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COMPUTING CHARACTERS OF TAMELY RAMIFIED
p-AΌlC DIVISION ALGEBRAS

LAWRENCE CORWIN AND ROGER E. HOWE

The purpose here is to prove the results announced in
Representation theory for division algebras over local fields
(tamely ramified case), B.A.M.S. 17 (1971), 1063-1066, by R.
Howe.

1* We discuss here one aspect of the representation theory of
division algebras over local fields. Since there is already an account
of the construction of the representations of tamely ramified p-adic
division algebras [1] by one of us, and an account of the analogous
construction for Gln by the other [3], the emphasis of this paper is
on character computations. The computations proceed inductively,
and the main focus of interest is on the inductive step. This step
is valid in a slightly wider context than the final result. The ap-
proach is pretty much head on, and makes no pretence to subtlety.
It owes its success in this case to the extremely pleasant geometry
of the conjugacy classes in tamely ramified division algebras (see
for example Lemmas 1 and 2), a fact probably worth pointing out
for itself.

2* Let F be a p-adic field, with p odd, R the integers of F,
π a prime of F. Let ΰ be a division algebra central over Ff of
degree n and dimension n2. We take n prime to p, and odd. Let
£ be the integers of F. Let Fu be an unramified extension of F of
degree n contained in D. Let Π be a prime of S normalizing Fu

and such that

(1) Π x Π'1 = ρ(x) for xeFu

where p is a generator of the Galois group of Fu over F. We may
arrange that Πn = TΓ. Let Fx, Rx, etc. be the multiplicative groups
of F, R, etc. Let F = R/πR be the residue class field of F.
Similarly Fu = BJπRu. Note that S/ΠS ~ Fu. By Fl we understand
the roots of unity of order prime to p in Fl, and similarly for Fx.
Note that F'QFZ.

Let C be the group in Dx generated by Fl and 77. Write

(2 ) Vt = 1 + Π'S .

The group Vγ is the maximal pro-p subgroup of Dx and we have
the semidirect product decomposition
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( 3 ) DX = C-V1.

Let σ be an irreducible admissible representation of Dx. We
may as well assume that σ(π) = 1, so that σ factors through a com-
pact group. Thus the Haar measures used later on will be under-
stood taken modulo π. Thus entails no loss of generality, and will
not be made explicit in the notation. If j is the smallest integer
such that Vj^keva, then Vό is called the conductor of σ. We
assume j ^ 2. Since V3 _JVd is abelian, the restriction of σ to Vy-i
breaks up into a sum of linear characters of V/_i Let ψ be one
character of V$-x which occurs in σ. All other characters of V5_γ

which occur in σ will be equivalent to ψ under conjugation by C.
We will give an inductive procedure for understanding the representa-
tions of Dx with conductor Vό whose restriction to V^ contains ψ.

Let tr: D —> F be the reduced trace map. Let χ be an additive
character of F such that i ? £ k e r χ but π^jKgkerχ. There is an
unique element cQ of C such that

(4) ψ(l + y) = χ(tr (coy)) for y e Π'-'S .

We will have c0 = W~aτ with reFζ and

(5) a = n + j — 1 .

Let F' be the field generated over F by <v Let Df be the
centralizer of Ff in D.

THEOREM 1. ( a ) There is a bisection between the following
two sets.

(1) The set A — A(j, ψ) of irreducible representations of Dx

having conductor Vd and containing the character ψ of V^^
(2) The set B = B(cOf j) of irreducible representations of D'x

which are trivial on Dtx Π Vy-i.
(b) Let σ be an element of A and of the corresponding element

of B. Then σ is induced from a representation σ of D'x. VΊ with
the following properties. Let ch(σ) be the character of σ, and ch(σf)
be the character of a\ Then:

( i ) ch(σ)(x) = 0 for xeDx unless x is conjugate to an element
of Dfx modulo Vj-ΰ and

(ii) on D'x, there is a function ω = α)(c0, j) such that ch(σ) =
ωch(σ').

Further particulars will emerge during the proof, which will
occupy most of this section.

