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TANGENT WINDING NUMBERS AND BRANCHED
MAPPINGS

J. R. QUINE

The notion of tangent winding number of a regular
closed curve on a compact 2-manifold M is investigated, and
related to the notion of obstruction to regular homotopy.
The approach is via oriented intersection theory. For N, a
2-manif old with boundary and F: N-+M a smooth branched
mapping, a theorem is proved relating the total branch point
multiplicity of F and the tangent winding number of FUN
The theorem is a generalization of the classical Riemann-
Hurwitz theorem.

!• Introduction* Let M be a smooth, connected, oriented 2-
manifold and let / and g be regular closed curves on M with the
same initial point and tangent direction. An integer obstruction to
regular homotopy Ύ(f, g) is derived which is uniquely defined if
M Φ S2 and defined mod 2 if M = S2. Let F(t, θ) be any homotopy
such that F(0, θ) = f(θ) and F(l, θ) = g(θ) and F is smooth on the
interior of the unit square. It is shown that 7(/, g) = I(dF/dθ, Mo),
where MQ is the zero section as a sub-manifold of TM, and / denotes
the total number of oriented intersections. This is given interpre-
tation as the number of loops acquired by curves F(t, ) — ft in
homotopy.

If M is compact and y is not on the image of /, then we define
twn (/; y), a generalization of the tangent winding number. We
show that 7(/, g) = twn (g; y) - twn (/; y) + I(F, y)χ(M), where is
the Euler characteristic. If N is a 2-manifold with boundary and
F:N—>M is a smooth branched mapping and dF = F\BN, we show
that twn (dF; y) + I(F> y)χ(M) = χ(N) + r, where r is the total
branchpoint multiplicity and y is not in F(dN). We show that the
Riemann-Hurwitz theorem follows as a corrollary.

2. The obstruction to regular homotopy* Let M be a smooth,
connected 2-manifold with Riemannian metric. Let TM be the
tangent bundle and TM the unit tangent or sphere bundle. Let
f:R-*M with f(θ) = f(θ + 1) for all θ e R be a regular closed
curve on M, that is, / has continuously turning, nonzero tangent
vector at each point. Given F: [0, 1] x R —> M continuous with
F(t, θ) = F(t, θ + 1) for all θeR, then F is said to be a regular
homotopy if each closed curve F(t, ) is regular for 0 <Ξ £ <; 1. We
say the curves /(#) = F(0, θ) and ^(^) = F(l, θ) are regularly homo-
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topic.
Suppose now that / and g are regular closed curves with

/(0) = flr(O) = y0. Let / and g be the closed curves on TM obtained
by taking the unit tangent vector at each point of / and g respec-
tively. Suppose that /(0) = g(0) = y0. Smale [9] has shown that /
and g are regularly homotopic iff / and g are homotopic. Using
this result we define the obstruction to regular homotopy, 7(/, g),
as follows.

Let Sι be the fiber of TM over y0. Since Π2(TM) = 0 for any
2-manifold M (this is clear if Π2(M) = 0 and can be verified directly
if M is S2 or the protective plane), we have the following portion
of the exact homotopy sequence of the bundle TM over M

(1) 0 >Π2(M)-^-> Π^S1) -ίU n,(TM) — Π,(M) .

The sequence (1) induces an isomorphism

j: ker ψ • Π^S^/im φ .

If / and g are homotopic, then the product [^[Z]"1 is in ker ψ .
Writing a = o'dg^f]"1), Smale's theorem says that / and g are
regularly homotopic iff a = 0.

Now in what follows suppose M is oriented. This gives us a
natural choice of orientation on S1 as the fiber of TM at y0, which
in turn determines a "positively oriented" generator of Π^S1). This
generator determines an isomorphism of Π^S1) with the integers Z.
Now Π2(M) = 0 unless M = S\ Identifying Π^S1) with Z, we see
that im φ = 2Z in case M = S2. (Since the Euler characteristic of
S2 is 2, the fundamental 2-cycle is mapped into 2 by 0.) Thus for
M Φ S% a is an integer which we denote 7(/, g). If M = S2, a is
an element of Z2. In this case we write n = τ(/, g) if the integer
n determines the class a in Z2. We will refer to 7(/, gr) as the
obstruction to regular homotopy. We remark that 7(/, g) is only
defined if / and g are homotopic. In the next section we will show
how to characterize 7(/, g) using intersection theory and in a later
section we explain its relationship to tangent winding numbers on
surfaces as in Reinhart [8] and Chillingworth [1].

