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HALL-HIGMAN TYPE THEOREMS V

T. R. BERGER

This paper sets out the inductive machinery which makes
the computations of other numbers of this sequence useful.
Representation theory is cast in the framework of wreath
products which are then used to study the behavior of regular
orbits and modules under various types of induction. Tensor
induction is defined and studied along with the related con-
cept of form primitivity.

Let AG be a solvable group with normal subgroup G and
nilpotent complement A where (|4, |G|) = 1. Assume that k is a
field and that V is a faithful irreducible k¥ [AG]-module. This series
considers the following two questions.

(1) If k= GF(r) for a prime », then when does the permuta-
tion representation of A on V* contain a regular orbit?

(2) If R <G is a normal extraspecial r-subgroup of AG where
Z(R) < Z(AG), C(R) =1, and R/Z(R) is an AG-chief factor, then
when does V|, contain a regular k [A]-module?

This paper sets up the induetive machinery needed to study
these two questions. The actual method whose tools are described
in this paper is given in [12]. The introductions to [1, 3, 4, 5, 8, 10]
describe various aspects of this method. In its purest form, the
method is applied in [9]. Various other applications occur in [2, 7,
11, 13, 19].

In §2, the relevant inductive schemes are defined in the suitably
computational framework of wreath products. In §3, these induc-
tive schemes are studied for wreath products to determine when
regular orbits (modules) induce to regular orbits (modules). Section
4 translates the results on wreath products into the terms of general
representation theory.

Two methods of induction play important roles; namely, usual
group theoretic induction, and tensor induction (Definition (2.6)).
The method of tensor induction is applicable, but not directly, to
the study of primitive linear groups which contain normal extra-
special subgroups. Section 5 is devoted to the method by which
tensor induction is applied to a general primitive linear group having
a normal extraspecial subgroup (Theorem (5.18)). Solvability is as-
sumed but is not entirely necessary for this analysis.

If R is a normal extraspecial subgroup of a group G where
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2 T. R. BERGER

Z(R) £ Z(Q) and R/Z(R) is a chief factor of G then obtaining the
main hypothesis of §5 reduces to the “form invariant” induction
structure of the G-module R = R/Z(R) where R is endowed with a
nonsingular symplectic form ¢ fixed by the action of G [20, Satz
138.7]. The module B will be “form invariantly” induced from a
“form primitive” submodule. Without any solvability hypotheses,
§7 defines and derives the major properties about form induction.
Similarly, §6 derives the effect of ground field extensions on forms
(Theorem (6.7). There are two obvious situations which can occur
for a “form primitive” module. Theorem (7.9) shows that a third
situation can also occur. Section 8 is devoted to a translation of
this third case into the first two cases, by altering the group, the
form, and the module in a fixed reversible way. (Theorems (6.7),
(8.10), (8.13), and Proposition (8.18).)
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correct definition of minimal module. This fact was discovered and
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to further improvements. The present definition of minimal module
was given by L. Kovacs and is equivalent to others given in this
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1. Preliminary remarks. All groups considered in this paper
are assumed to be finite and solvable. The notation is standard and
conforms to that used in other papers of this sequence [3-8].

We state below two useful results with proofs sketched.

(1.1) PROPOSITION. Assume that k is a field, G is a group, and
V is a faithful k [Gl-module. Suppose that V=V, PV,D--- DV,
where the V, are k [G]-submodules, and set G, =ker V,. If G/G,
permutes the elements of V, with at least s regular orbdits for
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1<t =t then G permutes the elements of V. with at least s* regular
orbits.

Let v, -+, v,, generate s distinct G/G,-regular orbits on V,.
Then for all choices of indices 4, -+, %, = s, the vectors v,; + vy, +
-+ + v, all generate distinct regular G-orbits on V.

(1.2) PROPOSITION. Assume that k is a field, G is a group, and
V is a faithful k[G]-module. Suppose that V=V, Q@+ RQV,
where the V, are k[Gl-modules and set G, =ker V.. If a direct
sum decomposition of V, contains at least s copies of the regular
k [G/G J-module for 1 <1<t then a direct sum decomposition of
V contains at least s* copies of the regular k [G]-module.

We may choose vectors v,, -+, v;, € V, so that the set {hv;;|1 <
j < s, h e G/G,} is linearly independent, and therefore, the v»,; generate
distinet independent regular k[G/G;]-modules. For all choices of
indices ¢, ---, 9, = s, the vectors v, ® v,;, ® -+ Qv,;, all generate
distinet independent regular k[G]-modules. Since the regular k[G]-
module is injective [14, (62.1) (58.6)], the proposition follows.

The following result on unitary forms will be useful.

(1.3) PROPOSITION. Assume that K is a field, v is an automor-
phism of order two on K, and F is the fized field of v in K.
Suppose that V is a wvector space over K, f is a nonsingular
unitary form on V with automorphism v, g = tuf where 0 = pc K
and 7:K—F 1s the trace. If char K+ 2, 0+ weK satisfies
o= —w, and V=W-+ oW where W is a totally isotropic F-
subspace of V for g then for w,veV

fu, v) = )~ 'g(u, v) + Crw)g(wu, v) .

We may write © = u, + wu, and v = v, + wv, where w,;, v;€ W.
Now g(wuz’ (D’Uz) = /“‘f (wuz’ 0)1)2) + #yf (amz, (ovz)y = ——(l)zlﬂf (’Mz, 'Uz) +
2f (uy v,)'] = —@?g(u,, v,) = 0 so that oW is totally isotropic. Con-
tinuing,

9(@uy, v) = pf (Ou, v) + £f(OU,, v,)
= —[pf (U, wv) + £ f (U, wv,)]
= ""g(uzy (Dv1) .
Further,
0= g(uu '01) = )uf(un 'Ul) + #yf(un ’vx)y
so that
#f (uv '01) = '_)avf (un 7)1)y .



4 T. R. BERGER
From this we obtain

g(@uy v,) = pf(wuy v,) + t2f(@0u,, v,)
= O (Usy v)) + O(— 1 (% v,)")
= 20p0f (U, ) .
Computing

@9, + Ous, v, + Ov,) + (2pw) " g(@u, + Oy, v, + OV,
= 1) '[9, @v,) + g(@Uy, )] + (2e0)[g(Ou,, v) + Og(u, OV,)]
= 27— glou, v,) + g(@u,, v)] + Cro)[g(ou, v)) — O’g(wu,, v,)}
= w[—f(un v,) + f(u,, v)] + [f(w, v;) — @ f (uy, ;)]
= [f(uu ®v,) + f(wu'z’ v)] + [fF(wy, v) + f(@ou,, @v,)]
= f(u, + ou, v, + Ov,)

completing the proof.

The following form of Frobenius Reciprocity seems to be well
known.

(1.4) ProrosITION. (Frobenius Reciprocity). Suppose that k is
o field, G is a group with a subgroup H, V is a k[G]-module, and
U is a k[H}-module. Then as k-vector spaces:

(1) Homu (U, V|x) = Homy(U |4, V),
and
(2) Hom,z(V |z, U) = Homye(V, Uls) .

The proofs of (1) and (2) are similar. We sketch only the proof
of 1). Let 2, =1,%, -+, 2, be a transversal of H in G, so that
Ul =23%,QU. Let ® be the mapping of Hom,(U|% V) to
Hom,(U, V|;) determined by

P(g)(u) = ¢(2, Q u)
where ¢eHom,,(U% V) and ucU. Let ¥ be the mapping of
Homy (U, Vig) to Hom,(U|% V) determined by
() (2w, Q@ w,) = Jx(w,)

where + ¢ Hom,;1(U, V|z) and u, € U. It is straightforward to verify
that @ and ¥ are the inverse k-linear isomorphisms needed to prove

@).

(1.5) COROLLARY. Suppose that k is a field, G is a group with
normal subgroup N, and V is an irreducible k[G]-module for which
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Vig=V,+ +++ 4V, where the V, are homogeneous components. If
H 1s the stabilizer itn G of V, then restriction to V, is an isomor-
phism of Homu(V; V) onto Hom,m(V), V).

By Schur’s lemma k= Hom,(V, V) is a division ring. Note
also that any nonzero element of k induces a k[N ]-isomorphism of
V, into V. Since V, is a homogeneous component, k stabilizes V.
Restriction obviously induces an isomorphism of %k into k=
Hom,pz(V,, V) since % is a division ring. Since Homy,(V,, V) =
Hom,y«(V, V) as k-vector spaces, k= Hom,;(V,, V) as k-vector
spaces. By Clifford’s theorems V,|%(from H) = V so by Frobenius
Reciprocity k and k have the same dimension over k. We conclude
that the restriction map is onto k proving the corollary.

(1.6) PROPOSITION. Assume that k is a field, G is a group with
normal subgroup H, and V is a k[Gl-module. If C= Homyz(V, V)
then G acts naturally as automorphisms of C by

afy = z7'azw

where ze G, acC, and veV.

It suffices to show that if @aeC and zeG then a*c€C. Ac-
cordingly, let € H and v e V 8o that a*zv = 2z 'azoy = 2 'a(zez™")ze =
2 zxz Y)azv = va*v completing the proof.

(1.7) PROPOSITION. Assume that k is a finite field of odd char-
acteristic, G is a group with subgroup H of index 2, and V is a
k[G]-module for which V|, is trreducible. Let J be the 1-dimensional
Jaithful k[G/H]-module, k= Homy(V, V), and k=Homuu(V, V).
Then VXud =V if and only if k= k. If k + k then [7:: ic] =2
and z € G\H acts upon k as an automorphism of order 2.

Let veV and define z-vw =2v if 2ze H or —zv if ze G\H. This
makes V into a k[G]-module isomorphic to V ®.J. Assume that
V@idJ = V. Thus there is a k-isomorphism ¢ of V to V such that
if ze G then z-v = ¢ '2¢v for ve V. In particular, zv = z-v = ¢~ '2gv
for ze H so that gck. If xcG\H then a#*c H so that x operates
on k as an automorphism of order 1 or 2. Now OV = XV = — TV
for ve V so that ¢* = ¢7'¢x = — ¢ proving that x acts with order 2
and k = k (since clearly k< k).

Assume now that k == k. By [14, (29.13)] V is an absolutely ir-
reducible k[G]-module and an absolutely irreducible k[ H]-module.
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Let V= k®; V, so that ¥ is an absolutely irreducible k[G]-module.
The mapping given by a ® v+ av defines a l~c[H ]-homomorphism of
¥ onto V. But dim; V' = dimj V = [k: k] dim;z V so that the kernel
of this hoxgomorphism is a proper k[H ]-submoduNIe of V. Con-
sequently, V|y is reducible. Since [G:~ H]=2 and V|, is a sum of
absolutely irreducible constituents, V|z; is the sum of two such
irreducibles of equal dimension, one being V as a E[H J-module.
Thus [k: k] = 2. By (1.5) G acts as automorphisms of k. Since k = £,
if G acts trivially, k = k. Therefore G acts as G/H, a group of
order 2.

Choose wek and zcG\H so that w* = ®. Set pt= " — @ so
that p* = — p+0. If zeG then z-v = p 'z for ve V so that p
induces an isomorphism of V with usual action to V with .- action
proving that V= V ®.J. The proof is complete.

(1.8) PROPOSITION. Suppose that k is a field; G is & group; and
V., and V, are completely reducible monisomorphic k[G]-modules.
Assume that H 18 normal in G; G/H is a four group; S, S, S; are
the maximal subgroups of G containing H; and V.|, = V,|s, for
1=1,2. Then Vs, & Vils,

Let %, x. be the Brauer (or complex) characters of V,, V, re-
spectively. If char k= »p > 0 we consider only p-regular elements
z of G. The modules we are considering are completely reducible
in any finite extension field of & [14, 69.9] so that the modules are
determined up to isomorphism by their Brauer characters [14, (82.7),
(29.11)]. By hypothesis, y, # 2. so that for some z€ G, ¥,(2) # X(?).
Since Yls, = Xols, for +=1,2, 2¢S,US,. Since S, = H and G/H is
a four group, 2€S;. Thus X |s, # X:|s, proving the proposition.

(1.9) PROPOSITION. Assume that kisa field, v 1s an automor-
phism of i of finite order, and k is the fixzed field of v. Assume
that G is a group, V is a ic[G]-module with k-basis {v, *+-, v,}. For
SMav, eV, a, e ki set v- Saw, =, aw,. Make V into a k[G]-module
vV by letting meIAc[G] act upon vV as v'e(xv)-v. Then V = vV
as k[G]-modules.

Choose w,, ---, @, as a k-basis for k. Then &# = {wv;]1 L1,
1 <7<t} is a k-basis for V. Now v induces a k-linear transforma-
tion ¥ of the k-space V. If T(x) is the representation of x€G in
the basis &Z then y™.(xv).v = V'T(2)Vv for ve V. In particular,
the representation 7(z) = D'T(x)® of k[G] on vV is similar to T(x)
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on V proving the proposition.
2. The wreath product and representation theory.

(2.1) HypoTHESIS. Let k be a field, G a group, H a subgroup,
U a k[H}-module, and H* a normal subgroup of H contained in
ker U.

We map G homomorphically into a wreath product G. We then
prove that k[G]-modules induced from H extend naturally to K[G]-
modules induced from an appropriate subgroup of G.

A. The Frobenius embedding. We fix the following notation:
a factor group H,= H/H*; a transversal .9 ={l=ux, .-, z,} for
H in G; and a set of integers 2 = (1,2, ---, n}. Consider the homo-
morphism of G into S™ given by the action of G on the cosets of
H., That is, if €@ and x—Z where X is the image of 2 in S*

then % is defined by the equalities
v, H = v, H

where %(i) = j. We let G be the image of G in S”. The wreath
product of H, by G (G = H, ~ G) is defined to be the semidirect
product of H? by G where H? = {f: 2— H,|f a function} is the
group given by pointwise multiplication (i.e., H{ is the direct product
of n copies of H,), and where the action of Ze€ G upon fe H? is given
by f*(3) = F(x(2)).

For ze€ @G set

2.2) f.(1) = z7'ex, H* ¢ Hy where Z(z) = J
and set
(2.3) O(x) = if,eG=H,~G .

(2.4) PropPoSITION. (Frobenius Homomorphism). 9:G —G is a
homomorphism with kernel (\ H*® (over z < G).

The proof is a straightforward computation using (2.2) and (2.3).
The proof is given in both [20, Satz 15.9] and [23, IIL.5.k] for the
case where H* =1 and H is normal in G. Dropping these additional
hypotheses on H does not alter the proof.

The homomorphism @ has the following useful conjugacy property.

(2.5) PROPOSITION. Suppose that 7' is a transversal for H in
G with elements x; = x;h; where h,c H. If fiixeG) and @ are
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defined by (2.2) and (2.3) respectively for the transversal 7' then
P'(2) = f7O(2)f(x € G)
where fe HY is defined by f(i) = h,.
Let x€G so that
frO@)f = Eff.f .
Evaluating at ¢ and letting 5 = %(¢),
Fff () = h'wyianh H*

= o} ‘waiH*
= fa(4)
proving the proposition.
B. Induced modules. For each integer 7 =1, 2, ---, n consider

the k[z,Hx;']-submodule z; ® U of k[G] ® U where tensoring is over
k[H]. The direct sum of the modules 2, @ U is just the induced
module U|¢ = k[G]® U. We may also obtain a module by tensoring
(over k) the modules =, @ U. This latter process gives a k[G]-module
under more general hypotheses.

Instead of assuming that U is a k[H]-module of the usual kind,
we assume that U is a projective k[H]-module, that is, there is a
factor set a: H x H—k such that if h,h'e H and weU then

h(k'w) = a(h, b)(RA .

REMARKS. (1) If the factor set @ of the projective module U
is 1, then U is a module in the usual sense. To emphasize this fact,

we will call such a module nonprojective.

