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TANGENT WINDING NUMBERS AND BRANCHED
MAPPINGS

J. R. QUINE

The notion of tangent winding number of a regular
closed curve on a compact 2-manifold M is investigated, and
related to the notion of obstruction to regular homotopy.
The approach is via oriented intersection theory. For N, a
2-manifold with boundary and F: N—M a smooth branched
mapping, a theorem is proved relating the total branch point
multiplicity of F' and the tangent winding number of Fl;y.
The theorem is a generalization of the classical Riemann-
Hurwitz theorem.

1. Introduction. Let M be a smooth, connected, oriented 2-
manifold and let f and g be regular closed curves on M with the
same initial point and tangent direction. An integer obstruction to
regular homotopy 7(f, ¢g) is derived which is uniquely defined if
M == S* and defined mod 2 if M = S* Let F(t, #) be any homotopy
such that F(0,60) = f(#) and F(1,6) = g(d) and F is smooth on the
interior of the unit square. It is shown that v(f, g) = I(0F/d6, M,),
where M, is the zero section as a sub-manifold of TM, and I denotes
the total number of oriented intersections. This is given interpre-
tation as the number of loops acquired by curves F(t,)=/f, in
homotopy.

If M is compact and % is not on the image of f, then we define
twn (f; ¥), a generalization of the tangent winding number. We
show that v(f, g) = twn (g; v) — twn (f; ) + I(F, y)y(M), where is
the Euler characteristic. If N is a 2-manifold with boundary and
F: N— M is a smooth branched mapping and ¢F = F'|,y, we show
that twn (0F; y) + I(F, y)y(M) = y(N) + r, where r is the total
branchpoint multiplicity and y is not in F(0N). We show that the
Riemann-Hurwitz theorem follows as a corrollary.

2. The obstruction to regular homotopy. Let M be a smooth,
connected 2-manifold with Riemannian metric. Let TM be the
tangent bundle and 7'M the unit tangent or sphere bundle. Let
fiR—M with f(0) = f(6 + 1) for all e R be a regular closed
curve on M, that is, f has continuously turning, nonzero tangent
vector at each point. Given F:[0,1] x R— M continuous with
F(t,0)=Ft, 0+ 1) for all 6e R, then F is said to be a regular
homotopy if each closed curve F(t,) is regular for 0 <t <1. We
say the curves f() = F(0, ) and ¢(0) = F(1, §) are regularly homo-
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topie.

Suppose now that f and g are regular closed curves with
f(0) = g(0) = y,. Let f and § be the closed curves on 7'M obtained
by taking the unit tangent vector at each point of f and g respec-
tively. Suppose that f(0) = §(0) = %,. Smale [9] has shown that f
and g are regularly homotopic iff f and § are homotopic. Using
this result we define the obstruction to regular homotopy, v(f, g9),
as follows.

Let S! be the fiber of TM over ¥, Since II,(TM) =0 for any
2-manifold M (this is clear if II,(M) = 0 and can be verified directly
if M is S® or the projective plane), we have the following portion
of the exact homotopy sequence of the bundle TM over M

(1) 00— () 2 118y 5 (T o mn)
The sequence (1) induces an isomorphism
j: ker o —— I1,(S")/im ¢ .

If f and g are homotopic, then the product [g][f 17 is in ker .
Writing « = j([§][f]™"), Smale’s theorem says that f and ¢ are
regularly homotopic iff @ = 0.

Now in what follows suppose M is oriented. This gives us a
natural choice of orientation on S' as the fiber of TM at y, which
in turn determines a ‘“positively oriented” generator of I7,(S'). This
generator determines an isomorphism of I7,(S') with the integers Z.
Now II,(M) = 0 unless M = S%. Identifying I7,(S') with Z, we see
that im ¢ = 27 in case M = S°. (Since the Euler characteristic of
S? is 2, the fundamental 2-cycle is mapped into 2 by @.) Thus for
M + S, a is an integer which we denote v(f,g9). If M= 8% « is
an element of Z,. In this case we write n = ¥(f, g) if the integer
n determines the class a in Z,. We will refer to Y(f, g0 as the
obstruction to regular homotopy. We remark that v(f, g) is only
defined if f and ¢g are homotopic. In the next section we will show
how to characterize 7(f, g) using intersection theory and in a later
section we explain its relationship to tangent winding numbers on
surfaces as in Reinhart [8] and Chillingworth [1].

