theta+1)$ for all $\theta \in R$ be a regular closed curve on M, that is, f has continuously turning, nonzero tangent vector at each point. Given $F:[0,1] \times R \rightarrow M$ continuous with $F(t, \theta)=F(t, \theta+1)$ for all $\theta \in R$, then F is said to be a regular homotopy if each closed curve $F(t$,) is regular for $0 \leqq t \leqq 1$. We say the curves $f(\theta)=F(0, \theta)$ and $g(\theta)=F(1, \theta)$ are regularly homo-
topic.
Suppose now that f and g are regular closed curves with $f(0)=g(0)=y_{0}$. Let \widetilde{f} and \widetilde{g} be the closed curves on $\widetilde{T} M$ obtained by taking the unit tangent vector at each point of f and g respectively. Suppose that $\widetilde{f}(0)=\widetilde{g}(0)=\widetilde{y}_{0}$. Smale [9] has shown that f and g are regularly homotopic iff \widetilde{f} and \widetilde{g} are homotopic. Using this result we define the obstruction to regular homotopy, $\gamma(f, g)$, as follows.

Let S^{1} be the fiber of $\widetilde{T} M$ over y_{0}. Since $\Pi_{2}(\widetilde{T} M)=0$ for any 2-manifold M (this is clear if $\Pi_{2}(M)=0$ and can be verified directly if M is S^{2} or the projective plane), we have the following portion of the exact homotopy sequence of the bundle $\widetilde{T} M$ over M

$$
\begin{equation*}
0 \longrightarrow \Pi_{2}(M) \xrightarrow{\phi} \Pi_{1}\left(S^{1}\right) \xrightarrow{\mu} \Pi_{1}(\widetilde{T} M) \xrightarrow{\dot{\psi}} \Pi_{1}(M) . \tag{1}
\end{equation*}
$$

The sequence (1) induces an isomorphism

$$
j: \operatorname{ker} \psi \longrightarrow \Pi_{1}\left(S^{1}\right) / \operatorname{im} \phi .
$$

If f and g are homotopic, then the product $[\tilde{g}][\tilde{f}]^{-1}$ is in ker $\dot{\psi}$. Writing $\alpha=j\left([\widetilde{g}][\tilde{f}]^{-1}\right)$, Smale's theorem says that f and g are regularly homotopic iff $\alpha=0$.

Now in what follows suppose M is oriented. This gives us a natural choice of orientation on S^{1} as the fiber of $\widetilde{T} M$ at y_{0}, which in turn determines a "positively oriented" generator of $\Pi_{1}\left(S^{1}\right)$. This generator determines an isomorphism of $\Pi_{1}\left(S^{1}\right)$ with the integers Z. Now $\Pi_{2}(M)=0$ unless $M=S^{2}$. Identifying $\Pi_{1}\left(S^{1}\right)$ with Z, we see that $\operatorname{im} \phi=2 Z$ in case $M=S^{2}$. (Since the Euler characteristic of S^{2} is 2 , the fundamental 2 -cycle is mapped into 2 by \varnothing.) Thus for $M \neq S^{\gamma}, \alpha$ is an integer which we denote $\gamma(f, g)$. If $M=S^{2}, \alpha$ is an element of Z_{2}. In this case we write $n=\gamma(f, g)$ if the integer n determines the class α in Z_{2}. We will refer to $\gamma(f, g)$ as the obstruction to regular homotopy. We remark that $\gamma(f, g)$ is only defined if f and g are homotopic. In the next section we will show how to characterize $\gamma(f, g)$ using intersection theory and in a later section we explain its relationship to tangent winding numbers on surfaces as in Reinhart [8] and Chillingworth [1].
3. A characterization of $\gamma(f, g)$. Let f, g and M be as in the previous section. We will continue to assume that M is oriented. Suppose $F(\theta, t)$ is a homotopy, not necessarily regular, with $F(0, \theta)=$ $f(\theta)$ and $F(1, \theta)=g(\theta)$ for all θ. Let K be the square $[0,1] \times[0,1]$ and write $F: K \rightarrow M$. Now the pullback bundle $F^{*}(T M)$ is trivial over K, so we can find vector valued functions $v_{1}, v_{2}: K \rightarrow T M$ such that the ordered pair $\left(v_{1}(x), v_{2}(x)\right)$ is positively oriented in $T M_{F(x)}$
for all $x \in K$. Now consider $\partial / \partial \theta$ as a section of $T K$ and write $F_{*} \circ(\partial / \partial \theta)=(\partial F / \partial \theta): K \rightarrow T M$. Write $(\partial F / \partial \theta)(x)=p_{1}(x) v_{1}(x)+p_{2}(x) v_{2}(x)$ where $p=\left(p_{1}, p_{2}\right): K \rightarrow R^{2}$. By the definition of the map μ in the exact sequence (1), we see that the preimage of $[\widetilde{g}][\widetilde{f}]^{-1}$ under is just deg $\left.(p /|p|)\right|_{\partial K}$, where ∂K is the positively oriented boundary of $K,| |$ is the usual Euclidean norm in R^{2}, and deg is topological degree. Thus $\gamma(f, g)=\left.\operatorname{deg}(p /|p|)\right|_{\partial K}$. If $M=R^{2}$ and $v_{1}=(1,0)$, $v_{2}=(0,1)$ then $\gamma(f, g)=\operatorname{twn} g-\operatorname{twn} f$, where twn denotes tangent winding number.