(2) Since the projective and injective modules of general module
theory play no role here, there will be no confusion in this usage.
Strictly speaking, U is a module affording a projective representa-
tion of H with factor set a [14, §51].

(2.6) DEFINITION. Set U[¥=(2, QU)X @, R U)X - R (x, Q U)
where tensoring between z, ® U’s is over k. We call U|[®° the
tensor imduced module.

There are two tensor signs used here, one over k[H] and one
over k. The positions of these signs make clear which tensor symbol
is meant, and therefore, we omit future reference to distinctions

between the two types.
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REMARK. In early versions of this paper and in some of the
author’s papers, the cumbersome notation U¢ was used in place of
U|%e,

(2.7) PROPOSITION. If U is a projective k[H |-module with H* <
ker U and factor set a then U|®® is a projective k[G]-module with
multiplication given by

[ @ u)® e Q (@ @ u,)l
=(ml®w1)®"°®(xn®'w»)

where x€ G, u, € U, and w; = f,(t)u, when j = Z(1), and factor set
B given by

Bla, 1) = 1 (L), £

where x, y € G.

Since H* is in the kernel of U, U is naturally a projective
k[H,-module. Let U?=U X -+« Xx U (n copies) and define the
mapping m,: U? — U|®¢ for € G by

mz(uu M) u’n) = (x1®w1)® ‘e ®(xn®wn)

where u; and w; are as in the proposition. It is easy to verify that
m, is a balanced mapping linear in each variable [14, (12.3)]. If
¢: U? — U|®¢ is the mapping sending (%, *+-, %,) to (L, R U)X +--&®
(x, ® u,), then there is a unique linear transformation z. of U|®¢
(whose restriction to tensors is given in the proposition) making the
diagram commutative.

U* M, Ulee
l /
c /a:
U|®¢

To show that U[®*¢ is a projective k[G]-module with factor set 8 we
compute the composition of z, y€ G on U|®°,

w = x'(y’[(x1®u1)® M ®(xn®un)])
= o [1% (z; ® fu(9)u,)
= II% (z; ® fo(k)f,(Dw.)

where j = 77(i), k = 57'(3), and L =F7'(i). But £.(0) (b = &l £.(R),
Sy(D) () so that
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w = [T a(£.00), LNITI® (=, ® £, D]
= [I1 a(/.(k), £,O)iw) - TT® (& @ u)] ,

since k¥ and ! run through 1,2, ---, » as ¢ does, and since k = %(l),
we have

11 a(£.00, £,0) = L a7.G0O6 £,0) = B, ) .

We have proven that if ze€ G induces a linear transformation T, on
U|®¢ then T.T, = T,,S(x, y) proving the proposition.

Two properties of tensor induction are mentioned here without
proof. They are analogous to properties of ordinary induction. First,
recall the definition of equivalent projective representations. Stated
for modules: two projective k[G]-modules V and W are equivalent
if there is a crossed homomorphism 7:G—k and a vector space
isomorphism ¢: V— W such that if € G and ve V then

d(zv) = V(x)xd(v) .

That is, V and W are essentially “isomorphic”, the deviation from
isomorphism being that the cocycle of the one module is obtained
by altering the cocycle of the other module by a coboundary.

(2.8) PROPOSITION. Consider a second projective k[H }-module W
and o subgroup HZ K< G. Then

(a) (U W)|® is equivalent to (U|%°) @, (W|®%);
and v
(b) (U|®%)|8% is equivalent to U|%°.

Next we prove that a Mackey decomposition holds for tensor
induction. Note that 2 ® U is a projective k[rHx ']-module with
factor set

a,(zhx™, xh'z™) = a(h, ') for h,h' e H.

(2.9) PrOPOSITION. (Mackey Decomposition). Let K be a subgroup
of G. Let W=TI®°@Q Ul,z.-1nx)|®* where the temsor product is
over a set of (K, H)-double coset representatives © in G. Then W
18 equivalent to U|®%|g.

The proof is carried out by computing with tensors. If in the
proof of the Mackey decomposition [14, (44.2)] one replaces sums of
vectors by their tensors over k, then one obtains the proof for
tensor induction.
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REMARK.  Induction and tensor induction are special cases of
more general “induction” procedures which we sketch now. Fix an
integer m between 1 and % and let .# be the set of all m-tuples
(% Tgy ==+, ) such that 1 <4, <4, < +++ <4, <n. Thereis an action
G upon _# given as follows: if #¢€G and g = (4, *+-, tn) € # then
{z(i,), -+, E(t,)} is a set of m distinct integers, which when ordered,
gives an m-tuple ¢° = (4, +*+, jm) € # Form the tensor products

U,=@,0U0)® & @,QU)

where g e _#. Finally, let V,, be the direct sum of all modules U,
for ge _#. Using this notation, if u,, ---, u, € U we set

(2.10) o [@, Qu) @+ @ (2, @ un)l
=@, QW) -+ Q (%), @ Wa)

where 2€G, g = (i, **+, tn), ¢° = (s ***, Ju) € A4 and w, = f,(i)u,
when j, = Z(4%,). This action extends linearly to V, and makes it
into a k[G]-module. When m =1, V, is the induced module, and
when m = n, V, is the tensor induced module. If &, ---, &, are
the G-orbits on .# and W, = S°2U, (g€ ) then V, =S8 W, is a
k[G]-decomposition of V,. Thus there is an “induced” module be-
longing to U for each m = 1,2, ---, n and each orbit # of G on
A

In what follows, we extend induced modules to a wreath product
and prove that certain mappings are compatible. This wreath pro-
duct may be used to show that induction is independent of the
transversal .. We discuss only induction and tensor induction, but
the arguments apply equally to all the “induced” modules described
in this remark.

C. E)Etension to wreath products. Recall the wreath product
G=H,~G. Let ~G1 ={Zf|Z(1) =1, fe H{} so that &(H) < G,. We
make U into a k[G,]-module (projective or otherwise) by setting

(2.11) f+u = f)u for ZfeG, and ueU.

For the moment we call this module U, to distinguish it from U.
Using the identification mapping 7: U— U, it is easy to see, since
U is naturally a k[H,]-module, that

t(hu) = O(h)t(uw)

for heH and weU. We may “induce” the module U, to G to
obtain a module V, which is either U,| or U,|®*. We also “induce”
U to G to obtain a module V which is U|¢ or U|[®%. Define mappings:
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(212) (@) If V =U® and V,=U,|° then define I. V—V, by linear
extension of
Iz, Q@u) =%, t(u) .
() If V =U® and V, = U,|%¢ then define I: V—V, by linear
extension of

I(I1° (2 @ u.)) = 11° (@ @ 7(w,) .

These vector space isomorphisms have the following property.

(2.13) THEOREM. In (2.12), +f € G and ve V then
I(zv) = O(2)I(v) .

The proof is by direct computation, and for tensor and ordinary
induction, the proofs are of the same general shape. Therefore,
we only sketch the computation for tensor induction. Observe that
7 ={&,|1 <4 < n} is a transversal for G, in G so that I defines a
vector space isomorphism of V onto V,. If we set & = Zf, then we
first jcompute f3(i)u where e U, and f> is defined for G with
respect to the transversal .9 by (2.2). If H* is in the kernel of
G, on U, then with j = &(3)

F6) = z7'@® )z H*
= Z;'%x, fuH* .
Since %;'z%,(1) = 1, we have
F@) - = filu
= f.()u .
Consequently, using the fact that z(u) = 4 we have
O(x) I(11® (% & w.))
=xf, - 1I% (@ ® u,)
= T1° @ ® w))
= I(II® (z; ® wy))
= I(x - I1° (z; ® u;))
where j = z(i) and w; = f3(0)u, = f.(i)u..

Using this embedding we may prove:

(2.14) PROPOSITION. Induction and tensor induction are inde-
pendent of transversal.

The transversal does not affect the group G. In fact, trans-



HALL-HIGMAN TYPE THEOREMS V 13

versals .7~ and .7’ for H in G only alter the homomorphism @ of
(2.4). When applying (2,13), by (2.5) these two transversals give
rise to conjugate subgroups of G. The element f of (2.5) then gives
the necessary equivalence of modules by its action on V,.

The embedding (2.13) allows us to enlarge the group G to G
acting upon V,= V (via @, I). Since G is the split extension of a
permutation group by a direet product of copies of H,, it is often
easier to compute the action of G on V, than that of G on V. It
is this computational advantage which we exploit in later sections.

REMARK. The Clifford theorems for tensor decomposed modules
only hold in a very narrow setting where the Fitting subgroup
F(G) has class 2. This setting reduces to ordinary Clifford theory
on F(G)/Z(G) viewed as a G-module. We shall discuss the appropriate
concepts in §5.

3. The wreath product and permutation representations. Let
G be a group, and C = {(12--- n)) < S™ where 2 = {1, 2, ---, n}.

Assume that G is given as a permutation group on a set I
Form the set I'? = {g: 2 — I'|g a function}. We shall write elements
of G~ C as yf where yeC and feG?. If gel'? then yf acts upon
g by

9" (@) = (gy(N)S (@) -

Thus G ~ C acts naturally upon I

We shall study the following type of configuration. We have a
certain subgroup H of G ~ € for which we know that HG? = G ~ C.
Further, we assume certain facts about the orbit structure of G
upon I'. For example, G may have regular orbits upon I'. Our
question then is: when will H have regular orbits upon I'?? Cer-
tainly, if G ~ C has regular orbits upon I'?, then H will also. We
study this case first.

(3.1) PROPOSITION. If G permutes the elements of I' so that:

(a) there are at least two regular G-orbits on I’ and m > 2
then G ~ C has at least two regular orbits on I'?

(b) there are at least three regular G-orbits on I' then G ~ C
has at least three regular orbits on I'°.

Similar results are proved in [22]. In proving results like these
it is only necessary to obtain the right number of distinct regular
orbit representatives of G on I' then to use these to construet regu-
lar orbit representatives for G ~ C on I'?. Consequently, proofs
proceed by writing down the answer, then verifying that it is cor-
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rect. Most verifications follow a fixed pattern. Therefore, only a
few verifications are included, and they vary in completeness.

Let s=2,3 and 2, 1 <1 <s, be regular orbits of G on I.
Let w, e Z,. Let

w, if 1>1
9:(1) =w, if 1=1
w, if i>1
g:(1) =, if 1=1
w, if 1>1
9:(1) =w, if i=1
w, if +>1.

If we are in case (a) and s = 2 we consider the orbits generated
by {g,, g.}. In case (b) where s = 3 we consider the orbits generated

by {9., gz, g5}
Assume w, ' € I" generate distinet regular G-orbits. Let

gi) =@ if 1=1
w if 1>1.

First we show that g generates a regular G ~ C-orbit on I'?. Sup-
pose yfe€ G ~ C fixes g. Then

9(0) = g"(5) = (g(@DNf ()

for all 7. Assume y == 1 and choose ¢ so that y(¢) = 1. Then g(z) =
o' and g(y(?)) = g(1) = w. Thus

(@)f()) = o .

But (w)z # @' for any z€G. Thus y = 1. Here we have
(9(NS (@) = 9(?)
for every 7. But o, @' generate regular G-orbits so
f@) =1

for each . Thus yf = 1. This proves g generates a regular G ~ C-
orbit. In particular, g, g., g5 9. all generate regular G ~ C-orbits.

Second, as an example of the computations, we show that for
n > 2, ¢, g, generate distinet regular G ~ C-orbits. Assume yfe
G ~ C and

9 =g9,.
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Two possibilities occur.
(1) y=1
Now g/(7) = g,(¢) for all 4. In particular, for ¢ =1 we get
(9:(1))f (@) = g(1) or
(w1)f (1) = @,

which is not possible since w,, , belong to distinct G-orbits.

(2) y+#1.

Choose 7 so that ¢ 1 and y(z) == 1. This is possible since n > 2.
Then

(@)1 (@) = (9:(y(@DNS () = 9:(3) = @,

which is again not possible.

Therefore, g,, g, generate distinct regular G ~ C-orbits.

This completes the example. The rest of the proof is similar.

Recall the groups H< G~ C and G. In applications, we will
consider the case where both H and G are nilpotent. As is evident
from (3.1) we are looking for a situation where H has several regu-
lar orbits upon I"?. The wreath product collects such orbits quite
rapidly for most subgroups H. For nilpotent groups which involve
more than one prime in their order this is especially true. The
next result makes this idea more precise.

(3.2) PROPOSITION. Let K=LXM<ZG~C with L=C, 1+
MG and (L, | M) =1. Assume that G has at least s=1
regular orbits upon I.

(a) If n> 4 then K has at least three regular orbits upon I'°.

() If n=3 and

(i) |M|>2, or

(ii) |M| =2 and s = 2, or

(iii) |[M| =2, L =C, and I' is not the regular G-orbit,
then K has at least three regular orbits wpon I'°.

(¢) If n=2 and

(i) |M|>5, or

(ii) |M|=38,5 and s =2, or

(iii) |M| =5, L =C, and I' ts not the regular G-orbit,
then K has at least three regular orbits upon I'°.

@d Ifn=38, |M|=2, then K has at least one regular orbit
upon I'?.

() If n =2 and |M|= 8,5 then K has at least t regular orbits
upon I'* where t =1 if |[M|=83 or t=2 1f |M|=5.

For the proof we list, in each case, elements which generate
distinet regular K-orbits on I"?. Suppose w €' generates a regular
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G-orbit.

a generator.

Note that C< L and [L, M]=1.
means f¥(z) = f(z) for all 4.

lar, if f(1) = z then f(3) = z for all 4.

fe M* where f(1) = z.

w®,

(@) If n>4 set

if

T. R. BERGER

If there is another regular G-orbit ¢ on I" let pe & be

=1

1>1

1=1,2

1> 2

1=1,38

1=2 or 1>3.

(b) (i) Choose f'eM* so that f'(1) = u # 2. Set

(ii) Let pel — w® generate

Set

(iii) Let peI — »® generate a G-orbit distinct from w°®.

9:(1) = 0w

g5(1) = @z

95(t) = wz

a regular G-orbit distinct from

if

1=1
1>1
1=1
1>1
=1
1=2
1=3

1=1
1>1
1=1
1>1
=1
1>1

1=1
1>1
1=1
1>1
=1
1>1.

For yeC and feM this
Thus f(1) = f(z) for all 4.
With this in mind, we choose
We now list the orbit generators in I'°.

In particu-
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(¢) (i) - Choose h, ke M? so that f, h, b are unequal and not
inverses of one another. Suppose k(1) = w and k(1) = w. Set

9.(7) = wz if
o if
9:.(2) = wu if
w if
9:(7) = ow if
o if

1=1
=2
1=1
=2
1=1
=2

(ii) Suppose pel — w° generates a second regular G-orbit. Set

g.(1) = ¢ if
o if
9.(%) = wz if
o if
9:(%) = pz if
poif

(iii) Let pel — w® generate an
heM? h(i)=u + 2z, 27

9.(?) = w if
poif
9.(7) = ou if
w if
9:(t) = wz if
w if
(d) Set
9.(1) = wz if
o if

=1
=2
1=1
=2
=1
1=2
orbit
=1
=2
=1
=2
=1
=2,
=1
1>1.

distinct from €.

(e) Assume |M| = 5. Choose he M h(i) =u * 2, 27"

9:(1) = wz if
w if
9:(7) = wu if
w if

(¢') Assume |[M| =3

9,(t) = wz if
w if

1=1
1>1
1=1

1>1.

1=1

1>1.

Let
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Let us look at a few examples in the proof. Suppose g(1) = @
and g(7) = wz for ¢+ >1. We show that g generates a regular K-
orbit. Suppose yf* € K fixes g. Consider first ¥y = 1. Then

9(?) = g""*(1) = gly()S*() .
Now taking ¢ = 1 we have, since y(7) > 1, that
0z = g(y))/*Q) = of*Q@) .