3. A characterization of Y(f, g). Let f, g and M be as in the
previous section. We will continue to assume that M is oriented.
Suppose F(6, t) is a homotopy, not necessarily regular, with F(0, )=
f(6) and F(1, 6) = g(8) for all . Let K be the square [0, 1] x [0, 1]
and write F: K— M. Now the pullback bundle F*(TM) is trivial
over K, so we can find vector valued functions v, v,: K — TM such
that the ordered pair (v,(x), v,(x)) is positively oriented in TMy.,
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for all x€ K. Now consider 0/06 as a section of TK and write
F,0(0/00) = (0F/06): K — TM. Write (0F/06)(x) = p,(x)v.(x) + py(x)vy(x)
where p = (p,, p,): K— R*. By the definition of the map g in the
exact sequence (1), we see that the preimage of [5][f~' ' under is
just deg (p/|p])|;x, Where 6K is the positively oriented boundary of
K, | | is the usual Euclidean norm in R? and deg is topological
degree. Thus Y(f, g) = deg (p/|P))lsx. If M= R* and v, = (1, 0),
v, = (0, 1) then 7(f, g) = twng — twn f, where twn denotes tangent
winding number.

Now suppose z is an isolated zero of 0F/0f and D is a closed
coordinate disc containing x, but no other zeros of 0F/08. We define

E_ :degL

ind, .
06 [p] lap

This is easily verified to be independent of the choice of v, and w,.
Thus if all the zeros of 0F/0f are isolated, then

_ 5 ind, OF
v(f, 9) fgmdx =

where S is the set of zeros of 0F/04.

Now suppose that F' is smooth on int K, and let M, be the zero
section of TM considered as a smooth, oriented 2-submanifold of
TM. 1If 0F/06 intersects M, transversely at x<c K, then ind, 0F/06
is the same as the oriented intersection number of 0F/0f with M,
at . (For an explanation of intersection numbers see Guillemin and
Pollack [3].) Thus ¥(f, g) = I(0F/00, M,), the total number of ori-
ented intersections of 0F/00 with M,. We remark that I(0F/06, M,)
is defined even if 0F/06 does not intersect M, transversely: we
simply count the transverse intersections for a “nearby” map.
Since 0F/00(0K) N M, = @, the total number of intersections is the
same for every “nearby” map. We summarize our results in

THEOREM 1. Let f and g be regular closed curves on M with
the same wnitial points and initial tangent directions. Suppose f
and g are homotopic and F: K — M is o homotopy, smooth on int K,
with F(0, 0) = f(6) and F(1, 8) = g(0), then the obstruction to regular
homotopy Y(f, g) 1s equal to I(0F/o8, M,), the total mumber of ori-
ented intersections of 0F/[06 with the zero section M,.

We give the following interpretation of Theorem 1. Suppose
0F[00(x) = 0 where x = (¢, 6,) and suppose dF/0¢ intersects M, trans-
versely at x. The curve F(t,6) has a cusp at 6§ =0, As ¢t in-
creases, if this cusp represents the appearance of a positively oriented
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loop or the disappearance of a negatively oriented loop, then the
intersection number at x is 1. If it represents the appearance of
a negatively oriented loop or the disappearance of a positively
oriented loop, then the intersection number is —1. Thus I(0F/06, M,)
counts the null homotopic loops lost or gained in the homotopy.

4. Tangent winding numbers. We now wish to show the
relationship between Y(f, g) as defined in the previous section and
the notion of tangent winding number of a regular curve with
respect to a vector field v on a compact 2-manifold M as in Reinhart
[8] and Chillingworth [1]. Suppose f is a regular closed curve on
M and v is a vector field on M which vanishes at a single point ¥
not on the image of f. The order that v vanishes at y is clearly
X(M). We define twn, f to be the number of times the tangent of
f rotates in relation to v. More specifically, suppose » = v, and
choose vector field v, such that (v, v,) is a positively oriented basis
except at y, where both vanish to the order y(M). Write df/df =
P, + Pv, where p = (p,, p,): S'— R:. We then define twn,f to be
deg p/|p|. It is straightforward to show that twn,f depends only
upon the choice of y, in fact, it depends only upon the component
of M — f(R) in which y lies. Thus, we write twn (f; ) in place
of twn, f.

THEOREM 2. Suppose M 1is compact and let f, g, and F be as
in Theorem 1. Let ye M— f(R)U g(R), then Y(f, g) = I(0F/d6, M,) =
twn (g; ¥) — twn (f; 9) + I(F, y)x(M).

Proof. Let v, and v, be as in the definition of twn (f;¥).
Without loss of generality, suppose % is a regular value of F,
(0F/66) =0 on FYy), and 0F/00 has only isolated zeros. Let
Xy ++, X, De the zeros of 0F/06 and {x,., -+, 2} = F(y). Write
(0F[00)(x) = q,(x)v,(F(2)) + q(x)vo(F(w)) for x ¢ F~(y). Let T, ---, T,
be closed disjoint coordinate discs on M such that z,eT, for k =
1, ---, 1. Since v, and v, vanish of order (M) at y, we have

(@ Fork=m+1,---, deg (p/|p|)lsr, = £ X(M) where the sign
is negative if F preserves orientation at x,, and positive if F' rever-
ses orientation at z,.

(b) For k=1, ---, m, deg (p/|p|)lsr, = ind,, (0F/06).