Now suppose x is an isolated zero of $\partial F / \partial \theta$ and D is a closed coordinate disc containing x, but no other zeros of $\partial F / \partial \theta$. We define

$$
\operatorname{ind}_{x} \frac{\partial F}{\partial \theta}=\left.\operatorname{deg} \frac{p}{|p|}\right|_{\partial D}
$$

This is easily verified to be independent of the choice of v_{1} and v_{2}. Thus if all the zeros of $\partial F / \partial \theta$ are isolated, then

$$
\gamma(f, g)=\sum_{x \in S} \operatorname{ind}_{x} \frac{\partial F}{\partial \theta}
$$

where S is the set of zeros of $\partial F / \partial \theta$.
Now suppose that F is smooth on int K, and let M_{0} be the zero section of $T M$ considered as a smooth, oriented 2 -submanifold of $T M$. If $\partial F / \partial \theta$ intersects M_{0} transversely at $x \in K$, then $\operatorname{ind}_{x} \partial F / \partial \theta$ is the same as the oriented intersection number of $\partial F / \partial \theta$ with M_{0} at x. (For an explanation of intersection numbers see Guillemin and Pollack [3].) Thus $\gamma(f, g)=I\left(\partial F / \partial \theta, M_{0}\right)$, the total number of oriented intersections of $\partial F / \partial \theta$ with M_{0}. We remark that $I\left(\partial F / \partial \theta, M_{0}\right)$ is defined even if $\partial F / \partial \theta$ does not intersect M_{0} transversely: we simply count the transverse intersections for a "nearby" map. Since $\partial F / \partial \theta(\partial K) \cap M_{0}=\varnothing$, the total number of intersections is the same for every "nearby" map. We summarize our results in

Theorem 1. Let f and g be regular closed curves on M with the same initial points and initial tangent directions. Suppose f and g are homotopic and $F: K \rightarrow M$ is a homotopy, smooth on int K, with $F(0, \theta)=f(\theta)$ and $F(1, \theta)=g(\theta)$, then the obstruction to regular homotopy $\gamma(f, g)$ is equal to $I\left(\partial F / \partial \theta, M_{0}\right)$, the total number of oriented intersections of $\partial F / \partial \theta$ with the zero section M_{0}.