At first we will assume j is even because the argument is clearer
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then than for odd j. Afterward we will indicate the modifications
necessary for odd j.

Let D'L be the orthogonal complement to Df with respect to the
bilinear form tr (xy) on D. Let

(6) U, = (1 + D'λ)n V, .

Let

(7) V't = D*nVt.

Note that if / is the unramified degree of Fr over F, and Πr is a
prime of D', then

( 8 ) F ; = l - πf«sf

where a is the smallest integer such that fa ^ j.
An argument as in [3] (Lemma 5) shows that

(9) V<= F M 7 , = UtV'<.

Note that the number a given in (5) must be divisible by /. Hence
j — 1 is also divisible by /, so (4) shows that the character ψ
essentially lives on V'^lf in the sense that Uj^ £ ker ψ. Another
argument as in [3] (Lemma 9) shows that we may fix a linear
character ψ of D'* such that ψ agrees with ψ on FJ. l β

We may now describe the correspondence of Theorem 1, part
(1), assuming j is even. Set j = 2i. Choose σ' in B. Let us write
D'* Vk = Ek. Define a representation φσ' of Et by the formula

(10) f ( j ' ( Λ ) - f ( W ) for i'efl' and ueU,.

Define σ as the induced representation

(11) σ = indi; ψσ' .

We will show that the correspondence σ'~-+σ has the desired
properties.

We will need some facts about the geometry of conjugacy
classes in D. Let Ad denote action of Dx on D by conjugation; that
is

(12) Adx(y) = xyx"1 for xeDx and yeD .

Another argument as in [3] (Lemmas 6 and 8) proves the following.

LEMMA 1. For any y in cQV[ and k ̂  1 we have

(13) Ad Uk(yV'k) = yVk .
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Furthermore, for any y1 and y2 in c0V[, if there is z in Dx such
that Ad z(yx) = ys, then z belongs to D'x.

From this, we get a description of the conjugacy classes in D.
This will be important in our computations. Let ord^ denote the
standard valuation on D, i.e., ord^ (77) = 1.

LEMMA 2. Given x in D> there is an unique element xr such
that xf is conjugate to x by V1 and

(14) z' = ±ct(x)
1 = 1

where each Cι(x) is in C, all the ct commute, and ord# ct(x) >

Proof. From (3), there is an unique cx{x) in C such that
^ (x — cx{x)) > ord^ x. By Lemma 1, x is conjugate to xx in the

centralizer of cx(x). Further if x is conjugate by V1 to xx and xly

both centralizing c^x), then both x1 and x1 are conjugate in the
centralizer of c^x). Now replace x by x1 — cx{x) and repeat.

Now return to consideration of representations. As above ψ is
a character of VJ^JVJ represented by c0 and j = 2i. For any k ̂  i,
the quotient group VkjV5 is abelian. Let P be the set of unitary
characters φ of VkjV5 such that φ agrees with ψ on V^x. For such
φ we can find z in cQV1 such that

(15a) φ(l + x) = χ(tr (zx)) for x e 77fcS .

Of course if z satisfies (15a) so will any element of zVj-k. Thus
(15a) yields a bijection

(15b) β:P — c0VJV^k.

Both domain and range of β are invariant under conjugation by El9

and β is clearly equivariant with respect to conjugation by Ex.
Therefore (13) implies that:

( a ) any φ in P is conjugate by V1 to φf in P such that β(φ')
intersects c0V[; and

(b) if φx and φz are conjugate by E19 and /5(^) intersects cQV[
for i = 1, 2, then the ̂  are conjugate by D'x;

( c ) for φ in P, if /3(φ) intersects cQ(V[), then the isotropy
group of φ in £7r is contained in E3-_k.

From these facts, for k = i, and standard Clifford theory [6],
which describes the relation between representations of a finite group
and a normal subgroup, part (a) of Theorem 1 is immediate.
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We now turn to the proof of part (b) of Theorem 1. This will
take longer. For i <S k <̂  j , let σk denote the restriction of fσf to
Ek. Let σk denote the induced representation

(16) σk = indg; σ'k .