Now since p: K — Ui, T, — R?, we have that

deg (p/|p])|sx = 3. deg (8/| )z -

Since by definition deg (p/|»|)|.x = twn (g; ¥) —twn (f; ¥), the theorem
follows from Remarks (a) and (Db).
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Thus we see that twn(g; ¥) — twn (f; y) determines mod y(M)
the obstruction to regular homotopy.

5. Branched mappings. Let N be a compact oriented 2-mani-
fold and let D, ---, D, be n disjoint copies of the closed unit disc
on N. Let

Nzﬁ_kointDk-

Let M be a compact oriented 2-manifold. Let F: N — M be smooth.
Say F is a branched mapping if F is nonsingular and orientation
preserving except at a finite number of points in int N where F
behaves locally like the complex analytic mapping 2', for [ an inte-
ger = 2. The multiplicity of this branch point is defined to be [ —1.

If F: N— M is smooth, we define 0F = F'|,,. We say oF is
regular if F|,,, is regular for k=1, ---,n. If ye M is not on the
image of 0F, we define twn (0F; y) = X, twn (Flsp,; ¥). We wish
to investigate the relationship between twn (0F;y) and the total
branchpoint multiplicity at branchpoints of F, if F is a branched
mapping.

LEMMA 1. Let F:C—C be the complex map 2, | =2 and let
v be a nonzero vector field on C, then ind, F,v =1 — 1.

Proof. Let 7 = 7(z) be a complex valued function giving the
vector field ». Identifying 7C with C x C, the map F,» is given

by z— (7, l1z"*z). Now ind, F,v=(1/27) Sl - darg lz"7'z. Since 7(2)#

0 for zeC, SI B dargt = 0. Therefore

z|

ind, F,v = (1/275)8 1 darglz't=1—-1,
=1

1z

which completes the proof of the lemma.

THEOREM 3. Suppose F: N— M is a branched mapping, oF is
regular, and ye M — F(ON), then

twn (0F; y) + I(F, y)xy(M) = x(N) + r
where v s the total branchpoint multiplicity at branchpoints of F.
Proof. Let {x, ---,2,} = B be the set of branchpoints of F.

Let {®pyy *++, 2} = F'(y). Note that | — m = I(F, y).
Without loss of generality, assume that y is a regular value
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of Fand BN F~'(y) = @. Let v, and v, be vector fields on M such
that (v, »,) is positively oriented on M except at y, where both
vector fields vanish to the order y(M). Let w be a vector field on
N which defines positive orientation on N. Suppose that w vanishes
only at x,¢ BU F~'(y). Write

F.w(x) = p,(x)v,(f(@) + p)v(f ()

where p = (p, p,): N — F~(y)— R®:. Choose disjoint closed coordi-
nate dises T, ---, T, with z,eT, for k=0,1, ---, L.

Since F' is regular and preserves orientation except at =z, ---,
%, We have

(a) deg (p/|2Dlr, = X(N).

(b) For k=m +1, ---,1,deg (p/|plsr, = —x(M).
Also by Lemma 1 we have

(¢) For k=1, ---,m,deg(p/|p)|sr, = 7. —1 where 7, is the
branchpoint multiplicity at x,.
Finally, by definition

(d) deg (p/|p]lsy = twn (3f; ).
Since p is a smooth map from N — .., T, into R? we have also
deg (p/Ip]) oy = Xii—odeg (p/|P))]sr,- The theorem now follows from
Remarks (a), (b), (¢), and (d).

Theorem 3 is intended to be a generalization of results of the
type stated by Titus [10], Haefliger [4], and Francis [2]. This is
illustrated by the following corollaries.

COROLLARY 1. If F: N— R® is a branched mapping and OF
is regular, then twnoF = x(N) + r where r s the total multiplicity
at branchpoints of F, and twn is the usual tangent winding number
for regular curves im the plane.

Proof. Let M = S® in Theorem 3 and identify R?* with S*— {y}.
Then I(F, y) = 0, twnoF = twn (0F; y), and the theorem follows.

COROLLARY 2. If F:N— R® is a sense-preserving immersion
and OF ts regular, then twn oF = y(N).

For information on assembling branched mappings see Francis
[2] and Marx [5].

To show how the classical Riemann-Hurwitz theorem follows
from Theorem 3, we prove

COROLLARY 3 (Riemann-Hurwitz). If F: N— M is a branched
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mapping, where N and M are compact oriented 2-manifolds, then
X(N) + r = (deg F)y(M).

Proof. Let y be a regular value of F and D a sufficiently
small open disc containing y such that F (D) consists of deg F
disjoint dises D;. Let N= N— U Di' and F=F|,. Now twn (F'lon
y)=yM)—1 for j=1,.-..,degF and I(F;y)=0. Therefore
Theorem 3 gives

(deg F)(x(M) — 1) = x(N) + r = y(N) — deg F' + »

and the conclusion follows.
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