We give the following interpretation of Theorem 1. Suppose $\partial F / \partial \theta(x)=0$ where $x=\left(t_{0}, \theta_{0}\right)$ and suppose $\partial F / \partial \theta$ intersects M_{0} transversely at x. The curve $F\left(t_{0}, \theta\right)$ has a cusp at $\theta=\theta_{0}$. As t increases, if this cusp represents the appearance of a positively oriented
loop or the disappearance of a negatively oriented loop, then the intersection number at x is 1 . If it represents the appearance of a negatively oriented loop or the disappearance of a positively oriented loop, then the intersection number is -1 . Thus $I\left(\partial F / \partial \theta, M_{0}\right)$ counts the null homotopic loops lost or gained in the homotopy.
4. Tangent winding numbers. We now wish to show the relationship between $\gamma(f, g)$ as defined in the previous section and the notion of tangent winding number of a regular curve with respect to a vector field v on a compact 2 -manifold M as in Reinhart [8] and Chillingworth [1]. Suppose f is a regular closed curve on M and v is a vector field on M which vanishes at a single point y not on the image of f. The order that v vanishes at y is clearly $\chi(M)$. We define $\operatorname{twn}_{v} f$ to be the number of times the tangent of f rotates in relation to v. More specifically, suppose $v=v_{1}$ and choose vector field v_{2} such that (v_{1}, v_{2}) is a positively oriented basis except at y, where both vanish to the order $\chi(M)$. Write $d f / d \theta=$ $p_{1} v_{1}+p_{2} v_{2}$ where $p=\left(p_{1}, p_{2}\right): S^{1} \rightarrow R^{2}$. We then define $\operatorname{twn}_{v} f$ to be $\operatorname{deg} p /|p|$. It is straightforward to show that $\mathrm{twn}_{v} f$ depends only upon the choice of y, in fact, it depends only upon the component of $M-f(R)$ in which y lies. Thus, we write $\operatorname{twn}(f ; y)$ in place of $\mathrm{twn}_{v} f$.

Theorem 2. Suppose M is compact and let f, g, and F be as in Theorem 1. Let $y \in M-f(R) \cup g(R)$, then $\gamma(f, g)=I\left(\partial F / \partial \theta, M_{0}\right)=$ $\operatorname{twn}(g ; y)-\operatorname{twn}(f ; y)+I(F, y) \chi(M)$.

Proof. Let v_{1} and v_{2} be as in the definition of twn $(f ; y)$. Without loss of generality, suppose y is a regular value of F, $(\partial F / \partial \theta) \neq 0$ on $F^{-1}(y)$, and $\partial F / \partial \theta$ has only isolated zeros. Let x_{1}, \cdots, x_{m} be the zeros of $\partial F / \partial \theta$ and $\left\{x_{m+1}, \cdots, x_{l}\right\}=F^{-1}(y)$. Write $(\partial F / \partial \theta)(x)=q_{1}(x) v_{1}(F(x))+q_{2}(x) v_{2}(F(x))$ for $x \notin F^{-1}(y)$. Let T_{1}, \cdots, T_{l} be closed disjoint coordinate discs on M such that $x_{k} \in T_{k}$ for $k=$ $1, \cdots, l$. Since v_{1} and v_{2} vanish of order $\chi(M)$ at y, we have
(a) For $k=m+1, \cdots,\left.\operatorname{deg}(p /|p|)\right|_{\partial T_{k}}= \pm \chi(M)$ where the sign is negative if F preserves orientation at x_{k}, and positive if F reverses orientation at x_{k}.
(b) For $k=1, \cdots, m,\left.\operatorname{deg}(p /|p|)\right|_{\partial T_{k}}=\operatorname{ind}_{x_{k}}(\partial F / \partial \theta)$.

Now since $p: K-\bigcup_{k=1}^{m} T_{k} \rightarrow R^{2}$, we have that

$$
\left.\operatorname{deg}(p /|p|)\right|_{\partial K}=\left.\sum_{k=1}^{m} \operatorname{deg}(p /|p|)\right|_{\partial T_{k}}
$$

Since by definition $\left.\operatorname{deg}(p /|p|)\right|_{\partial K}=\operatorname{twn}(g ; y)-\operatorname{twn}(f ; y)$, the theorem follows from Remarks (a) and (b).

Thus we see that $\operatorname{twn}(g ; y)-\operatorname{twn}(f ; y)$ determines $\bmod \chi(M)$ the obstruction to regular homotopy.
5. Branched mappings. Let \widetilde{N} be a compact oriented 2 -manifold and let D_{1}, \cdots, D_{n} be n disjoint copies of the closed unit disc on \tilde{N}. Let

$$
N=\widetilde{N}-\bigcup_{k=1}^{n} \operatorname{int} D_{k} .
$$

Let M be a compact oriented 2 -manifold. Let $F: N \rightarrow M$ be smooth. Say F is a branched mapping if F is nonsingular and orientation preserving except at a finite number of points in int N where F behaves locally like the complex analytic mapping z^{l}, for l an integer $\geqq 2$. The multiplicity of this branch point is defined to be $l-1$.