Consider also the representation

(17) σ f c

of Et. We obviously have

(18) σk

Also the σ and σ of Theorem 1 are now denoted σt and σ^
It is clear that ch(σ$_D(x) — 0 unless x is conjugate by VΊ to an

element of Όfx modulo Fy_lβ According to Frobenius' formula for
characters of induced representations we have, for x e D'x

(19)

where ch is defined by

(20) chiσ'j^Xy) = j

(0 otherwise .

We have the general formula

(21) Ad (1 + z)(x) = x + [z, x](l + z)~' = x(l + x'\z9 x](l + z)-1) .

Suppose that 1 + z is in U1 and x is in Dfx. Then x~\z, x] belongs
to D'1 Π ΠS, so l + x~\z, x] belongs to U^ Suppose ord^ {x~\z, x\) — m.
Then from (21), since ord^ (z) ^ 1, we see that αΓ1 Ad (1 + z)(x)
belongs to Um modulo Vm+lf and does not belong to V[ modulo Vm+ί.
Therefore, in order for Ad (1 + z){x) to belong to Ej_19 it is necessary
that oτάD (x~\z9 x]) ^ j — 1. Since i7i_1 Q ker σ'^19 it follows from
(19) that for x e Dfx,

(22) ch{σό^){x) = v{x)ch{σ'^{x) = v(x)ψ(x)chσ\x)

where v{x) is the index of the centralizer of x modulo Vj in Dtx in
the centralizer of x modulo Uj^Vj in Et.

The formula (22) shows that the quotient

is independent of & in B. It also shows that the characters
are linearly independent. Since the chiάj^) are obviously linear
combinations of the irreducible characters ch(σt), by part (a) of
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Theorem 1, and since there are the same number of ch(σά_^ as
it follows that these two sets of characters have the same span.
In particular, each ch{σt) is a linear combination of the cfe(0V-i)
Thus ch(σi)(x) vanishes unless x is conjugate in Et to an element of
Dfx modulo VJ-Ί Similarly ch(σt)(x) vanishes unless x is conjugate
in Dx to element of D'x modulo Vj^. Thus statement (i) of part (b)
of Theorem 1 is proved.

To complete Theorem 1 we study the intertwining between
certain of the σk for i <; k ^ j. Observe that the set

{σ'k:σ'eB}

may be characterized as the set of representations p of Ek such that
( i ) the restriction of p to V^λ is a multiple of ψ, and
(ii) UkQker p.

With this in mind, choose σr and τr in B. We will compute I{σk, τk+1),
the intertwining number of σk and τk+1. Let ch(σk) be the function
on Et which equals ch(σk) on Ek and vanishes off Ek. Let ch(τk+1) be
defined similarly. For any function / on Elf define

(23) Ad* y(f)(x) = f(Ady-\x)) fora?, y in Ex.

Frobenius reciprocity and the Frobenius formula for induced
characters combine to give

(24) I{σk, f 4 + 1) = Σ Ad* u(chσ'k)ch(τ'k+1)de .
-leUlU JEk+1

Here de is normalized Haar measure on Ek+1, and indicates complex
conjugate. Denote the integrals in (24) by m(u).

Define

(25a) Ad u(Ek) = {Ad u(x): x e Ek} ,

and

(25b) Ad* u(σίXAά u{x)) = σk(x) for x in Ek.

Thus Ad* u(σ'k) is a representation of Ad u(Ek). Evidently

(26) cft(Ad* u(σk)) - Ad* u(chσk) .

The group Uk+1' Vd is normal in Ek+1 and belongs to ker τf

k+1 as noted
above. Clearly Uk+1 V3-Q Aάu(Ek). The restriction of Ad*^(^) to
Uk+ι Vj will be a sum of linear characters. From Lemma 1 we can
see none of these characters can be trivial on Uk+1 V3 unless u is in
t/y-fc-!. Therefore m(u) will vanish unless u belongs to C7"y_Jfe_1. From
now on we assume this is true. Then Uk+1 is in the kernel of
Ad* u(σk), so Ad* uch(σk) is constant on cosets of £7fc+1 Vj. There-
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fore we may write

(27) m(u) = Γ /χ Ad* u(cka'k)cMF)d%

where dx is normalized Haar measure on DTχ (modulo π, as always).
Let us compute Ad* u(chσk(x)) for x in Όtχ. Write u~ι = 1 + 3.
Then AAvΓ\x) is given by (21). In order that AAvΓ\x) be in Ek

it is clearly necessary and sufficient that ord^ (x~ι\z, x]) ^ k. If this
holds, then since z is in Π^^S, we have

(28) Ad vΓ%x) = x(l + aΓι[s, α] - x~\z, x]z) modulo V, .