Since ®? is regular, f*(1) = 2. For y(i) =1, 1, >1 we have 0w =
9g(1)f*(%,) = wzf*(3,). Now f*(i,) = z~'. Finally, for ¢ # ¢, 7, we have

o = g(y()f*@) = of*(%)
80 that f*(4) = 1. This tells us the value of f*. Namely,

z 1=1
f*@) = {27 1 =1,
1 11,4,

Let K, be the stabilizer in K of g. Since [L, M]=1and (|L|, [M))=1
we have K, = L, X M,. For yf*cK,, y + 1, we may assume that
yf*eL, by taking an appropriate power of yf*. But then yf*eL
so that y~'yf* = f*e L since ye C< L. Since the order of z divides
|M| (feM), f* lies in LN M =1. This contradicts z==1. We
conclude that y = 1.

Now ¢g(%) = ¢7°(%) = g(#)f*(#). For ¢ =1 we obtain wz = wzf*().
For 2 > 1 we obtain w = wf*(¢). In any case, f*(3) =1 for all <.
So yf*=1.

We have proved that the various g¢,’s all generate regular K-
orbits. We prove the case (e) to illustrate the method used to prove
the various orbits are distinct. Suppose g?* = g,. Assume that
y+1. So y =(12). Now

ou = g1) = g1”"(1) = ¢.(2)/*Q) = 0 f*(1),
and
w = g,(2) = g17'(2) = 9.(1)[*(2) = wzf*(2) .

We have shown that f*(1) =« and f*(2) = 27'. Sinceyc K, yyf*e
K. By order we have f*e M. But then f*(1) = f*(2). Since u =
27! we conclude that y = 1. Again computing we have

ou = g (1) = g{"(1) = wzf*Q),
and

® = gy(2) = g’'(1) = wf*Q) .

Thus f*(1) = z7'u and f*(2) = 1. By the order of f* we must have
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f*eM. So f* is constant. We conclude that z7'w = 1. But u = z.
This contradiction completes the proof. We know that g,, g, generate
distinet regular K-orbits.

The remaining computations are much the same.

The next result enables us to treat wreath-free groups.

(3.3) PROPOSITION. Suppose K < G ~ C is nilpotent and KG° =
G~ C. Assume m is a prime and Z, ~ Z, s not involved in K.
If G has at least ome regular orbit & on I' and I' # 2 then K
has at least one regular orbit & on I'® and ' = ~.

Choose wel so that ®® is a regular G-orbit. Then choose
prel — .
Set
g.(@)=p if i=1
w if 1>1
9:(1) =@ all 7.

Certainly g¢,, g, generate distinet G ~ C-orbits so ['? consists of
at least two K-orbits.

It is not difficult to see that Cg.x(9) N K = {feG?|f(1) e Ca(tr);
f@=1,4+>1}. If Cu(g) N K =1 then g, generates a regular K-
orbit on I"'?. So we may assume that C,..(g.) N K= K, > 1. Now
if KNC=C then {C, K,) < K is either not nilpotent or involves
Z,~Z, So we may assume KNC = 1.

Recall g,(7) = w all 7. Now Csz.¢(9:) = C and KN C = 1. There-
fore g, generates a regular K-orbit. So the proof is complete.

This improvement of an earlier lemma of the author is due to
E. C. Dade. Actually, we will need this lemma in a slightly dif-
ferent form also. Let (I"?)* be the collection

Uae!) [’.O-—{a) .

Thus if ge([?)* ¢ will have domain 2 — {a} for some choice of
aecf. For yfeG ~ C we still have the action

9" (@) = (gly(Nf()

where, if ¢(¢) has domain 2 — {a} then g¢g(y(?)) has domain 2 —
{y"(@)}. Thus G ~ C has a natural action upon (I"?)*.

(3.4) PROPOSITION. Suppose K < G ~ C 1s nilpotent and KG* =
G~ C. Assume n is & prime and 24, ~ Z, s not involved in K.
If G has at least ome regular orbit on I' then K has at least ome
regular orbit on I'* U (I'?)*.
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Choose w €' to generate a regular G-orbit. Set

g:(?1) =w all 7.

Now g¢,e(I")* and g,e€I'?. Using the same argument as in (3.8)
we see that either g, or g, generates a regular K-orbit.

4. Applications. In this section we combine the results of §§2
and 3 to obtain information about induced and tensor induced re-
presentions. We are interested in the regular structure of induced
modules.

(4.1) HYPOTHESIS. Assume the following:

@) G is a nilpotent group with subgroup H;

(b) k is a field and V is a k[H]-module faithful on H = H/H,,
H, = ker [H— Aut V'].

(¢) G is faithful on V| (or V% as the case may be).

A. Induction.

(4.2) PROPOSITION. If H permutes the elements of V* so that

(a) there are at least two regular H-orbits and [G: H] s odd,
then G has at least two regular orbits on (V|6)%

(b) there are at least three regular H-orbits, them G has at
least three regular orbdits on (V)%

(c) there is at least one regular H-orbit and G does not involve
Z, ~ Z, for any prime p|[G: H], then G has at least one regular
orbit on (V|

In each case, the proof is the same. For (a) we use (3.1)(a).
For (b) we use (3.1)(b) and finally for (c) we use (3.4). We will
only prove (¢). The proof is by induction upon [G: H]. If [G: H]=
1, then (¢) is obvious, so that we assume [G: H] > 1 and (c) holds
for all indices smaller than [G: H]. Suppose [G: H] is not a prime.
Since G is nilpotent, we may choose H, so that H < H, < G. In-
duction applies with H, in place of G. Thus there is a regular H,-
orbit on W*# = (V|#)%. Now induction applies with H, in place of
H and W in place of V. Thus we may assume that [G: H] = p is
a prime.

By (2.4) there is a natural embedding of G into H ~ C where
C=<{12---p)). By (2.13) this embedding is compatible with induc-
tion. If we take V#=1T, then gel'? may be identified with the
vector
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r,@9A)+ - + 5, g(p) e V|
(x, +++, ®, a transversal of H in G)

where all g(7) # 0. Further, ge(I"®)* may be identified with the
vector

5 Q@9A) + -+ + 2, g(p) e VI[¢

where we set g(7) = 0 if ¢ is not in the domain of g. Now (c¢) is
immediate by (3.4).

(4.3) PROPOSITION. Let [G: H] = p a prime, H= Q X B where
Q is a p-group and B is a p'-group, |B| = 1. Assume H has at
least one regular orbit on V.

@) If p> 8 then G has at least three regular orbits on (V|9

(o) If p=3 and

(i) |B|>2, or

(ii) |B|= 2 and H has at least two regular orbits on V*, or

(iii) |B| =2, |Q| =1 and V* is not the regular B orbit,
then G has at least three regular orbits on (V|%)%

() If p=2 and

(i) |B|>5, or

(ii) |B|= 8,5 and H has at least two regular orbits on V?, or

(ii) |B| =5, |Q| =1, and V*? is not the regular H-orbit,
then G has at least three regular orbits on (V|

@) If p=3, |B|=2then G has at least one regular orbit on
(V9.

() If p=2 and |B| = 3,5 then G has at least s regular orbits
on (V%)% where s=11f |B|=3and s =2 ¢f |B|=5.

To prove this we apply (2.4), (2.13), and (3.2). In looking at G
embedded in A ~ C we may have to enlarge G to G, = (G, Q°) to
make certain that C < G,. Observe that G, is nilpotent. Then (3.2)
applies to G,. The result for G is obtained by restriction. We let
I' = V# and identify I'? with the set of vectors ,®@v, + -+ +2,Q
v,€ V|% with all v, 0 (%, ---, ®, a transversal for H in G) via
g5 Qgd) + -+ + 2, ® g(p).

B. Tensor induction. The results here go exactly as in the
case for ordinary induction. The pattern is as follows. Suppose
V=V,4+:.-4+V,+ W where each V, is a regular k[H]-module.
Then we may choose S; = {hv;|h € H} for some fixed v,€ V, so that
S, is a k-basis for V,. If W = (0) we choose we W% and let T =
{hwlhe H}). We take I' =T U(US,). Then H permutes the ele-
ments of I' with at least s regular orbits. Let {, -::,2,} be a



22 T. R. BERGER
transversal of H in G if [G: H} = p. We identify '’ with

{2.0v)Q - ® (@, Qv,)|v:el};

via g~ @, ®9A) R -+ Q (%, ® g(p)) where g: 2—I" is a funetion.
Let &7 be the set of all geI'? with g(7) e U S; for all 2. It is clear
that & is a linearly independent set of vectors in V|®¢ and is a
basis for the k[G]-module ($”). Let .7~ be the set of all gel™
such that g(7) €T for some i. Then .7~ contains a basis for the
k[G]-module (7). Further (&) 4+ (7 ) is a direct sum of k[G]-
modules. Note that ($”) has the G-permutation basis &~ If W=
(0) then (.77) # (0). Embedding G in H ~ C we see that I'? cor-
responds with its counterpart of § 3.
We now have the following results for tensor induction.

(4.4) PROPOSITION. If V contains at least s copies of the regular
H-module where

(@) s=2 and [G: H] is odd then V|®¢ contains at least two
copies of the regular G-module;

(b) s =3 then V[*¢ contains at least three copies of the regular
G-module;

() s=1, V s not the regular H-module, and G does mot
wnvolve Z, ~ Z, for any prime p|[G: H} then V|*¢ contains at least
one copy of the regular G-module and V|®¢ is mot the regular G-
module.

Actually we use (2.4), (2.13) (i.e., the compatibility of the em-
bedding with tensor induction) and (3.1), (3.3) in the proof. Other
than that everything proceeds as in the induction case.

In a similar way we obtain the following variation of (4.3).

(4.5) PROPOSITION. Let [G: H] = p, & prime, H = Q X B where
Q s a p-group and B is a p-group, |B| # 1. Assume V contains
at least ome copy of the regular H-module.

@) If p>3 then V|®¢ contains at least three copies of the
regular G-module.

() If p=3 and

(i) |B|>2, or

(ii) |B| =2 and V contains at least two regular H-modules, or

(ii) |B|=2, |Q| =1, and V is not the regular H-module,
then V|®¢ contains at least three copies of the regular G-module.

(¢) If p=2 and

(i) |B|>5, or

(ii) |B|=8,5 and V contains at least two regular H-modules:
or
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(iii) |B| =5, |Q| =1, and V is not the regular H-module,
then V|®¢ contains at least three copies of the regular G-module.

(d) If p=3, |B| =2 then V|®° contains at least one regular
G-module.

() If p=2 and |B| = 3,5 then V|®% contains at least s regu-
lar G-modules where s =1 if |B| =3 and s =2 if |B| =5.

REMARK. A few observations are in order on these results.
Recall the choice of I'? in the proofs of (4.2) and (4.3). Excepting
possibly the case where [G: H] = 2 in (4.2) (c¢) there are more orbits
of G upon (V|%* than those in I'°.

For tensor induction, a similar econclusion holds. The module
(&) cannot be the given number of regular modules. For example,
look at (4.5) (¢) when |B| = 5. Then (<) cannot be a sum of just
two regular modules. Note that |G||»|Q[?|B|=10|Q[. On the
other hand |.&7| = |QB|? = 25|@Q[*. This latter number is much larger
than 2|G|. Thus V|®¢ is more than just a sum of two regular G-
modules.

The results (4.2) and (4.4) apply in a general setting. The re-
sults (4.3) and (4.5) apply when |H| has composite order. These
latter two results indicate that it is much harder for a group of
composite order to avoid some kind of regular structure.

5. A transference theorem.

A. The main construction. In this section we prove a technical
theorem which makes the method of tensor induction applicable in
the study of primitive linear groups. The setting is rather complex
so that we fix the following hypotheses.

(5.1) HYPOTHESIS. Assume G is a solvable group with normal
extraspecial r-subgroup R where Z(R) < Z(GR) and R/Z(R) is a chief
factor of G. Suppose H< G, R, < R so that

(1) R, is extraspecial,

(2) zRax*=R, or [zRx", R] =1 for all z€G,

(3) H normalizes R,, and

(4) as & G-module R/Z(R) = (R,/Z(R))|° where R,/Z(R) is viewed
as an H-module.

REMARK. For T < R we set T = TZ(R)/Z(R). Clearly condition
(4) implies that H = N4(R,). Now since R is a chief factor for G, G
acts irreducibly on it. This together with the fact that R,|*= R
tells us that R < H.
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(5.2) PROPOSITION. There is a subgroup N of G so that
(1) NR =G, '
(2) NNR=ZR), and
(3) Nz=CR).
If M < @G satisfies (1), (2), and (8) then M* = N for some xz<@.

Set C = Cx(R/Z(R)). Let T/C be minimal normal in G/C. Since
G is solvable, T/C is an elementary abelian ¢-group for a prime ¢.
But R/Z(R) represents G/C faithfully and irreducibly so that T/C
is an 7’-group acting fixed point freely upon R/Z(R). Let S be a
t-Sylow of T so that T = SC. The normality of T in G means that
G = N(S)T = N(S)C by the Frattini argument. (Also S is fixed
point free on R since T = SC.)

By [18, (5.4.6)] we have C = C(R)R so that we set N = N(S)C(R).
Since S is fixed point free upon R (=R/Z(R)), so is SC(R)/C(R),
and S°C(R)/C(R)+ SC(R)/C(R) for any x€ R\Z(R). If xe NNR then
¢ = yz where y € N(S), z€ C(R). We now have S°C(R) = S**C(R) =
S*C(R) = SC(R) so that z¢ R\Z(R). This shows that NN R < Z(R),
and since Z(R) < NN R we conclude that Z(R) = NN R. Therefore,
1), (2), and (3) hold for N.

Suppose that M < G satisfies (1), (2), and (38). Now G/C(R)
(=MR/C(R)) has RC(R)/C(R) (=R) as a normal subgroup which is
minimal (since G' acts irreducibly on E), and clearly is unique (as
any other minimal normal subgroup would centralize it). Also
M/C(R) and N/C(R) are complements for B in G/C(R), and so there
is y € G such that MY = N. This completes the proof.

We set up some notation now. Choose N as in (5.2) and form
the semidirect product

G*=N-R,
and then set

N,=NnNH,

G = N,- R, ,
and

H*=N,-R

where the starred groups are subgroups of G*. The mapping ¢:
G* — G given by

o(x, y) = vy

is a homomorphism of G* onto G. In addition, ¢ maps G onto
G, = N,R, and H* onto H = N,R. It is the group G* which will
concern us for the time being.
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Let R} = Cx(R) = I(zR,x"") where the product is over all ze¢G
such that zRx™' =+ R,. It is easy to see that R is the central prod-
uct R,R;.

The construction we now undertake shows that if U is a pro-
jective k[G,]-module such that Ul is nonprojective, faithful, and
irreducible then U has a projective extension to U*, a k[H]-module,
such that U*|®¢ = V is a projective k[G]-module for which V|, is
nonprojective, faithful, and irreducible. Since U* is constructed in
a canonical fashion, we will alter the definition of tensor induction
so that U|®¢ is defined to be U*[®*¢. This abuse of language will
not cause any confusion since the situation surrounding this con-
struction of U*|®¢ is so complex that it will clearly indicate that
when U|®¢ is written, really U*|®¢ is meant.

If T< N is being viewed as a subgroup of N then we set
T* ={(¢,1)|teT}, and if T < R is being viewed as a subgroup of
R then we set T* = {(1,{)|t € T}. With these conventions, we view
Z(R) as a subgroup of R unless explicitly stated otherwise.