If $F: N \rightarrow M$ is smooth, we define $\partial F=\left.F\right|_{\partial N}$. We say ∂F is regular if $\left.F\right|_{\partial D_{k}}$ is regular for $k=1, \cdots, n$. If $y \in M$ is not on the image of ∂F, we define $\operatorname{twn}(\partial F ; y)=\sum_{k=1}^{n} \operatorname{twn}\left(\left.F\right|_{\partial D_{k}} ; y\right)$. We wish to investigate the relationship between $\operatorname{twn}(\partial F ; y)$ and the total branchpoint multiplicity at branchpoints of F, if F is a branched mapping.

Lemma 1. Let $F: C \rightarrow C$ be the complex map $z^{l}, l \geqq 2$ and let v be a nonzero vector field on C, then $\operatorname{ind}_{0} F_{*} v=l-1$.

Proof. Let $\tau=\tau(z)$ be a complex valued function giving the vector field v. Identifying $T \boldsymbol{C}$ with $\boldsymbol{C} \times \boldsymbol{C}$, the map $F_{*} v$ is given by $z \rightarrow\left(z^{l}, l z^{l-1} \tau\right)$. Now $\operatorname{ind}_{0} F_{*} v=(1 / 2 \pi) \int_{|z|=1} d \arg l z^{l-1} \tau$. Since $\tau(z) \neq$ 0 for $z \in \boldsymbol{C}, \int_{|z|=1} d \arg \tau=0$. Therefore

$$
\operatorname{ind}_{0} F_{*} v=(1 / 2 \pi) \int_{|z|=1} d \arg l z^{l-1}=l-1
$$

which completes the proof of the lemma.
TheOrem 3. Suppose $F: N \rightarrow M$ is a branched mapping, ∂F is regular, and $y \in M-F(\partial N)$, then

$$
\operatorname{twn}(\partial F ; y)+I(F, y) \chi(M)=\chi(N)+r
$$

where r is the total branchpoint multiplicity at branchpoints of F.
Proof. Let $\left\{x_{1}, \cdots, x_{m}\right\}=B$ be the set of branchpoints of F. Let $\left\{x_{m+1}, \cdots, x_{l}\right\}=F^{-1}(y)$. Note that $l-m=I(F, y)$.

Without loss of generality, assume that y is a regular value
of F and $B \cap F^{-1}(y)=\varnothing$. Let v_{1} and v_{2} be vector fields on M such that $\left(v_{1}, v_{2}\right)$ is positively oriented on M except at y, where both vector fields vanish to the order $\chi(M)$. Let w be a vector field on N which defines positive orientation on ∂N. Suppose that w vanishes only at $x_{0} \notin B \cup F^{-1}(y)$. Write

$$
F_{*} w(x)=p_{1}(x) v_{1}(f(x))+p_{2}(x) v_{2}(f(x))
$$

where $p=\left(p_{1}, p_{2}\right): N-F^{-1}(y) \rightarrow R^{2}$. Choose disjoint closed coordinate discs T_{0}, \cdots, T_{l} with $x_{k} \in T_{k}$ for $k=0,1, \cdots, l$.

Since F is regular and preserves orientation except at x_{1}, \cdots, x_{m}, we have
(a) $\left.\operatorname{deg}(p /|p|)\right|_{\partial T_{0}}=\chi(N)$.
(b) For $k=m+1, \cdots, l,\left.\operatorname{deg}(p /|p|)\right|_{\partial r_{k}}=-\chi(M)$.

Also by Lemma 1 we have
(c) For $k=1, \cdots, m,\left.\operatorname{deg}(p /|p|)\right|_{\partial T_{k}}=r_{k}-1$ where r_{k} is the branchpoint multiplicity at x_{k}.
Finally, by definition
(d) $\left.\operatorname{deg}(p /|p|)\right|_{\partial N}=\operatorname{twn}(\partial f ; y)$.