We conclude that

(29) Ad* uσ'k{x) = σk(Aά u~\x)) = σ\x)ψ{l - α"ι[», φ )

for x in D'* such that Aάu~\x) is in £fA.
Write

(30) v(x, u) = ί^(1 ~ f if Ad^"1^) is in Ek .
v (0 otherwise

Note that v(x, u) depends on x, u, and ψ, but is independent of σf

in B. We may rewrite (27) as

(31) m(tt) = \ ch(σ')chτ'v(x, u)dx .

Plugging (31) into (24) and summing we conclude:
There is a function vk defined on D'x such that

(32) I(σkf τk+1) = j ^ ch{σ'jch(τ')vkdx .

On the other hand, both σk and rA+1 are linear combinations of the
άi and we have seen that chiσ^x)) = 0 unless x is conjugate in E^
to an element of jEr

ί _1. Therefore we may write

(33) I(σk, τk+1) = ^ ^ ch(σk)ch(τk+1)μdx

where μ(x) is a factor expressing the difference in volume between
conjugacy classes in D'x and in Ex. From (22) we know that

(34) ch(σt(x)) = ωι(x)ch(σf(x))

for Z = i — 1 and a suitable function ωl9 Assume by induction that
(34) holds for I = k + 1. Assume also that the function vA in (32)
vanishes nowhere. Then comparing (32) and (33), assuming induc-
tively that the functions
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{ch(τk+1):τ'eB}

span the sames pace as the τif we see that (34) must also hold for
I = k9 with

(35) ωk = vk(μώk+1)-1 .

Then (34) and (35), plus nonvanishing of vk shows that

{ch(σk):σ'eB}

also has the same span as the σt. Thus the induction may continue.
Evidently when we reach I = 1, Theorem 1 is proved. Thus our
computation below of vk, from which we will see in particular that
vk is never zero, will complete the proof of Theorem 1, when j is
even.

REMARKS. ( a ) The above argument, which evidently could be
axiomatized, may be regarded as a justification of the analogy drawn
in [4] between the character of the Weil representation and the
Weyl character formula. Formula (35) is also suggestive in this
regard.

( b ) The above arguments in fact go through when n is divisi-
ble by p so long as c0 generates a tamely ramified extension of F.

Before continuing, let us briefly indicate what happens when j
is odd. Retain the notations of (1) through (9). If j is odd, put
i = (j — l)/2. Then Vj^-Ui = H is a group, and (ker ψ) Ui+ι is a
normal subgroup and the quotient is a finite Heisenberg group.
Thus there is an essentially unique representation p of H which is
trivial on Ui+1 and which is a multiple of ψ on V^γ. The group H
is normalized by Dfx. Note the equalities

D' fΓ = Et = Ώ'^V, - C'xs(V[-H)

where C' = Cfl D'.
Choose an extension ψ of ψ from V)^ to Drx. Assume for

simplicity that ψ is trivial on C. We may immediately extend p
to a representation of V[ H by defining

p(v) = ψ(v) for v in V[ .

The extended p is still essentially a representation of an Heisenberg
group. Since Et is the semidirect product of C and V[ H, we may
extend p to Et by defining

p(c) = ω{c) for c in C

where ω is the oscillator or Weil representation. See for example

[4].
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Now if & belongs to the set B of Theorem 1, we may extend
& to a representation of Et by letting σ' be trivial on H. Then we
know σ'(g)jθ is an irreducible representation of Et. We define

σ = indgj & 0 p .