We have pre-empted the bar notation for R = R/Z(R) so that
we use “-notation where we have used a bar in previous sections.
Let 7 ={x,=1,%, -+, 2} be a transversal for N, in N. Since
NH =G and NN H= N, 7 is also a transversal for H in G. Let
z— % be the permutation representation of G upon 2 ={L,2, ---, s}
given by #(¢) = j if and only if zx,H = z;H. Form the wreath
product

G=Gr~G=0G-G*.

In the following, we embed G* into a factor group of G. If L < G*
let L? = {feG’|f()e L for all }.

Next define

M= {feZR)**|IIf() =1},

that is, if f(7) = (1, z;) where z,€ Z(R) ~and feM then IIz, =1. It
is straightforward to show that M <]{G. We wish to embed G* in
G/M.

Let <Z be a transversal for Z(R) in R, containing 1. By the
bar-convention, if KX < R then K = KZ(R)/Z(R). Set

R, = z,R,x7" .
From (5.1) we have
R=RB+R+--+R,.
(Clearly' s = [N: N,] = [G: H] = number of distinct conjugates of R,

in R.) Let xe€R. Then there are unique elements r,, 7, «++, r,€ .#
so that
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T=0 7, + o +2,-7,.
Consequently

x = zl(w;rx7")

for some unique z€ Z(R). We set r(x) = 2r, and r(x) =7r;, for 1 >1
so that

@ = I(wr(x)2:")

where the 7, are functions upon R.
For ze N, ye R set

E(z, y) = &f.h,M
where

@) f.() = (@5,%%, 1),
(o) k(3 = (1, r{y)).

(5.3) PROPOSITION. The mapping 5: G* — G/M is a monomor-
phism.

First, we prove that 5 is a homomorphism. Let (x, %), (4, v) €
G*. Then

(@, y)(u, v) = (wu, y*v) .
Starting with y*v we have
¥y = (uyuy = [Hu vr(y)z7w)lv .

Let j be an index dependent upon % by the relation #7'(z) = j.
Then u™'z, = x;u; for some u, € N,, so that

v = (] @ar@uislo .
We may assume that j is independent and that 7 = #%(j) so that
v = [T @ o) o (0)a5']
= I @iluar gy r,@)les)
since R is the central product of the R,’s. But we also know that
y*v = H(zri(y"v)a;?) .
Comparing components in B we now must have
(5.4 2575 (Y*v) = wr(Y)ui'ri(v)

where ¢ = #(7) and z; € Z(R).
But now
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y*v = II (@s2;7;(y" v)a;?)
= [EI x,-r,-(y"v)x;‘)][lj] 2]
= (y“v)(IjI Z;) -

Therefore~, Iz, = 1. B
Let f(z) = (1, 2,) for all ¢ so that feM. Then

E(@, Y)E(u, v) = &fh,af oM
= BA(fELYF b Fuh) M .

In a fashion analogous to [23, IIL.5.k, 20, Satz 15.9] we have f i fu=
Jfeu- Computing the value at each 7, by setting #(¢7) = j, we have

w(i) = fIhE fuho(5) = FDhy(9)f(6)h()
= (v7'uw;, 1)7(Q, r(y)) (@5 uz,, 1)1, 7,(v))
= (1, 7u""w 7 i (Y)e7 uwr(v))
= A, uri(y)u;'r.(v))

where x;7'u™'2; = u; € N,. By equation (5.4)

w(t) = (1, 2:7:(y"v))
= hyuJ(3) .

We conclude that w = h,.,f. Since fe M we have

E(z, ¥)E(u, v) = Zaf,hyuM
= =2(zu, y"v)
= E((z, y)(u, v)) .

Consequently 5: G* — G/M is a homomorphism.

Finally we show that & is a monomorphism. If Z(z,y) = M
then Zf,h,M = M. Using the proof cited in [23, II.5.k] we may
show that Zf, =1, so that  =1. Therefore, h,€ M and h,(3)€
Z(R)* for each 7. But &2 N Z(R)=1 so that h,(¢) =1 for all 7> 1.
Since IIr,(y) = 1 (i.e., h, € M) we conclude that »(y) =1 and k,(3) = 1
for all 4. Therefore, h, = 1 so that (z, y) = (1,1). The proof that

—

Z is a monomorphism is now complete.

(5.5) PROPOSITION. Let k be a field and U a projective k[G:]-
module. Assume that T < Gf 1s a subgroup containing R¥ and
that Ul 18 monprojective. Further, suppose that Ul s faithful
and absolutely trreducible. The subgroup of G fizing 1 in Q =
{2 ---,s} is H. If zeH and feG:* then set

Zfeu = fu
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for we U. This defines a projective k[HG*"-module U(=U) which
is monprojective upon restriction to HT?. Set V = U|%°.

(1) The kernal of Rr® upon V is M.

(2) The module VlR-n 18 absolutely irreducible.

(3) The module VIGTQ is momprojective.

Since .7 = {#, %, -+, Z,} is a transversal for ﬁG in G,V is
the tensor product of the modules Z, @ U. If ue U, feGr’, 3G
then

f-2,Qu=2%;Q f(Du

where j = #(i). First, assume that fe R¥’. If f¢ Z(R)*‘Q then we
may choose w € U and 7 so that f(¢)u and u are linearly independent
since f(¢) does act not via scalar multiplication on U [18, (5.5.4)].
Therefore, v =, Qu) ® -+ R (&, ® w) and

fr=@EQ MK - Q@R[ - = & f(s)u)

are linearly independent. If ze Z(R)* then zu = \M2)u for w e U and
A\ a faithful linear character of Z(R)* since z acts via scalar multi-
plication on U. Let f e Z(R)** so that if w,, -+-,u, e U and if v/ =

@ Qu)® - ® (& ®u,) then

= (@, QMM Du) ® -+ Q (T, ® MS(s))u,)
— ML) .

These calculations show that an element fe R*’ is in the kernel of
V if and only if fe M which proves that (1) holds.

It is easy to see that R*“/M is isomorphic to the central product
of s copies of R,. If R, has order »**' then dim U = r° so that
R¥°/M is extraspecial of order 7™ and dim V=1 If V|ge is
nonprojective then (2) follows from (1) and knowledge of the dimen-
sion of faithful absolutely irreducible modules of extraspecial groups
[18, (56.5.5)]. Therefore, part (2) follows from (3).

If  §eG; f,geT? ue U, and « is the factor set of G¥ upon
U then a|;., =1 since U|, is nonprojective, so that with j = #(3)
and k = §(J),

Jg-@f -2, Q@u) = 2, ® g())Sf(D)u
= (§g2f) -2, Q@ u
since a(g(j), f(4)) = 1. Therefore, GT? has trivial factor set upon
V. Part (3) holds completing the proof of (5.5).

If we start with the projective k[Gy]-module U then we finish
with a projective k[G*]-module V(= V) defined by

v = 5(x) v
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for xeG* and ve V(=V). Since & maps R* onto R*’/M, V| is a
nonprojective faithful absolutely irreducible k[R*]-module by (5.5)
since R* = R*°/M. Before describing properties of this module, let
us show that the construction of V is essentially choice-free.

The choices involved in the construction for V were those of
.7 and 2. Our choices are restricted by the conditions that 1e
7 Z N and 1e <& Suppose that we alter our choices to 7' =
{x; = z,0,]1 £ 7 < s} where a;€ N, and to <2’ where for ye R 7(y)
is the »,-function defined for the 7', &#'-system. Let f(4) = (a;, 1),
and conjugate Z(z, y) = zf,h,M, by f. We have, as in (2.5),

[o8f b, f = 8(fFh,f) .
By a simple computation we obtain
9()) = Ffh,f () = £, 79)™)
where f, is the appropriate function defined for the .77/, &#'-system.
Computing the value of y€R in the 9, - and 7', F#'-sys-
tems gives
y = I(@;r(y)x:")
= I(ziri(y)z:™)
= Il(z0r(y)a;i'z7?) .

Since #,, r; are constructed from transversals for Z(R) in R,, and
since a, € N, normalizes R, we must have

74y) = ari(y)ai 't (y)
for {(y)e Z(R) and II{,(y) = 1. Consequently
9(2) = f:(D)(A, ri(¥)C())
= fohy (31, L)

where h; is the appropriate function defined in the .77, &Z’-system.
Set f'(z) = {,(y) so that f'e M. Then

ST ok f = Bk f’

proving that the 7', &#'-system gives 5’, an embedding of G*
conjugate in G/M to that given by &. The transformation induced
by fM upon V is therefore an equivalence from the .7, ZZ-system
construction of V to the .77/, &#’'-system construction of V.

(5.6) PROPOSITION. The k[G*]-module defined upon T|%¢ by zv =

E(x)-v for ze G* and ve U|% is independent of the choices for 7~
and 2.



30 T. R. BERGER

We may “factor” G as a semidirect product
N.R»

where N = N* ~ G. Using the Mackey Decomposition (2.9), we have
that U[®%|5 is equivalent to U|uy2|®". The embedding = restricted
to N* maps it into N via

Bz, 1) = Zf, .

Therefore, by (2.13) U [®5, viewed as an N*-module via = is equiva-
lent to Uly:|®™.

(5.7) PROPOSITION. The Kk[G*]-module U[®¢ defined in (5.6) is
equivalent as a k[N*]-module to Ulys|®"".

We may now transfer this all back to G.

(5.8) DEFINITION. Let U be a projective k[G,]-module such that
Ulz, is faithful, absolutely irreducible, and nonprojective. If (z, y) ¢
Gy then set (z, y)u = wyu for ue U. Let & be a transversal for
Z(R) in N. Let V be the k[G*]-module [|%¢ defined in (5.6). Define
a projective k[G]-module V(= V) by setting

wyv = (%, y)v

for €., yeR, veV. We call V the tensor induced module of
the k[G,J-module U and write V = U|®¢. This definition requires
the hypothesis (5.1), and therefore, should not be confused with
ordinary tensor induection.

The transversal .&” belongs to the central extension

¢

(5.9) 11— kerg G* G 1,

and therefore, the cocycles introduced by .&¥ and another choice &’
belong to the extension (5.9) and are equivalent. In particular, dif-
ferent choices for .&7 in Definition (5.8) give equivalent k[G}-modules
V.

The construction of V requires the choice of the group N. By
(5.2) all choices for N are conjugate in G. This conjugation gives
an equivalence of modules constructed for two distinct choices of N.

Summarizing our results thus far we have

(5.10) THEOREM. Assume (5.1). Let k be a field and assume
that U is a projective k[G¥l-module such that Uz, 18 nonprojective,
faithful, and absolutely irreducible. Let V = U|%¢ be as in Defini-
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tion (5.8). Then the following hold:

(1) V is a projective k[G]-module;

(2) Vlz 18 monprojective, faithful, and absolutely irreducible;

(B) wup to equivalence of projective modules, V is independent
of the choices of N, 7, 2, and &;

4) +f B is a subgroup of N and BN Z(R)=1 then V]; 1s
equivalent to Uly,|®V |, where ordinary temsor induction is meant
here; and

(5) im (4), ©f Ulyynpe 8 equivalent to a monprojective module
Jor x running over a set of B, Nydouble coset representatives in N
then V |z 18 equivalent to a monprojective module.

Part (1) follows from (5.6), (5.9), and Definition (5.8). Since &
maps R* onto R!°/M, (2) follows from parts (1)-(3) of (5.5). Part
(8) follows from (5.6) and the discussion following Definition (5.8).
We may choose .&¥ so that for (4), B< .~ Then (4) follows from
(56.7). To prove (5) we need the Mackey Decomposition (2.9)

Uly,|®¥ 5 is equivalent to 1@ @ U)l.yp-105/% -

By (4) V| will be equivalent to a nonprojective module if each
module (@ U)|,y.-1ns i8 equivalent to a nonprojective module.
Mapping via 2™ we ask only that Ul|y,ns- be equivalent to a non-
projective module as © runs over B, N,-double coset representatives
in N. Thus V|; is equivalent to a nonprojective module. Since
B < &7 it follows that V|, is equivalent to a nonprojective module.
The proof of (5) and the theorem are now complete.

REMARK. Can one give a wreath product free construction of
U|®¢ in (5.10)? The sequence (5.9) gives an extension G* of G by
a group isomorphic to Z(R). In turn, the embedding Z gives an
extension

1 > M Gt G*r—1

by M (where G* is the inverse image in G of F(G*) = G/M). We
may identify G¥ as a subgroup of G* < G such that G¥ N M = 1.
The embedding & allows us to extend the module U projectively to
G*R*® in G*. The action of G¢R*’*~* upon x @ U involves a cocycle
@, whose action “comes from” an element of Z(R)*’ 2 M. Since G*
acts nontrivially upon M, it acts nontrivially upon these cocycles «,.
Thus «, is not a factor set (central cocycle) of G. To eliminate the
wreath products from this construction, one must find the cocycles «,
explicitly, giving the G-action upon them. One must then show that,
at least for R, tensor induction of U (as a projective k[H]-module
where H = G¢R¥*?/K for an appropriate K = M) to G (=G*/L for an
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appropriate L = M) reduces the product of the cocycles upon the
various # Q U to a trivial factor set. Such a construction seems
quite formidable, more so than the present wreath product construec-
tion. Clues may appear in [16, 21]. '

We turn next to applications of Theorem (5.10). First we need
a lemma allowing us to compute the sign of certain determinants.

B. A lemma on permutation groups.

(5.11) NOTATION. Let 2 ={1,2,---,d}and 2 = {1, 2, -+, n} for
integers n,d > 1. Let &7 be the set of functions from £ to 2.
Let S™ be the symmetric group upon 2. If fe=2* xeS" and
1 € 2, then set f*(7) = f(x(¢)). Let Z denote the permutation induced
by # upon 27, and G denote the image of a subgroup G < S* under
the mapping 2 — &.

Clearly # — % defines a homomorphism of S” into the symmetric
group S* upon 2° Let A* be the alternating group upon =27,
We wish to determine when S* < A*.

(5.12) PROPOSITION. S* < A* unless
(1) d= —1(mod4), or
(2) d=2(mod4) and n = 2.

Let 2 = (12) € S™ be a transposition. It is sufficient to determine
the parity of Z. Let £,=1{1,2} and 2, =1{8, ---,n}. There is a
canonical one-one correspondence between 2% x &% and =2“. The
pair (g, k) corresponds to f if and omnly if g(¢) = f(3) for 7 =1, 2;
and h(7) = f(¢) for + =38, ---,n. Note that (g° h) corresponds to
f°. So #z acts upon 2% x 2% exactly as it acts upon =%, so for
each two cycle of # on 2% we get | 2%|=d"* two-cycles on
% x 2, Let % be the restriction of Z to =2“%. Then the parity
of %, (%), is equal to (x(#))*"~* where (%) is the parity of Z. Now
% fixes the d constant functions of &% and permutes the remaining
d* — d functions in orbits of length two. Thus

(@) = (—1) @,
Finally
n(E) = (— 1)
—_ (_ 1)d"‘1(d—1)/2 .

Now 7(Z) = 1 unless d"'(d — 1)/2 is odd or

d*(d — 1) = 0 (mod 2) .
But
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d"(d — 1) = 0 (mod 4)

unless conditions (1) and (2) occur. In those cases, 7(Z) = — 1.
(5.18) COROLLARY. Assume G < S™. Then the group G < S* is
m A* unless
(1) d=—1(mod4), G £ A*, or
(2) d=2(mod4), G=8% n=2.

This is an immediate consequence of (5.12).

C. Unique extensions.

(5.14) THEOREM. Let R be an extra special r-group. Suppose
that A is an r'-group of operators on R centralizing Z(R). Form
the semidirect product AR of A and R. Let k be o field of char-
acteristic ¢, unequal to r, containing a primitive |R|th root of
unity. Let U, be an irreducible k[Z(R)]-module with character
N #= 1. Then there is a k[AR]-module V, determined wuniquely up
to isomorphism such that:

(1) Vilzw s tsomorphic to a sum of copies of Uj;

(2) Vilz s irreducible; and

(8) ifze A induces a transformation X(x) on V, then det¥(x)=1
Sor all choices of x € A.