Since p is a smooth map from $N-\bigcup_{k=0}^{l} T_{k}$ into R^{2}, we have also $\left.\operatorname{deg}(p /|p|)\right|_{\partial N}=\left.\sum_{k=0}^{l} \operatorname{deg}(p /|p|)\right|_{\partial T_{k}}$. The theorem now follows from Remarks (a), (b), (c), and (d).

Theorem 3 is intended to be a generalization of results of the type stated by Titus [10], Haefliger [4], and Francis [2]. This is illustrated by the following corollaries.

Corollary 1. If $F: N \rightarrow R^{2}$ is a branched mapping and ∂F is regular, then twn $\partial F=\chi(N)+r$ where r is the total multiplicity at branchpoints of F, and twn is the usual tangent winding number for regular curves in the plane.

Proof. Let $M=S^{2}$ in Theorem 3 and identify R^{2} with $S^{2}-\{y\}$. Then $I(F, y)=0, \operatorname{twn} \partial F=\operatorname{twn}(\partial F ; y)$, and the theorem follows.

Corollary 2. If $F: N \rightarrow R^{2}$ is a sense-preserving immersion and ∂F is regular, then twn $\partial F=\chi(N)$.

For information on assembling branched mappings see Francis [2] and Marx [5].

To show how the classical Riemann-Hurwitz theorem follows from Theorem 3, we prove

Corollary 3 (Riemann-Hurwitz). If $\tilde{F}: \widetilde{N} \rightarrow M$ is a branched
mapping, where \tilde{N} and M are compact oriented 2-manifolds, then $\chi(\widetilde{N})+r=(\operatorname{deg} \widetilde{F}) \chi(M)$.

Proof. Let y be a regular value of \widetilde{F} and D a sufficiently small open disc containing $y_{\widetilde{N}}$ such that $\widetilde{F}^{-1}(D)$ consists of deg \widetilde{F} disjoint dises D_{j}. Let $N=\widetilde{N}-\cup D_{j}$ and $F=\left.\widetilde{F}\right|_{N}$. Now twn $\left(\left.F\right|_{\partial D_{j}}\right.$; $y)=\chi(M)-1$ for $j=1, \cdots, \operatorname{deg} \widetilde{F}$ and $I(F ; y)=0$. Therefore Theorem 3 gives

$$
(\operatorname{deg} \widetilde{F})(\chi(M)-1)=\chi(N)+r=\chi(\widetilde{N})-\operatorname{deg} \widetilde{F}+r
$$

and the conclusion follows.

References

1. D. R. J. Chillingworth, Winding numbers on surfaces I, Math. Ann., 196 (1972), 218-249.
2. G. K. Francis, Assembling compact Riemann surfaces with given boundary curves and branch points on the sphere, Illinois J. Math., 20 (1976), 198-217.
3. V. Guillemin and A. Pollack, Differential Topology, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1974.
4. A. Haefliger, Quelques remarques sur les applications diffèrentiable d'une surface dans le plan, Ann. Inst. Fourier, 10 (1960), 47-60.
5. M. L. Marx, Extensions of normal immersions of S^{1} into R^{2}, Trans. Amer. Math. Soc., 187 (1974), 309-326.
6. J. R. Quine, Homotopies and intersection sequences, Pacific J. Math., (to appear).
7. -, A global theorem for singularities of maps between oriented 2-manifolds, (to appear), Trans. Amer. Math. Soc.
8. B. L. Reinhart, The winding number on two manifolds, Ann. Inst. Fourier, 10 (1960), 271-283.
9. S. Smale, Regular curves on Riemannian manifolds, Trans. Amer. Math. Soc., 87 (1958), 492-512.
10. C. J. Titus, Extensions through codimension one to sense preserving mappings, Ann. Inst. Fourier, 23 (1973), 215-227.
11. H. Whitney, On regular closed curves in the plane, Compositio Math., 4 (1937), 276-286.
12. -, On singularities of mappings of Euclidean spaces, I, mappings of the plane into the plane, Ann. of Math., 62 (1955), 374-410.

Received October 1, 1976
Florida State University
Tallahassee, FL 32306