3. A characterization of 7(/, g). Let / , g and M be as in the
previous section. We will continue to assume that M is oriented.
Suppose F(θ, t) is a homotopy, not necessarily regular, with F(0, θ)~
f(θ) and F(l, θ) = g(θ) for all θ. Let K be the square [0, 1] x [0, 1]
and write F:K~+M. Now the pullback bundle F*(TM) is trivial
over K, so we can find vector valued functions vi9 v2: K —> TM such
that the ordered pair (y^x), v2{x)) is positively oriented in TMF{χ)
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for all x e K. Now consider d/dθ as a section of TK and write
F*o(d/dθ) = (dF/dθ): K — TM. Write (dF/dθ)(x) = pί(x)vι(x) + p2(x)v2(x)
where p — (pί9 p2): K—> R2. By the definition of the map μ in the
exact sequence (1), we see that the preimage of [Sif/]"1 under is
just deg(p/\p\)\dκ, where dK is the positively oriented boundary of
K, I I is the usual Euclidean norm in R2, and deg is topological
degree. Thus 7(/, g) = deg (p/\p\)\dκ. If M = R2 and ^ = (1,0),
v2 = (0, 1) then 7(/, g) = twng — twn/, where twn denotes tangent
winding number.

Now suppose x is an isolated zero of dF/dθ and D is a closed
coordinate disc containing x, but no other zeros of dF/dθ. We define

dθ " \p

This is easily verified to be independent of the choice of vγ and
Thus if all the zeros of dF/dθ are isolated, then

where S is the set of zeros of dF/dθ.
Now suppose that F is smooth on int K, and let Mo be the zero

section of TM considered as a smooth, oriented 2-submanifold of
TM. If dF/dθ intersects MQ transversely at x e K, then indx dF/dθ
is the same as the oriented intersection number of dF/dθ with Mo

at x. (For an explanation of intersection numbers see Guillemin and
Pollack [3].) Thus 7(/, g) - I{dF/dθ, Mo), the total number of ori-
ented intersections of dF/dθ with MQ. We remark that I{dF/dθ, Mo)
is defined even if dF/dθ does not intersect Mo transversely: we
simply count the transverse intersections for a "nearby" map.
Since dF/dθ(dK) Π Mo = 0 , the total number of intersections is the
same for every "nearby" map. We summarize our results in

THEOREM 1. Let f and g be regular closed curves on M with
the same initial points and initial tangent directions. Suppose f
and g are homotopic and F: K —> M is a homotopy, smooth on int K,
with F(0, θ) = f(θ) and F(l, θ) — g(θ), then the obstruction to regular
homotopy Ύ(/, g) is equal to I(βF/dθ, Mo), the total number of ori-
ented intersections of dF/dθ with the zero section Mo.

We give the following interpretation of Theorem 1. Suppose
dF/dθ(x) = 0 where x = (έ0, θ0) and suppose dF/dθ intersects Mo trans-
versely at x. The curve F(tQ, θ) has a cusp at θ = θ0. As t in-
creases, if this cusp represents the appearance of a positively oriented
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loop or the disappearance of a negatively oriented loop, then the
intersection number at $ is 1. If it represents the appearance of
a negatively oriented loop or the disappearance of a positively
oriented loop, then the intersection number is — 1. Thus I(dF/dθ, Mo)
counts the null homotopic loops lost or gained in the homotopy.

4* Tangent winding numbers* We now wish to show the
relationship between 7(/, g) as defined in the previous section and
the notion of tangent winding number of a regular curve with
respect to a vector field v on a compact 2-manif old M as in Reinhart
[8] and Chillingworth [1]. Suppose / is a regular closed curve on
M and v is a vector field on M which vanishes at a single point y
not on the image of /. The order that v vanishes at y is clearly
%(M). We define twn,/ to be the number of times the tangent of
/ rotates in relation to v. More specifically, suppose v = v1 and
choose vector field v2 such that (vί9 v2) is a positively oriented basis
except at y, where both vanish to the order χ(M). Write df/dθ —
PiVi + p2v2 where p — (p19 p2): S1—>i22. We then define twn v/ to be
degp/\p\. It is straightforward to show that twnυf depends only
upon the choice of y9 in fact, it depends only upon the component
of M — f{E) in which y lies. Thus, we write twn (/; y) in place
of twnv/.

THEOREM 2. Suppose M is compact and let f, g, and F be as
in Theorem 1. Let y e M-f{R) U g(R), then 7(/, g) = I{dFldθ, Mo) =
twn (g; y) - twn (/; y) + I(F, y)χ(M).

Proof. Let vx and v2 be as in the definition of twn (/; y).
Without loss of generality, suppose y is a regular value of F9

(dF/dθ) ^ 0 on F~~\y)9 and dF/dθ has only isolated zeros. Let
x19 •••,»„ be the zeros of dF/dθ and {xm+19 , xt} = F~\y). Write
(dF/dθ)(x) = q&MFix)) + qΛ(x)v2(F(x)) for x $ F"\y). Let T19 , Tι

be closed disjoint coordinate discs on M such that xk e Tk for k =
1, •••, I. Since vx and v2 vanish of order χ(ilf) at y, we have

(a) For k = m + 1, , deg {pj\p\)\dTk = ± %(M) where the sign
is negative if F preserves orientation at xk9 and positive if F rever-
ses orientation at xk.