There is a proof of this for k of characteristic 0 in [17]. The
uniqueness of V| satisfying (1) and (2) is a general fact about
extraspecial groups. Because it will be of some value later, we shall
indicate how a proof is carried out for finite fields. Actually, we
prove a slightly more general result from which this theorem fol-
lows as a corollary.

(5.15) THEOREM. Assume that G is a group with normal sub-
group N, and that X is a G-stable absolutely irreducible represen-
tation of N in a finite field k having degree m. There is a pro-
jective extension % of % to G. If yeG we say that X(y) has (*) if
its order 1s finite and relatively prime to m, and tf its determinant
18 1.

(1) IfyeG\N and i(y) has (*) then i(y) 18 uniquely determined.

(2) If & S G\N is a set of elements of G of order prime to
m then % may be chosen so that %(y) has (*) for every ye .~

(38) If K is a subgroup of G of order prime to m for which
KNN=1, then for each z, yeK, ¥(y) may be chosen so that it
has (*) i(a:y) = %(x)‘i(y), and, therefore, i[ zx 1S momprojective.
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Since X is absolutely irreducible, by extending % linearly to
k[N] we obtain a central simple algebra X(k[N]). If zeG then z
induces an automorphism of X(k[N]), centralizing its center, given
by X(u) — X(z7'uz) for wek[N]. By the Skolem-Noether theorem,
this automorphism induced by z is inner. In fact, by Schur’s lemma,
there must be an invertible element Z of X(K[N]), uniquely de-
termined up to a multiple by any nonzero element of k, such that

(5.16) X(zuz) = Z-%(w)Z, wec k[N] .

We set i(z) = ¥(z) if ze N, and leaving the k-multiple to be de-
termined, for each ze€.7~ where .7~ is a fixed transversal for N in
G we set i(z) = Z where Z is determined by (5.16). Finally, we
set ﬁ(my) = i(x)@(y) where z€.7” and y €N, so that % is defined on
all of G. The important point to note here is that if y € G\N then
i(y) is uniquely determined by (5.16) up to any nonzero k-multiple.

Since both ﬁ(x)ﬁ(y) and %(zy) taken for Z (with zy taken for z)

satisfy (5.16) where #, y € G, and since Z is unique up to a multiple
from k,

(5.17) E(2)k(y) = X(wy)a(=, v)

where a(x, y) € k. Therefore, x projectively extends % to G.'

Suppose that y € G\N and %(y) has (*). Assume also that X* is
a projective extension of ¥ to G such that X¥*(y) also has (*). By

(5.16) we know that %*(y) = %(y)b for some scalar b. Since both
%*(y) and %(y) have order prime to m, there is an integer ¢, prime

to m, such that X*(y)' = i(y)‘ =1 so that b* = 1. We conclude that
b is an m’ root of unity. Taking determinants,

1 = det E*(y) = b det X(y) = b,

proves that b is also an mth root of unity. We conclude that b =1
and X*(y) = ﬁ(y) proving (1).

Suppose next that ¥ € G\N has order ¢, prime to m. From (5.17)
we conclude that

X(y)' = bE(y*) = bI

where b is a scalar and I is the identity. Since k* is finite and
(t, m) = 1, there is a scalar ¢ € k* such bc' has finite order prime to
m. Thus i(y)c has finite order s, prime to m. If detX(y)ec =4d
then 1 = [det X(y)c]* = d* so that d has order prime to m. We may
now choose a power @ of d such that a™™ =d. We conclude that
?t(y)ca has order prime to m and determinant 1. For each ye&.&*
we may find ¢ and « and replace f%(y) by A%(y)ca proving (2).
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Taking K< .7 and K\l = .5 we find that only the final asser-
tion of (3) requires proof. To complete the proof, it is sufficient to
show that ﬁl & is nonprojective. Accordingly, let 2, y € K so that by
(5.17) i(x)i(y) = X(wy)a for some ack. Taking determinants on both
sides we find that a™ = 1. Let K be the linear group {ff(y)w]yeK,
wek*}. This group is an extension of A by some factor group
K/K, of K. Since K/K, has order prime to m and since k* is cen-
tral, there are unique subgroups IZ: < K and K, < k* such that K =
R, x K,, K, has order prime to m, and every prime divisor of ]Kzl
divides m. Note that @(x), %(y) and A%(xy) must all lie in K, by
order considerations. We conclude that ¢ must be an m'-root of
unity. Since a™ =1 also, ¢ =1 proving that ?@]K is nonprojective.
The proof of the theorem is finished.

REMARK. This proof works as soon as we know that the factor
set a(zx, y) of (5.17) maps G X G into roots of unity in k. Details
on the order of a(w, y) in fields of characteristic 0 are given in [15].

D. Applications of transference. The unique module whose
existence is given by (5.14) will be called V,(AR) in order to keep
track of the essential ingredients: »; A; and R.

(5.18) THEOREM. Let k be an algebraically closed field of char-
acteristic ¢, prime to r. Assume that

(a) G satisfies (5.1), and

(b) A is an r'-subgroup of G.

Then there is a conjugate of H (in place of H) and a subgroup N
of G such that

(i) G=NR, NNR=Z(R), A< N;

(ii) H=((WNNH)R, ANNNH is an r'-subgroup of NN H;

(iiil) G,= (NN H)R;

(iv) there is a projective extemsion U of V(AN H)R) to G,
such that U is nonprojective for (AN H)R, for all xe NN H;

(v) U|®¢ =V (as in Definition (5.8)) is a@ projective k[G]-module
which 1s equivalent to a nonprojective module when restricted to
AR; and

(vi) V| s equivalent to V,(AR) unless both dim U= — 1 (mod 4)
and the permutation representation 0 of A wupon the cosets of H
m G 18 nmot in the alternating group of degree [G: H]. In this
exceptional case, V0, is equivalent to Vi, (AR) Q. W where W is a
1-dimensional module affording the alternating character of p.

(vil) V|, 1s equivalent to I®[x @ V(AN (HN N)H** where
a7t runs over a complete set of A, H( N-double cosets in N and
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V:ANHNN)) s taken to be V,([AN(HNN)IR) restricted to
AN(HNN).

Conditions (i)-(iii) are easily demonstrated by (5.2), and by using
an appropriate conjugate of H and a correct choice for N. By (5.15)
we may extend U to (NN H)R, = G, in such a way that if % is the
projective representation of G, afforded by U then for all »'-elements
y €@, both detX(y) =1, and ¥ has factor set 1 for (y)R,. The
uniqueness given in (5.14) and (5.15) together imply that U, =
VATR) for every o'-subgroup 7 of (NN H)R,. Consequently, U
satisfies (iv). :

Fix 2€ Z(R) and w € U. Then zu = AM2)u for the character \ of
Z(R). The element z € Z(R) acts upon V as Z(1, z) = h,M does. But
h,1) =2 and h,(¢) =1 for 2> 1. Therefore if u,Q---Qu,eV
where ., €%, @ U then z2- (U, ® - @u,) = Gu) Qu, ® +++ Qu’ =
M), @ - Qu,). In particular, Z(R) acts upon V via the char-
acter n. By (5.10) and (iv), V is a projective k[G]-module which is
equivalent to a nonprojective module for AR, proving (v). In addi-
tion, V'|z is nonprojective, faithful, and absolutely irreducible. If
V affords the representation 2 and det 27(x) =1 for all x€ A then
V|, is equivalent to V;(AR) by (5.14).

Every element of the set &7 = (AN H)* xe€H, acts with
determinant 1 upon U. Thus, every element of the set v*°C G
acts upon U[®¢ with determinant 1. The elements of F(.57*) all lie
in A.o7*? and have the form #f for Ze A and fe.or*°. Therefore,
the determinant of 2/(x) for x€ A is equal to the determinant of Z
upon |86,

Choose a basis u,, -+-, u; for U and let = ={1,2,:--,d}. We
set ur=@, QuUs) X -+ R @& ® us,) where f:2—2. The set
{u;|fe 2 is a basis for U|%6. The action of # upon this basis is
given by Z-u; = uss-1i. Thus A acts upon the u,’s contragrediently
to the action f— f*. In particular, the determinant of % wupon
ﬁl@ is just the parity of Z upon the f’s. We are in a position to
apply (5.18). That is, det 27(x) =1 for x€ A unless (1) or (2) of
(5.13) holds.

Assume that (5.13) (2) holds. If d =2(mod4) then dim U =
d=1r"=2(mod4) so that d = »* = 2 where |R,| = r**'. Further,
s=2and 4 £ A°, the alternating group of degree s so that 2||A|.
But then 2 divides (r, |A|) = 1. Therefore, (5.13) (2) cannot hold.

Assume that (5.13) (1) holds. Then d = — 1 (mod 4) and A £ A°.
If £¢ A°, in this case, det /() = — 1. Part (vi) follows from these
considerations. ,

By (5.10) (4) and Mackey’s Decomposition (2.9) V|, is equivalent
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to II®(@™ @ U)|iznmezna|®* where & runs over A, H N N-double coset
representatives in G. But 27 Q@ Ulzamens 18 equivalent to 2™
VAN ((HNN)?) so that (vii) follows. The proof of (5.18) is now
complete.

Using Clifford’s theorems again [14, (51.7)] we may prove the
following extension of this theorem.

(5.19) COROLLARY. Assume the situation of (5.18) holds. If Y
18 an trreducible k[G]-module such that Z(R) acts upon Y wia the
character N and Y|, is nonprojective, then there is a projective
k[G]-module X with R in its kernel such that Y 1is equivalent to
V X X.

REMARK. If Y| is irreducible then X must be one dimensional.

6. TField extensions and forms. We shall say that a bilinear
form g on a vector space V is classical if ¢ is (i) symmetric, (ii)
symplectic (alternating), or (iii) unitary. If ¢ is unitary, we shall
use v to denote the associated field automorphism of order two.

(6.1) HYpoTHESIS. Assume that K is a finite field; G is a group;
and V is an trreducible K[G]-module. Suppose that g: V X V—K
s o monsingular classical bilinear form on V which is fized by G
(i.e., g(xu, zv) = g(u, v) for all u,veV and xc@).

The object of this section is to study the form ¢ in extension
fields of K.

(6.2) PROPOSITION. If K = Homy(V, V) then K is a finite ex-
tension field of K. If I is the anihilator of V wn K[G] and A =
Homi (V, V), then

K[GI=A.

There is an antiautomorphism & of A such that ©f

(i) X ts the image of x€ G in A then T* = T,

(ii) ali is an automorphism of order ome or two of K Gf g
18 unitary then a|x =v), and

(iii) g(au, v) = g(u, a*v) for all u,veV and ac A.

Define a,: G— G by setting a* = 2™ for xc€G. Thus defined,
@, is an antiautomorphism of K[G]. If ¢ is unitary, we extend v
linearly to an automorphism of K[G] by making it act trivially on
all elements of G. We take a, = @, except when ¢ is unitary when
we let @, = va,. Since g(zu, v) = g(u, ™) for all u,veV and 2€@G,
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we must have

g(aw, v) = g(u, a"v)

for all u,veV and a< K[G]. Since g is nonsingular, this latter
identity implies that a, must stabilize the anihilator I of V in K[G].

Since V is irreducible, Schur’s lemma implies that K is a divi-
sion algebra, and by Wedderburn’s theorem on finite division alge-
bras, K is a finite extension field of K. By the Wedderburn struc-
ture theorems for simple algebras, K[G]/I = A where K is the center
of A. Now we see that «, induces an antiautomorphism « of A
such that 7* = ' where Z is the image in A of ze@G. Since «,
has order two on K[G], @ will certainly have order one or two on
A. Further, since « is induced by «,, and since V is naturally an
A-module, we have

g(aw, v) = g(u, a*v)

for all u,veV and ac A completing the proof of (i) and (iii).
In order to prove (ii), assume that @ € K, the center of A, and
that Z is the image in A of any 2€G. Then

Ta* = (i;-—l)aaa — (a%—l)a — (E—la)a — aa(%—l)a = Q%

for all zeG. We conclude that a*c K so that a fixes IE', and there-
fore, must be an automorphism of K of order one or two. If teK
then (( + I)*= (" + I) =1t + I when ¢ is unitary. In this latter
case, &|x = Y completing the proof of the proposition.

NOTATION. We shall let K = Homg(V, V) and A = Homg(V, V).
We denote trace mappings as follows:

(@) 4:A— K of A (linear algebra trace); and

(b) 7:K—K of K.

(6.3) PROPOSITION. If be A and @ is as in (6.2) then
4(b%) = 4(b)~ .

Fix a K-basis for V and identify an element ac A with its
matrix @& written in this basis. Let & be the automorphism of A
given by applying «|i to the entries of a matrix @ Let t be the
antiautomorphism of A given by transposing a matrix @. It is
straightforward to show that the composition adt is an automor-
phism of the central simple algebra A which centralizes K. By the

Skolem-Noether theorem, adt is inner. That is, written as matrices,
@« = b~'gh for some invertible matrix b. Written differently with
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~.

&' = b* we have

Taking traces we have
A(a”) = Trace (a%)
= Trace (&)
= [Trace (@)]*
= d(a)*
completing the proof.
Fix a nonzero vector veV, and a primitive idempotent ec A

such that ev = v. The mapping ¢: Ae — V defined by ¢(ae) = av,
ac A, is an A-isomorphism, so that

(6.4) glae, be) = g(¢(ae), o(be))

defines a nonsingular classical form § on Ae equivalent to g on V.
The representation z+— % of z on V gives a homomorphism of G
into A and thus defines an action of G on Ae isomorphic to that of
G on V. For the time being, we will treat the module Ae and the
form g in place of V and g respectively.

(6.5) PROPOSITION. There is an element d € A such that

(i) d*=d if g 1s symmetric or unitary, and d*= —d if g
18 symplectic, and

(ii) g(u, w) = td4(dwu) for all u, we Ae.

It is straightforward to verify that if a, bec A then «, b— 4(ab)
defines a nonsingular symmetric K-bilinear form on the I?-space A.
Likewise, 7, s+ 7(rs) defines a nonsingular symmetric K-bilinear form
on the K-space K. Since 4 is K-bilinear, we conclude that for
a,be A, a, b—74(ab) defines a nonsingular symmetric K-bilinear form
on the K-space A.

The mapping

a —— g(ae, )

defines a K-linear functional on the K-space A. By nonsingularity,
we conclude that there is a d € A such that

g(ae, e) = td(da)
for all ac A. If u, we Ae then

g(u, w) = g(ue, we)
= g(wue, e)
= td(dwu) .
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To complete the proof we need only show that d* = ed where
e =1 if g is symmetric or unitary and ¢ = — 1 if g is symplectic.
If ¢ is not unitary, we let vy =1, If ac€ A then by the symmetry
of A(ab) we have
0 = g(ae, ¢) — g(ae, ¢)

= g(ae, €) — egle, ae)’

= g(ae, 6) — eg(a’e, ¢€)

= td(da) — e[t4(da*)}

= td(da) — e[t{d(d*a)*}] .
Because 7: K — K is the trace, r(u%) = z(u)* for we K so that

0 = 7d(de) — et d(d*a)

= 74([d — ed*]a)

for all ac A. Since 74(ab) is nonsingular, d —ed* =0 or d* = ed
completing the proof of the proposition.

(6.6) PROPOSITION. Define
h(u, w) = Adww)

for w, we Ae. Then
(i) h is fived by G,
(ii) of u, w, w,€ Ae and cec K then

h(cw, + w,, u) = ch(w,, u) + h(w,, ) ,
(iii) 2f u, we Ae then

h(u, w) = eh(w, u)*

where € =1 1f g s symmetric or unitary and ¢ = —1 if g 1is
symplectic,

(iv) h is monsingular, and

(v) §=rh.

Let 2€G and T be the image of x in A. Then

h(xu, xw) = h(Zu, Tw)
= A(dTw)*(Tu))
— Mdw (ET)u)
= A(dwu)
= h(u, w)

for all u, we Ae so that G fixes h.
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Part (ii) is an obvious calculation using the K-linearity of 4.
To prove part (iii), use the symmetry of 4(ab) to note that

h(w, w) = A(dwu)
= d(u*wd*)*
= A(d“u*w)~
= ed(duw)
= eh(w, w)* .

Now (v) follows from Proposition (6.5) (ii), so that the non-
singularity of § implies the nonsingularity oi§  completing the proof
of (iv) and the proposition.

(6.7) THEOREM. Suppose that Hypothesis (6.1) holds. Set K =
Hom,e(V, V) so that K is a finite extension field of K. Then one
of the following occurs.

(i) There is a nmonsingular classical form § om the K-space
V of the same type as g which is fixed by G and for which

9=1§
where v: K — K is the trace mapping.

(ii) The form g is symmetric or symplectic; there is an automor-
phism a of order two of K which fixes K; there is an element p
such that p =1 if g is symmetric and p*= — p if g s not sym-
metric; and there is a nomsingular unitary form h on the K-space
V fixed by G such that

g = 7(h)

where v: K — K is the trace mapping.

Since ¢: Ae — V is an A-isomorphism, we may define
G(u, w) = h(ae, be)

where u — av, w = bv for a,be Ae and % is as in Proposition (6.6).
If ¢ is unitary or « is trivial on K then part (i) follows directly
from Proposition (6.6).

Assume now that @ is nontrivial on K and that ¢ is symmetric
or symplectic. If g is not symmetric then K has odd characteristic
and we may find geK, g =0, such that p*= — p. In all other
cases let £ =1. Then p* = ept where ¢ =1 if g is symmetric and
€ = — 1 otherwise. Set

h=pg.
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By part (iii) of Proposition (6.6),
h(u, w) = h(w, )

for w,weV. By (i)-(iv) of that proposition, & is a nonsingular
unitary form on the K-space V fixed by the action of G. Finally,

g = t§ = t(¢h)

by part (v) of Proposition (6.6) completing the proof of the theorem.
Nonsingular and totally isotropic subspaces of V may sometimes
be followed through this extension process.

(6.8) PROPOSITION. Consider the situation of Theorem (6.7). If
N is normal in G, U is a homogeneous component of the K [N]-
module U, and f is the extended form of the theorem (f =g in (i)
or f=h in (ii)) then U 1is totally isotropic (nonsmgular) Jor f if
and only if it is also for g.

If r: K— K then there is a p¢ such that zpf = ¢g. From this it
follows that if U is totally isotropic for f then it is also for g, and
if U is nonsingular for g it is also for f. Suppose that f is non-
singular. If 0 # v e U, then there is a w e U such that f(v, u) = 0.
By taking a scalar multiple of % in place of u we may assume
f(v, w) has some preassigned nonzero value. In particular, this
preassigned value @ may be taken so that 7(uw) = 0. Thus g(v, u) =
Tuf(v, ) #+ 0 proving that g is nonsingular. Finally assume that U-
is totally isotropic for g. By our argument above, U must be
singular for f. Let S = stab(G, U) be the stabilizer in G of U.
Since V is an irreducible K [G]-module, U is an irreducible K [S]-
module. But the radical of f in U is not (0) and is S-invariant
implying that U is totally isotropie, proving the proposition.

REMARK. The results of this section may be used to simplify
some parts of §3 of [4].

7. Minimal K[G]-modules.

(7.1) HYPOTHESIS. Assume that K is a finite field, G is a group,
and V is an irreducible K[G]-module. Suppose that g: V X V—K
18 o nonsingular classical bilinear form on V fixed by G.

We shall say that V is form induced by U if there is a sub-
group S of G and a nonsingular K[S]-submodule U of V such that
both U|¢ = V and the distinet subspaces among zU, xe G, of V are
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pairwise orthogonal. An irreducible module which is not form in-
duced from a proper submodule will be called form primitive.

The following obvious result shows that form induction is just
“form invariant” induction.

(7.2) PROPOSITION. Assume (7.1). Let S be a subgroup of G and
U o K[S]-submodule of V which form induces V. Let x, %, «--, 2,
be o tramsversal for S in G. Define § on U|® x U|® by setting

7S o ® u, 5o © ) = S g(u, v)

for u,v;eU. Then § is a momnsingular form on U|°. Further,
the isomorphism ¢: U|° —V defined by ¢z Q@ u) = axu, x€ G, ueU,
sends § to g = ¢§.

Suppose that >z, @ u,, >, z; Qv;€ U|° where u,, v,€ U. Then

T2 Q@ uy 20 @ v;) = 2 9y, v,)
= 2. 9(Tuyy T,0;)
= Du.i 9@y, T50;)
= g3l wuy, D) 2;)
= 8§(8 > 2 ® uyy ¢ >, %5 Q v;)

since g(x,u; x;v;) = 0 for all 2 = j.
Equally obvious is the following fact.

(7.3) PROPOSITION. Assume (7.1). There is a subgroup S of G
and a form primitive K[Sl-submodule U of V so that U form
induces V.

If V is form primitive we simply take G =S and V = U. In-
duction upon |G| and the transitivity of module induction complete
the proof.

Like the primitive modules, the form primitive modules are dif-
ficult to know. In classifying primitive modules, one usually studies
quasiprimitive ones. We follow an analogous course here. Since
“form quasiprimitive module” is too cumbersome, we opt for simpler
vocabulary.

(7.4) DEFINITION. Assume (7.1). We say that V is a minimal
K[G]-module if for any normal subgroup N of G either V|, is
homogeneous or V|y = V, + V, where the V, are the homogeneous
components and are totally isotropic subspaces.
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REMARK. In other numbers of this sequence, a different, ap-
parently more restrictive, definition of minimal module is given. By
Corollary (7.11) this other definition is equivalent to the present
one. This fact was first noted by L. Kovécs.

The object of this section is to show that form primitive modules
are minimal and to derive a few simple properties of minimal modules.
We first study the effect of restriction to normal subgroups.

(7.5) PROPOSITION. Assume (7.1). If H<G and V|y=V, +
-+« + V, where the V, are homogeneous components then either all
V, are nonsingular or all are totally isotropic.

Let S = stab (G, V,) be the stabilizer in G of V,. Since S fixes
g, V.NV{is a K[S]-module. But V,, as an S-module, is irreducible
since V,|¢ (from S) =V and V is irreducible. Therefore, V., NV} =
V., or (0). So V, is totally isotropic or nonsingular. Since V, =2V,
for some xe€G and since G fixes g, we must have V, nonsingular
if and only if V, is also. A similar situation holds if V, is totally
isotropic. The proof is complete.

(7.6) PROPOSITION. In (7.5) if V. is momsingular then all the
V., are pairwise orthogonal so that V, form induces V from S =
stab (G, V).

Since V, = 2V, for some xe€ G and since G fixes g, it is sufficient
to prove that V, and V; are orthogonal for 7 > 1. The subspace
Ns1 V; is the unique K[H]-complement to V, in V because the V,
are homogeneous components. But H fixes g, and V, is nonsingular,
so that V! is a K[H]-complement to V, in V. Therefore, Vi} =
SV completing the proof.

(7.7) PROPOSITION. In (7.5) if V. is totally isotropic then there
is an x€@G so that

(a) 2*eS = stab (G, V) and x < Ny(S),

(b) U=V,+ 2V, is a nonsingular K[K]-module where K =
(S, @,

() U form induces V, and

(@) Cy(V)) = Cs(zV).

Since V, is totally isotropic V, & V. By complete reducibility
of V|z we may find a K[H]-complement V* to the K[H]-module
Viin V so that V =V* 4-V{. The nonsingularity of V guarantees
that V* 4 V, is a nonsingular space. The form g is fixed by H so
that nonsingularity of g on V* 4+ V, assures us that the module V*
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is contragredient to V,. In particular, V* is a homogeneous K[H |-
module. Since dim V* = dim V, we know that V* = V; is a homo-
geneous component of V|,. There is some € G so that V; = xV,.
There is a unique K[H]-complement in V to V,+ V;, and it is
Sizn; Vie But (V, 4+ V,)* is a K[H]-complement to V, + V; so that
(Vl + VJ) = Zi#l,,‘i V.

Let y€G be such that yV, or y2V, is V,. Then y(V,+2V) =
V.+ V, for some ¢ Since Vi 23,..;V, and since V,+ V, is
nonsingular, we must have ¢ = j so that {yV, yxV.} is {V, a2V }.
With y =2 we have {&V, 2*V,} = {V, 2V} so that 2*V, =V, and
#*eS. If ye S then yV, = V, so that {V,, yaV,} ={V, 2V,}. From
this we conclude that yxV, = 2V, or 7 'yx e S. This completes the
proof of (a). Part (b) follows since K = ¢S, ) has S as a subgroup
of index two, since V,|¢ (from S) = V is irreducible, and since V,|¢
(from S) = (V,[®)|* = U|®. Now yU < 3,;..,; V: for y¢ K, and U* =
Siiz1,; Vi so that yU S U* for y ¢ K. Therefore, the distinct modules
among yU, y €G, are pairwise orthogonal proving (c).

The group S fixes g and acts upon the complementary totally
isotropic subspaces V, and 2V, of U. Thus the action of S on V,
is contragredient to that on x2V,. In particular, y e C4(V,) if and
only if y~'eCs(xV,) proving (d).

We may now prove:

(7.8) THEOREM. In (7.1) of V s form primitive then V is a
minimael module.

If Vi|y is homogeneous for all N<|G, then V is a minimal
module. So assume that N<|{G and V|y = V,+ --- + V, where the
V. are homogeneous components and ¢ > 1. By (7.5) either all the
V., are totally isotropic or all are nonsingular. Let S = stab (G, V).
If the V, are nonsingular, then by (7.6) V,|¢ (from S) =V and V is
form induced. Therefore, all the V,; must be totally isotropic. By
(7.7) there is a group K > S such that [K: S] = 2 and V,|* (from S) =
V.+ V; (for some j > 1) is nonsingular. In addition, with U =
V.4 V;, U form induces V. We conclude that U=V and ¢t =2
completing the proof of (7.8).

We turn now to the structure of minimal modules.

(7.9) THEOREM. Assume (7.1) holds. Suppose that S and T are
distinct subgroups of G of imdex 2 such that Vig=V,+ V, and
Vi = U, + U, where V, and U;, 1, j = 1, 2, are homogeneous totally
isotropic components of V. Fix xcS\T and yeT\S, and set H =
SNT and K = {H, xy). Then either

1) «all the modules V, and U;, 1, 7 =1, 2, are irreducible iso-
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morphic K[H]-modules such that V,N U; = (0) for 4,5 =1, 2; or

@ V.nU,+V,NnU, and V,NU, + V,NU, are orthogonal non-
1somorphic trreducible K[K]-modules either of which form induces
V.

We set V,; = V,NnU; for 4,5 =1,2. Note that V,; is a K[H]-
module. Since S and T are of index 2, G/H is a four group. Since
[S: H] = 2, and since V, is an irreducible K[S]-module, V.|, is the
sum of at most two K[H]-modules.

Since V,; # V,, if V,; # (0) then V.|, is reducible. If V.|, is
reducible and W is an irreducible K[H]-submodule of V, then W +
yW is a proper K[T]-submodule of V. The only such submodules
are U, and U, so that (0) = W< V,NU; = V,; for some j. Con-
sequently, V.|, is irreducible if and only if V,; = (0) for j =1, 2.

Assume that V,; = (0) for all 4,5 =1,2. By our observations
above, V.|, and U;|, are irreducible for ¢, j =1,2. Since V,+ V,
and U, 4 U, are two distinct decompositions of V|, into a sum of
irreducible K[H]-modules, V|; could not have two nonisomorphiec,
hence unique, homogeneous components. We conclude that V| is
homogeneous and all of V|, U;|,, ¢, j = 1,2, are isomorphic irre-
ducible K[H]-modules proving (1).

After renumbering, we may now assume that V, = (0). By
our previous comments, V,, is one of two irreducible constituents
in V|g. Since zV,=V, yV,=V, a2U, = U, and since V.NV, =
U,NU, = (0), we have

(7.10) V=V,+a2V,+yV,+ayV,
= Vn + sz + Vm + sz

where corresponding summands are equal (e.g., Vi, = 2V,,).

With W, =V, + V, and W,= V,, +V,, we know that W, and
W, are K[K]-modules and W, = W,. Therefore V = W,|° (from K).

We prove that W} = W,. Notice that V,, <V, + U, where V,
and U, are totally isotropic. Consequently, Vi=V,+ U, =V, +
Vet Vy =W, Similarly, Vi = W, so that Wi = ViNnVs = W,
We conclude that the modules W, and W, are nonsingular and or-
thogonal to each other. Thus W, form induces V from K.

Finally, assume that W, = W, as K[K]-modules. Since V, +
Vo= W, and V, + V,, = W,, V,, is isomorphic to one of V,, or V,,
as a K[H]-module, because the modules V;; are all irreducible K[H]-
modules. From (7.10) we have

Vi=V,+ V= V,|5(from H), and
Vz = sz + sz = Vy ]S (from H) = szls (from H) ’
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as K[S]-modules. Since V, and V, are nonisomorphic K[S]-modules,
V. is isomorphic to neither V, mor V, as K[H]-modules. Thus
V. is isomorphic to V,, as a K[H]-module. Applying the same
analysis to U, =V, + V,, U,= V,+ V,, and T in place of V,, V,,
and S we find that V,, cannot be isomorphic to V, as a K[H]-
module. We conclude that W, and W, are nonisomorphic K[K]-
modules proving (2) and the theorem.

(7.11) COROLLARY. In Theorem (1.9), +f V is a minimal module
then V.|, is homogeneous for all N < S, N <G.

Assume that V|, is not homogeneous so that V| is not homo-
geneous. In the theorem we replace U, ¢ = 1,2, and T as follows.
By the definition of minimal module, V|, = U, + U, where U, is
totally isotropic and a homogeneous component. We set T =
stab (G, U,). Since V|, is not homogeneous, S = T. Let W be a
component of V|, so that (0) = W < V,NU, for some j. Applying
the theorem to this choice for S and 7' forces conclusion (2) to occur.
But then V|; is the sum of two nonisomorphic nonsingular or-
thogonal homogeneous components violating the fact that V is a
minimal module, and proving the corollary.

8. Reduction theorems for minimal modules. Situation (1)
of Theorem (7.9) brings some complexity into the analysis of minimal
modules. We set that situation as hypothesis and examine it in
some detail.

(8.1) HYPOTHESIS. Assume that K is a finite field; G is a group;
V is an trreducible K[G]-module; and g: V x V— K is a nonsingular
classical bilinear form on V fixed by G. Suppose that S and T
are distinct subgrouns of G of index 2 such that Vig=V,+ V,
and Vi, = U, + U, where V, and U;, 1,75 =1, 2, are homogeneous
totally tisotropic components of V. If H=SNT then V, and U;,
1, § =1, 2, are trreducible isomorphic K[H]-modules such that VN
U; =(0) for i, =1, 2.

NOTATION. Choose zeS\T, yeT\S. Set H=SNT and K =
(H, wy). This notation conforms to that of Theorem (7.9).

(8.2) LEMMA. Assume that (8.1) holds. Let L = H be a sub-
group of G of index 2 such that V|, = W, + W, where the W, are
homogeneous components.