(b) For k = 1, - -, m, deg (p/\p\)\dTk = indβJk

Now since p: K — \Jΐ=1 Tk —• iϋ2, we have that

Since by definition deg (p/1 p |) | 3 ί = twn (g; y) —twn (/; y), the theorem
follows from Remarks (a) and (b).
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Thus we see that twn (g; y) — twn (/; y) determines mod χ(M)
the obstruction to regular homotopy.

5* Branched mappings* Let N be a compact oriented 2-mani-
fold and let Dlf , Dn be n disjoint copies of the closed unit disc
on N. Let

N = N - U int Dk .
k=l

Let M be a compact oriented 2-manifold. Let F:N—*Mbe smooth.
Say F is a branched mapping if F is nonsingular and orientation
preserving except at a finite number of points in int N where F
behaves locally like the complex analytic mapping zι, for I an inte-
ger ^ 2. The multiplicity of this branch point is defined to be I — 1.

If F:N->M is smooth, we define dF = F\dN. We say dF is
regular if F\dD]e is regular for k = 1, •••, n. If yeM is not on the
image of dF, we define twn (dF; y) = Σ*=i twn(jP|32)fc; 2/). We wish
to investigate the relationship between twn (dF; y) and the total
branchpoint multiplicity at branchpoints of F, if F is a branched
mapping.

LEMMA 1. Let F:C—>C be the complex map zι, 1^2 and let

v be a nonzero vector field on C, then ind0 F*v = Z — 1.

Proof. Let τ = τ(z) be a complex valued function giving the
vector field v. Identifying TC with C x C, the map F*v is given

by z—*(zι,lzι~1τ). Now indo.F*0 = (l/27r) \ d&rglz^τ. Sincer(z)=£

S J lzl = i
d arg r = 0. Therefore

ind0 F ^ = (l/2ττ)\ d arg ί̂ "1 = I - 1 ,

which completes the proof of the lemma.

THEOREM 3. Suppose F:N~*M is a branched mapping, dF is
regular, and yeM— F(dN), then

twn (dF; y) + I(F, y)χ(M) = χ(N) + r

where r is the total branchpoint multiplicity at branchpoints of F.

Proof. Let {x19 , xm) = B be the set of branchpoints of F.
L e t { x m + ί , , x t } = F ~ \ y ) . N o t e t h a t l - m = I ( F , y ) .

Without loss of generality, assume that y is a regular value
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of JPand B Π F~\y) •= 0 . Let vx and v2 be vector fields on M such
that (vlf v2) is positively oriented on M except at y, where both
vector fields vanish to the order χ(M). Let w be a vector field on
N which defines positive orientation on dN. Suppose that w vanishes
only at xQ $ B U F~\y). Write

where p = (p19 p2): N — F~~\y)—>R2. Choose disjoint closed coordi-
nate discs To, , Tι with xk e Tk for k — 0, 1, , I.

Since F is regular and preserves orientation except at xί9 ,
xm9 we have

(a) deg(p/\p\)\dTo = χ(N).
(b) For fc = m + l, , I, deg(p/\p\)\dTjc = -χ{M).

Also by Lemma 1 we have
(c) For k = 1, , m, deg(p/|p|)|gΓA. = rfc — 1 where rfc is the

branchpoint multiplicity at xk.
Finally, by definition

(d) deg(p/|p|)la* = twn(3/;2/).
Since p is a smooth map from N — U£=o Tk into i?2, we have also
deg(p/\p\)\dN = Σ*=odeg(p/|p|)|3Γjb. The theorem now follows from
Remarks (a), (b), (c), and (d).

Theorem 3 is intended to be a generalization of results of the
type stated by Titus [10], Haefliger [4], and Francis [2]. This is
illustrated by the following corollaries.

COROLLARY 1. If F:N—>R2 is a branched mapping and dF
is regular, then twn dF — %(N) + r where r is the total multiplicity
at branchpoints of F, and twn is the usual tangent winding number
for regular curves in the plane.

Proof. Let M = S2 in Theorem 3 and identify R2 with S2 - {y}.
Then J(F, y) = 0, twn dF = twn (dF; y), and the theorem follows.

COROLLARY 2. If F:N—+R2 is a sense-preserving immersion
and dF is regular, then twn dF = χ(N).

For information on assembling branched mappings see Francis
[2] and Marx [5].

To show how the classical Riemann-Hurwitz theorem follows
from Theorem 3, we prove

COROLLARY 3 (Riemann-Hurwitz). // F:N—>M is a branched
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mapping, where N and M are compact oriented 2-manifolds, then
χ(N) + r = (deg F)χ(M).

Proof. Let y be a regular value of F and D a sufficiently
small open disc containing y such that F~\D) consists of deg F
disjoint discs Dά. Let N — N— U D3 and F=F\N. Now twn (F\dDj;
y) = χ(M) - 1 for j = 1, , deg F and J(F; y) = 0. Therefore
Theorem 3 gives

(deg F)(χ(M) - 1) = χ(iV) + r - χ(iV) - deg F + r

and the conclusion follows.
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