(1) char K =p > 2.

(2) If for weW, we define z-w = zw for ze¢H or —zw if
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z € L\H then the --action of L on W, is isomorphic to the action of
L on W, but not the action of L on W,.
(3) HomK[G](V: V) = HomK[L](Wu Wl) = HomK[H](Wv W1)'
= HomK[H](Vlr Vl)

By hypothesis, V|, is homogeneous. In particular, V.|, = W,|,,
and therefore K, = Homu (W, W) = Homyz(V, V). Since W, %
W, as K[L]-modules, there are two nonisomorphic extensions of
W,|, to L. These extensions are isomorphic to composition factors
of W,|,I*=W,Q:.J where J is the regular K[L/H]-module [14,
(61.7)]. Thus J has two nonisomorphic 1-dimensional composition
factors (one with ze L\H acting as —1 and the other with z acting
as +1). Obviously we must have char K = p > 2, proving (1). The
properties of the --action follow immediately since J is the sum of
a trivial K[L]-module and a module on which z€L\H acts as —1.
From Proposition (1.7), since W,|, is irreducible and has two distinct
extensions to L, it follows that Homy (W, W,) = Homym(W,, W)).
By Corollary (1.5) we conclude that Homgs(V, V') = Homy (W, W)
proving (3) and the lemma.

(8.3) LEMMA. Assume that (8.1) holds. There is a wunique
K[H]-isomorphism ¢: V,— V, such that ¢'(v) = v + ¢(v) and ¢"(v) =
v — ¢(v) define K[H-isomorphisms of V, onto U, and U, respectively.
If z,ye G are as in Theorem (1.9) then for veV,,

(1) z¢v = — ¢2v, and

(2) ¢ysv = yo.

Since dim V;=dim U, =1/2dim V and U,NV, = (0), for each
v eV, there is a unique ¢v € V, such that v + ¢v € U,. It is straight-
forward to verify that ¢ is a uniquely defined K[H]-isomorphism
from V, to V,. From this the properties of ¢’ follow.

Consider the action of S on V, given by 2*v = ¢ z¢v for ze€ S
and v€V,. This *-action is isomorphic to the action of S on V,
but not on V,. Up to isomorphism, there are two extensions of
V.|, to S: one represented by V, and the other represented by the
.-action of Lemma (8.2) with L =S and V, = W,. In particular,
the -- and *-actions are isomorphic. Since they are identical for H,
there is a g€ Homky(V,, V) such that z*pv = p(z-v). By Lemma
(8.2), reHomis(V, V,) so that p(z-v) = z-(xw) for all zeS and
veV,. We conclude that z*v =z-v for all ze S and veV,. Ap-
plying this with z = x gives ¢ 'x¢v = — v or xgv = — ¢xv for all
v eV, proving (1).

Since zU, = U,, since given u € U, there are unique v, v,€V,
such that u = v, + ¢v,, and since z(v + $v) = zv + (vs2x™ ") (xv) = (¥v) —



HALL-HIGMAN TYPE THEOREMS V 49

é(xv) e U,, we have u = v — ¢v for a unique ve V,. From this the
properties of ¢ follow.
Since y stabilizes U,, if ve V, then for some unique v’ e V,,

v+ ¢v' = y(v + $v) = ypv + yv .
Equating components in V,, ¢ = 1, 2, gives
yov = v and yv = ¢v,
from which we obtain
PYPV = Yv

for all »e V,, proving (2) and the lemma.

(8.4) LEMMA. Assume that (8.1) holds, and that ¢ s as in
Lemma (8.3). Define ¢cGI(V, K) by setting ¢v = ¢v of veV, or
—¢ W if veE V2 a/nd extending linearly to V. Then

(1) &=

(2) ¢eHomx[K](V V) where K = {H, xy),

(4) ¢ is a K[H]-isomorphism which interchanges V, and V,,
and also U, and U,, and

(5) ¢ fiwes g.
Using Lemma (8.3) we have

= g(u + gu, v + ¢v) = g(u, ¢v) + g(su, v)

for all u, ve V, so that

g(u, ov) = — g(gu, v) .

If w, v, w, v eV, then

9(Bu + ¢v), g’ + ¢v')) = g(—v + gu, —v' + ¢u’)
= — g(v, gu’) — g(pu, v") = g(év, w’) + g(u, ¢’
= g(u + ¢v, u’ + ¢v")

proving (5).

If veV, then xdv = xgv = — gav = — gng, and xd(v) = — av =
¢ 'wgv= —da(¢v) proving (3). Again if ve V,, ydv=ygov= ¢"‘y'v— -—¢yv,
and y(v) = — yv = — dy(pv) = — $y(gv) proving that y$ = — dy.
Since ¢ is clearly a K[H ]-isomorphism, and wyd = dzy we conclude
that (2) holds. It is obvious that ¢ interchanges V, and V,. Since
(v + ¢v) = — (v — ¢v), Lemma (8.3) implies that ¢ interchanges U,
and U, proving (4). Finally, if veV, we have v = — v and
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#(¢v) = — ¢v proving (1) and the lemma.

(8.5) PROPOSITION. Assume that (8.1) holds. Recall the notation
K = (H, xy) where xe S\T and yeT\S. Set K= Homgs(V, V).
(1) —1 is a square in K if and only if Vl|x is reducible.
(2) IfieK and #+= —1
then
W, ={v+ idv|ve V}
and
W, = {v — igv|ve V)

are complementary nonisomorphic irreducible K[K |-modules.

(8) Assume that —1 is a square in K. Then W, and W, are
nonsingular and orthogonal if and only if there is unitary K-form
fon V fixed by G and ¢ and an element pef( such that g = tpf
where 7: K— K is the trace, and K = GF(p*) where p = 3 (mod 4)
and t =1 is odd.

(In all other cases W, and W, are totally isotropic.)

(4) ¢ centralizes K.

Assume first that V| is irreducible. Set K, = Homg(V, V).
By Lemma (8.4), ¢cK, Since 24 = — ¢z, ¢ K < K,. By Schur’s
lemma and Wedderburn’s theorem on finite division algebras, K, is
a field. Since ¢ and —¢@ are the square roots to —1 in K, and since
é ¢ K, we conclude that —1 is not a square in K, proving part of ).

Assume that V|, is reducible. Since V is irreducible and
[G: K] =2 we must have V|, = W, + W, where W, is irreducible.
Since z ¢ K, there is no loss in assuming that W,=xW,. Redefine K, =
Homgz( W,, W,). We prove that —1 is a square in K. Suppose
W, # W, as K[K]-modules. Since ¢ induces a K[K]-isomorphism of
-V, q3 stabilizes W,, and therefore, gz? lw, is a square root of —1 in
K,. By Lemma (8.2) K, = K so that —1 is a square in K. Assume
next that W, = W,. If ac K, and w;c W, then we set &'(w, + w,) =
aw, + xax™'w,. In this way we obtain a field K] = {¢'|ac K} iso-
morphic to K,. Since K is normal in G, since W, = W,, and since
K, centralizes K on W,, it is straightforward to prove that K cen-
tralizes K, on V. But za'(w, + w,) = zax™*(zw,) + v*ax™'w, = a(zw,) +
sax(zw,) = &'w(w, + w;) since z*c K proving that K, < K. By
Frobenius Reciprocity as in (1.4) we obtain K-isomorphisms:

K = Homy(V, V) = Homux W, W, D W) = K, B K,
since W=V and Vi, = W,+ W,= W, W,, so that by dimension
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count, [K: K] =2. By Lemma (8.2) we have K= GF(p*) for an
odd prime p and an integer ¢t = 1. We have proven that —1 is a
square in K when V|x is reducible, completing the proof of (1).

Assume that ie K where i* = — 1. Since ¢ is a K[H]-isomor-
phism of V, and since H stabilizes V,, W, and W, are K[H |-modules.
But 2y(v+idv) = idzyv + 2yv = idzyv — d(dryv) = i((dxyv) + id(dryv)) € W,
because V, is a K-module and because dryve V,. We conclude that
W, is a K[K]-module. A similar argument proves that W, is also.

Clearly W, and W, are K-modules since V, and V, are. We
show that W, N W,+ (0). Suppose that v + i¢v = u — idu for u, ve V..
Then i¢(v +u) =v —uecV,NV,=(0) so that v —u =0 =v + » and
v=u=0. Thus W,NW,=(0). Since [G:K]=2, Vig=W,+ W,
where W, is an irreducible K[K]-module. By Frobenius Reciprocity
as in (1.4), we have the following K-vector space isomorphisms.

IZ’ = Homg(e(V, V) = Homu (W, W, + W)
= Homux( W, W) @ Home( W, W) .

Since K leaves W, invariant and centralizes the action of K on
w., K=< Homuz1(W,, W,). Dimension considerations then give
Homg (W, W,) = (0) proving that W, & W,.

By Lemma (8.4) ¢cHomuy(V, V). By Lemma (8.2), K=
Homyx( W;, W;). Since W, % W,, K, = Homyx(V, V)= Homg( W, +
W., W, + W) = Homu (W, W) @ Homui( Wy, W,) = K@D K. Since
$ and K lie in the commutative ring K,, ¢ centralizes K, proving
(4).

Let G* be the linear group on V generated by ¢ and G. By
Lemma (8.4) G* fixes g. Now K < Homyq(V, V) < K so that K =
Homxgq(V, V). By Theorem (6.7) there is a classical K-form f fixed
by G* and a ;eeI? such that g = t¢f where 7: K— K is the trace
mapping. Let v be the automorphism of K associated with f if f
is unitary, or vy = 1 otherwise. By Proposition (6.8) U, and V; are
totally isotropic for f if 4,7 =1, 2.

Thus if #, ve V, then

® = f(u + igu, v + igv) = f(u, igv) + f(ifu, v)
= *f(u, $v) + if (3w, v)
= (¢ — 9)f($u, v)

because ¢ fixes f. If v =14 then ® = 0 so that W, is totally iso-
tropic for f hence also g. Given ucV,, we may find v ¢ V, so that
g(du, v) = 0 since V, is totally isotropic and ¢ is nonsingular. Thus
f(du, v) = 0. By choosing a scalar multiple of v we may take
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f(Ju, v) to be equal to any preassigned value in K. If ¢* # i then
we may choose f(¢u, v) so that

g(u + idu, v + igv) = tpef (Pu, v) = 0,

proving that W, is not totally isotropic. If W, is not totally iso-
tropic then W, is nonsingular, because it is irreducible.

From this we conclude that W, is nonsingular for ¢ if and only
if 4" 4, that is, f is unitary, and K = GF(p*) where p = 3 (mod 4)
and £ = 1 is odd, since 7 is a fourth root of unity.

Since W, 2 W, and Wi is a K[K]-module, if W, is nonsingular
then Wi =W, If W, is totally isotropic then W, is also, com-
pleting the proof of the proposition.

We may now prove a uniqueness result for the subgroup H.

(8.6) PROPOSITION. Assume that (8.1) holds; —1 is a square in

K = Homyie)(V, V); and V is a minimal module. If N is normal
m G, Vi|y=X,+ X, where X, is a homogeneous component, and
R = stab (G, X)) then R = H.

Assume that R 2 H so that RH = G. Applying Theorem (7.9)
and the fact that V is a minimal module to the pairs (S, T'), (R, S)
we find that V|; and V]z,s each is the sum of two isomorphic
irreducible modules. In particular, V,|, = V,|, and V,|zas = Vilzns-
Choose xc RNS\RNSNT, weSNT\RNSNT, ye RNT\RNSNT,
and set L=<RNSNT,xzw). By Proposition (1.8) applied to S,
Vil, 2 Vil

Set K, =<(RNT,xw). Applying Theorem (7.9), and the fact
that V is a minimal module to the pair (B, T') proves that (8.1)
holds for that pair. In applying Proposition (8.5) to the pair (R, T')
we find that Vg, = W, 4+ W, where the W, are homogeneous com-
ponents. Note now that K, N S = L. Since V is a minimal module,
applying Theorem (7.9) to the pair (K, S) we find that V|, is the
sum of two isomorphic irreducible modules against the fact that
V.|, ¢ V.|,. We conclude that R = H, completing the proof.

As a corollary, we obtain the following classification of minimal
modules when —1 is a square in K.

(8.7) THEOREM. Assume that (7.1) holds, V is a minimal module,
and —1 is @ square in K = Homge(V, V). Precisely one of the
Sfollowing occurs.

(1) V|y is homogeneous for all N normal in G.

(2) There is a unique subgroup S of index 2 in G such that

(i) Vig=V,+ V, where V, is a totally isotropic homogeneous
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component,

(ii) V.|, is homogeneous for every mormal subgroup N = S
of G, and

(iii) V|y 4s homogeneous for every mormal subgroup N £ S
of G.

(8) There is a unique normal subgroup H of G where G/H 1is
a four group such that

(i) VI, is mot homogeneous for any H < L < G, and

(ii) Vl|y is homogeneous for any mormal subgroup N of such
that N< H or NH = G.

Assume that (1) does not hold. Then there is a normal sub-
group of K of G such that V|, =V, + V, where the V, are homo-
geneous totally isotropic components. Let S = stab(G, V,). By
Corollary (7.11), V.|, is homogeneous for every normal subgroup
N <8 of G. Therefore, if N<S is normal in G and V|, is in-
homogeneous, then the homogeneous components are precisely V,
and V,. If (iii) of part (2) holds then S is obviously unique proving
(2). Assume that (iii) of (2) fails so that there is a normal subgroup
L £ S of G such that V|, = U, 4+ U, where the U, are totally iso-
tropic homogeneous components. Set 7' = stab (G, U,) so that S+ T.
By Theorem (7.9) Hypothesis (8.1) holds. By Proposition (8.5) con-
dition (i) of (3) holds with H = SN 7. Part (ii) of (3) holds when
N < H since V|, is homogeneous by Theorem (7.9), and since parts
(i) and (ii) of (2) hold for V|, as we have already observed. Part
(ii) of (3) when NH = G and the uniqueness of H are implied by
Proposition (8.6) completing the proof of the theorem.

(8.8) DEFINITION. Let G be a group with normal subgroup H
where G/H is a four group. Suppose that K is a field of charac-
teristic p > 2 and 7€ K satisfies = —1. Fix 2z, ye€ G such that

G =<{H, s, y). Let U be a 2-dimensional K-space with basis {w,, u,}.
Define an action of G on U by setting:

T2U, = TU, YRU, = TUy, TYRU, = U, U, = U,
TRU, = — Uy  YRU, = TU;, BYZUy = — U, 22Uy = Uy

where ze H. If a, o/, 8, 8 € K then set

go(au, + By, a,ux + B,uz) =af —a'pB.

(8.9) PrROPOSITION. U of Definition (8.8) is an absolutely irre-
ductble projective K[G]-module with kernel H and factor set <
wnflated from G/H and tabulated below. The form g, is nonsingular,
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symplectic, and fived by the action of G.
cH yH ayH

cH —1 1 —1
yH —1 —1 1
xyH 1 —1 —1

REMARK. The proof is easy once one notes that the extension
of G/H by 7 is a quaternion group of order 8, and that U is an
irreducible module for this quaternion group.

(8.10) THEOREM. Assume that (8.1) holds and that —1 is a
square in K = Homgg(V, V).

(1) There is a projective extension Vi of V.|, to G such that
Ir:vi®aiU—V given by

I, @ u, + v, ® us) = v, + ¢,

(where v, e V¥(=V)), U is as in Definition (8.8), and ¢ is as in
Lemma (8.4)) is @ K [Gl-isomorphism, and the factor set ¥ of V¥ is
inflated from G/H and is given by the table of (8.9).

(2) There is a classical K-form f on V¥ fized by G and a
,ueIZ' such that g = tu(f ® g,) where ¢: K — K is the trace.

(3) If K= K and V is ¢ minimal module then V¥, is homo-
geneous for all N normal in G.

(4) If K= K, V is form primitive, and G* is the extension
of G afforded by v them V¥ is a form primitive K [G*]-module for f.

Define an action of G on V¥(=V,) as follows:
¥ = —ixav , Y*v = —iyedv, wyz*v = —wyzdv, z2*v =20

where ve V, and ze H. Since ¢ maps V, to V, and both yz and
2yz also map V, to V,, the *-action of any we G is a well-defined K-
linear transformation of V. It is a straightforward calculation to
prove that V¥ is a projective K [G]-module with factor set v tabu-
lated in (8.9).

Obviously I' defines a K[H]-isomorphism of V*® U onto V.
Since V¥ @ U has factor set v* =1, V¥ ® U is nonprojective. Thus
one only need prove that & and ¥ commute with I” in order to com-
plete the proof of (1).

By Theorem (6.7), there is a classical K-form § on V fixed by
G and an element ®we K such that g = twg. If § is unitary then
we let v be the associated automorphism of order 2, otherwise we
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~

let v=1. By Lemma (8.4), ¢ fixes g so that we may choose §
such that § is fixed by ¢ also.
If v, v,€ V¥ then we set

Sy, v5) = 7§ (v,, 55’02)

= 775(""&”2, ?71)

= —eng (vu Sg’vz)y

= _s(yiuv_l)f(’vz’ 'vl)y ’
where ¢ = —1 if § is symplectic or 1 if otherwise, and 7»* = —9 =0
if g is unitary or 1 otherwise. Since § is bilinear, f is also. For
any v, € V,, v, # 0, there is a v, € V, such that f(v, v,) = 7§(v,, $v;) # 0
because V is nonsingular for §, and because V, and V, = ¢V, are
totally isotropic for § by Proposition (6.8). Consequently, f is non-
singular. Using 0 for unitary, -+ for symmetric, and — for
symplectic; we have the following type table for § and f.

go + -
f 0 - +
If v,eV, for 2+ =1, 2, 3,4 then

SR 9(v, @ U, + v Q Uy, v @ Uy + v, Q U)
= f(vy, v)go(uy, ) + F(vy, 0)go(Usy )
+ (Ve V5)go(t W) + S (W ¥.)Go(%ry %)
= f(vy, v) — (s, v5)
= 7§ (v, $v.) — 9F (v, $v5)
= 1§ (v, v.) + 7F($v.s v)
= NF(v, + ¢v, vs + HV,) .

Setting ¢ = wy™ we have g = 7u(f & g,) proving (2). Using Theorem
(6.7) we may make the following table of possibilities.

REMARK. If K has an automorphism of order 2 then let v be
it, and choose % so that %”= —% % 0. Denoting unitary by 0,
symmetric by -+, and symplectic by — we have the following pos-
sibilities.
g 0 + + — -
f0 — 0 + O
£ 1 7 1 1
In order to prove (3), we first show that if N<]G and NH <G
then VY|, is homogeneous. Let S, T, K = (H, xy) be the maximal
subgroups of G which contain H. Now
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U|S=I?u1'i‘f(uzy
Ul = K(u, + u,) + K, — ), and
Ulx = K(u, + iu,) + K(u, — iu,) .

That is, if L is one of S, T, or K then V|, =V¥|, ® (X, + X,) where
Ul,=X,+ X, is the sum of 1-dimensional modules. Since we as-
sume that NH < G, we may take N< L. If X, is the dual of X, then
X, ® X, is the trivial module, so that V7 R X, ® X, = Vr. Since
V¥Q®V,|y is homogeneous by Theorem (8.7), V|, is homogeneous.

Now suppose that N<]G, NH=G, and V¥|y,=W,+ --- + W,
where the W, are homogeneous components. Suppose that t =1
and W! is an irreducible K [N]-constituent of W, for 7+ =1,2. By
our supposition on N, N,=SNN, N,=TNN, and N, = KN N are
three distinct subgroups of index two in N. Since V7¥| ¥, is homo-
geneous for ¢=1,2,3 we conclude that Wi|y, = Wiy, ©=1,2,38.
By Proposition (1.8) we have W= W, contradicting the fact that
W, 2 W,. The proof of (3) is complete.

Suppose that M* is a subgroup of G*, W is a proper K [M*]-
submodule of V¥ which form induces V*. There is no loss in as-
suming that M* is a maximal subgroup of G*. Under the natural
mapping of G* onto G, let M be the image of M*. Certainly W is
a direct summand of V¥|,.. If G> M > H then U|,. is the sum
of two modules so that V|, would have more than two components
contrary to (8.1). Consequently we must have MH = G. Thus
W ® U is nonsingular for K [M] and form induces V. The proofs
of (4) and the theorem are complete.

We turn now to the case where —1 is not a square in ﬁ, and
set the following additional hypotheses.

(8.11) HYPOTHESIS. Assume that (8.1) holds, and that —1 is not o
square in K= Homge(V, V). Let K be the splitting field of X* +1
over K and K=KQ«xK. If W is a K-subspace of V them set
W =KQxW. Define

Ja @ u, BRv) = aBg(u, v)
Jor a,,@eff and w,veV.

(8.12) LEMMA. (1) K= GF(p*) where p=3 (mod 4) and t is odd.
(2) K is the splitting field of X* + 1 over K.

(8) Let v: K— K be the trace. Then |i: K— K is the trace.
(4) K acts upon V and K = Homz(V, V).

(5) g is not unitary, and there is a classical K-form § on V
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fized by G of the same type as g such that g = 7§.

(6) If we set g*(a@® u, B8R v) = aBj(u, v) for @, BecK and
u,veV then g* and § are well defined forms of the same type as
g and § = tg*.

(7) With respect to S, T, V, g, V., V,, U, and U, the Hy-
pothesis (8.1) holds.

A

Part (1) follows from the fact that —1 is not square in K.
Parts (2) and (3) are obvious. If @, @’ cK, BeK, and ve V then
(e ® B) & Rv) = (aa’) ® (Bv) defines an action of K on V which
commutes with G on V. Since V is an absolutely irreducible K[G]-
module [14, (29.3)], V is an absolutely irreducible K [G]-module [14,
(29.21)] so that (4) follows [14, (29.3)], and in particular, V is an
irreducible K[G]-module. Part (5) follows from (1) and Theorem
(6.7) since neither K nor K has an automorphism of order two.
Part (6) follows by (3), (5) and the fact that neither g nor g is
unitary. Finally, (7) follows from Theorem (7.9) since V,NU; = (0)

for i, 7 = 1,2, and since V is an irreducible K[G]-module.

REMARK. This lemma allows us to apply the reduction of (8. 10)

to the module V in place of V whenever —1 is not a square in K.
The difficulty with this approach is that if V is a minimal module,

then V may not be. Further, if K= K and V is a form primitive,
then V may not be.

(8.13) THEOREM. Assume that (8.1) holds and that —1 is not a
square in K =Homu(V, V). If H= SN T and K = (H, zy)> where
x e S\T and y € T\S then the following hold.

(1) é of Lemma (8.4) has square —1 and lies in the field K =
Homue(V, V). Further [K: K] = 2.

(2) There is a nonsingular unitary K-form f on V fized by
K such that g = tuf where T: K — K is the trace and where r=1
if g is symmetric or g =& if g is symplectic.

(8) If 2'||p+ 1 where char K = p and if @ is a primitive 2t
root of unity in K then there is a projective emtension V*(=V) of

‘the K[H]-module V to a projective K[Gl-module with factor set <
wnflated from G/H and tabulated below.

xH yH wyH

acH ® — —1
yH 0] — -1
xyH 1 1 1
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(4) The action of G on V* fizes f.
Let G* be the central extemsion of G afforded by ~.

(5) If K=K and V is form primitive then V* is ¢ form
primitive K[G*]-module for f.

By Schur’s lemma and Wedderburn’s theorem on finite division
rings, K is a field because V| is irreducible by Proposition (8.5).
The first part of (1) now follows from Lemma (8.4). The second part
follows from Proposition (1.7).

We may apply Theorem (6.7) to the K[K]-module V. By Lemma
(8.13) g is not unitary. Since ¢ fixes g by Lemma (8.4), we may
choose f so that ¢ fixes f. If f is not unitary then

fu, v) = f(du, $v) = ¢ (u, v) = —f(u, )

for u,ve V. We conclude that f is unitary. Since ¢ = — &, and
since the automorphism of order two of K inverts &, ¢ of Theorem
(6.7) (ii) may be taken to be § if g is symplectic or 1 otherwise,
completing the proof of (2).

By Lemma (8.12) (1), K = GF(p*) where p = 3 (mod 4) and s is
odd. Therefore, the highest power of 2 in p* — 1 is twice the
highest power of 2 in p + 1, i.e., 2", Choose £e K of order 2
such that & = w™'. Let v be the automorphism of order two of K.
Since 3V, = V,, we may define a K-linear (K-semilinear) action for
y on V given by

y(v, + 97’5”2) =V — SZ'Uz ’
where v,€ V,. Since v fixes V, and V,, the action of v clearly com-
mutes with the action of H on V. But for v, v,€ V, we have

vr(v, + ¢v,) = v(xv, — $av,) = v, + PV, = B(V, — PV,) = WW(v, + $v,) ,

and
vy(v, + ¢v,) = v(ydv, — (dyv.)) = ydv, + d(yv,)
= yY(—v + dv)) = —y(v; + $vy)

proving that on V we have

(8.14) v =vyr and yy= —yy.

By Proposition (1.7),

(8.15) 28 =¢&x and y&=~&%y.

For elements of G we define the following action on V:

O(xz)v = véxzv , O(yz)v = véyzv , O(zyz) = —xyzv, OR)v = 2v
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where ze H and ve V. From (8.14) and (8.15) it is straightforward

to verify that 6(z) is K-linear on V for all zeG. Further, direct
calculation shows that @ is a projective representation of G with
factor set 7 inflated from G/H and tabulated in (3).

ot+1

REMARK. Let G, be the group (u,v|u’ = v*" = 1, wvu = v"**)
and equate v* = w, v* = —1. Idenifying «H with v, yH with uv
and xyH with « allows one to consider G/H = G,/{v*) as having a
central extension by (v*) with factor set v. Keeping this in mind
simplifies factor set computations.

Since f is fixed by K, it is fixed by 6(z), z€ K. If u,ve V then

S(ewu, véxv) = f(&vau, &vav) = EEf (vou, vav)
= — f(vzu, vav) = — f(avu, 2vv) .

By Lemma (8.12) (5) § = 7,uf is a classical K-form of the same type
as ¢ and fixed by G where 7,: K — K is the trace. Applying Proposi-
tion (1.3) yields:

Favu, xyv) = 2p) " g(avu, wvv) + (2ud)'§(davu, xvv)
= (2 "g(vu, vv) — (2¢3)*G(Pvu, vv) .

If w=u, + ¢u, v=v, + ¢v, where u,, v; € V, then

favu, wwv) = (21)gvu, vo) — 2pd)d(@vu, vo)
= (217 G(uy — Py v, — $v;) — ) G(u, + Puy, v, — Fvy)
= —(22)7[g(ws, $2) + 9(Fus, )]
— (2¢) [ — §(us $v.) + 9(u, v)]
= — (217w, + Pury v, + $0s)
— (2¢9)9(B(u, + Pus), v, + $v,)
= —f(u, ).

Combining our calculations gives

f(véau, véav) = f(u, v) .
Now véy = véx - xyz where z = y~ 27 %, and both véx and xzyz fix f
so that

F(Wéyu, véyv) = f(u, v) .

From this (4) follows.
Suppose that M* is a subgroup of G* and that U* is a non-

singular K[M*]-submodule of V* which form induces V*. Since
(@) £ K and G* has a central element acting as @ on V*, M* con-
tains this central element acting as @w. Therefore, Homi (U™, U*) =
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K. Now by Frobenius Reciprocity as in Proposition (1.4) we have
the following K-vector space isomorphisms

K = Homa(V*, V*) = Homipu(U*, V*) .

But dimi Homz,(U*, V,) = dimi Homgz;,(U*, U*) = dimx K. Con-
sequently, as K-vector spaces

(8.16) Homgy(U*, V*) = Hompg,(U*, U¥) .

Since yV* = V*, yU* is a K-submodule of V*. Since U* is a
K[M*]-module, yU* is also. Further I'(x)=vu defines a K[M*]-isomor-
phism of U* onto vU* by Proposition (1.9). Since K=Homx,.(U*, U*),
U* is an irreducible K[M*]-module. Thus vU* = U* or U* +vyU*
is a direct sum in V*. By (8.16) the latter cannot occur. There-
fore, yU* = U*. Since U* is v- and K-invariant, if M is the image
of M* in G under the natural homomorphism of G* onto G then
U* is M-invariant, as may be seen by checking the action of ele-
ments given by 6. Recall that § = c,ptf where 7,: K — K is the
trace. Since U* is v- and K-invariant, so are all the G*-translates.
Since the kernel of the natural homomorphism G* — G has kernel
acting as a subgroup of K, a transversal of M* in G* maps onto
a transversal of M in G. Thus a G*-translate of U* is a G-translate
of U*. Therefore, U* is a nonsingular K[M ]-module which form
induces V*(=V) for g(=g, since If=K). Therefore, M = G so
that M* = G* completing the proof of the theorem.

REMARK. This theorem is an analog to, but not as strong as,
Theorem (8.10). For example, if K = K and V is a minimal K[G]-
module for g then V* may fail to be a minimal K[G*]-module for
f. Proposition (8.5) (3) describes a way in which this situation can
occur. Applying this theorem to V gives a module over a field in
whiech —1 is a square, and therefore, shifts consideration to modules
of previously considered type.

(8.17) COROLLARY. If K = K and V is form primitive in
Theorem (8.13), them with respect to f and as a K[G*]-module,
precisely one of the following occurs.

(1) V*|y is homogeneous for every N* normal in G*.

(2) There is a unique subgroup S* of index 2 in G* such that

(i) V*|¢e= V¥ + VF where V¥ is a totally isotropic homo-
geneous component,

(ii) V%¥|,. is homogeneous for every mormal subgroup N* < S*
of G*, and
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(iii) V|y« s homogeneous for every normal subgroup N* £ S*
of G*.

The proof of (8.17) follows exactly that of Theorem (8.7). In
that proof, we discovered that if (1) and (2) fail then Hypothesis
(8.1) must hold. By Lemma (8.12) (1) and Theorem (8.13) (1), (2),
in applying Proposition (8.5) (8), the modules W, are nonsingular
and V* is form induced. Therefore, Hypothesis (8.1) cannot hold,
completing the proof of the theorem.

We add one final proposition so that Theorem (8.10) (4) and
Theorem (8.13) (5) become more useful.

(8.18) PROPOSITION. In (7.1) if V is form primitive, if K =
Homyy(V, V) and if § s a classical K-form on V fized by G such

that g = tpg Sfor some ;zeIZ' where 7: K— K is the trace, then V
18 form primitive for §.

Assume that U is a nonsingular K[S]-module of V for some sub-
group H of G which form induces V with respect to §. Since § is
nonsingular on U, g = z¢§ is nonsingular on U. Further, if 2U
and yU are orthogonal for §, they are orthogonal for g. Thus U
form induces V as a K[G]-module with respect to g.

REMARK. (1) Unfortunately, the converse of this proposition
is false.

(2) For form primitive modules, application of Theorems (8.13),
(8.10), and Proposition (8.18) reduces the structure of such K[G]-
modules with form g to the structure of absolutely irreducible form
primitive K[G*]-modules V* with form f where V*|,. is homogeneous

for all N* normal in G*, and where K, G*, f respectively bear a
fixed relationship to K, G, g¢.
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