The proof that this works is very much like the case of even
conductor, with slight additional complications. The situation is not
nearly so bad as in [3] where it was necessary to cope with the
nonnormality of the maximal compact subgroup. The induction by
means of the σk goes precisely as before up to level k = i + 1. To
pass from the σi+ι to the σt is similar, and can be done with the
use of the formulas [4].

3* We now focus still closer on the computation of ch(σ)f with
the goal of proving Theorem 2 of [2]. In this paragraph, we con-
centrate on computing ch(σ) as a function on JD' . To do this
essentially amounts by (35) and Theorem 1 to computing the vk, so
that is our current goal.

According to the discussion preceding (32) we have

(36) vk{x) = Σ *>(*, v)

where the sum is over the set U(k, x) given by

U(k, x) = {u~ι e Wk~lIU\ u-1 = 1 + z, and ord (x~l[z, x]) ^ k) .

Also v(x9 u) is given by (30).
Up to conjugation in D'*9 we may assume x has the form given

by Lemma 2. Let the c^x) for I ^ 1 be as in that lemma. Recall
Df was defined as the centralizer of c0, with c0 as in (4). Let D = D°,
and for m ^ 1, let Dm be the centralizer of ct(x) = c% for 1 <>l <L m.
Let

P = D'L n Dml Π Dm~ι for m ^ 1 .

Let

Then, except that some of the summands might vanish, we have

It is clear that the map

z • x~ι[z, x]

preserves each Ym. For z in D' 1, write
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with zm in Ym. The argument giving (9) extends to imply ord^ (zm) ^
ord2> (z) for all m ^ 1. Further the argument used for (13) in Lemma
1 shows that

(37) %~\zm, x] = cτι[zm, c J + r

with ordj) (r) > ord^, ( e Γ 1 ^ »»])•
Combining this with (4) and (30), we have for u in U(k, x),

(38) ι>(x, u)= U Z(tr (Cocr1!^, c J s J ) .
m = l

Here χ is the complex conjugate of χ. Moreover we see that u —
(1 + z)~ι belongs to U(k, x) if and only if each um = (1 + ̂  J " 1 does
so. Thus if we put

U{m, k, x) = {u 6 ί/(fc, aj), u = (1 + s)"1, and 2J e Γ m },

we have the factorization

(39) vk(x) - Π vM
m = l

where

(40) vkm(x)= Σ v(a?,w)= Σ χ(tr (c»c:\z, cjz)) .
ueU(in,k,x) z=u—l

Consider the number χ(tr (CQCΪ^Z, cm]z)) = v(x, (1 + z)"1), for some
z in Ym. For v(x, (1 + z)~ι) to be defined, we need

( a ) ordz) (z) ^ j — k — 1 and
(41)

( b ) ord^ (c^[z, cm]) = ord^ cm +

If either inequality in (41) is strict, then v(xf (1 + z)"1) = 1. There-
fore if v(#, (1 + ^ )"1) Φ 1, we have the relations

( a ) ordz, z = j — k — 1 and
(42)

( b )

Since ord^ cm increases strictly with m, we see there is at most one
m for which there can exist z in Ym such that v(x, (1 + ̂  )"1) is not
equal to 1. For m not satisfying (42) we will have

(43) vM = %U(m, k, x))

where as before *( ) indicates cardinality.
Suppose now that cm satisfies (42b). Then we see that the map

(44) z > π t r (cQcτ\z, cm]z)
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may be regarded as a quadratic form from (Ym Π IP"*" 1 £)/IP~fc S
to F. Let 7 be the Gauss sum attached to this quadratic form and
to the character χ(x) = χ°{π~ιx) on F. Then we clearly have

(45) vkm{x) - Ί\U{m, k, x) n Uj_k) .

Thus to complete the computation of vk(x) it remains to determine
the quadratic form given by (44).

It is at this point that we invoke the assumption that n is odd.
It was superfluous up to this point and even here could doubtless
be eliminated with some extra work (the work for n — 2, quaternion
algebras, is rather small, and, indeed, that case is beside the present
purpose); but at this point assuming n to be odd does simplify the
computation.

Combining (42b) and (5) we get

(46) 2k = orάD cm — oτάD ct + ord^ cQ + n .

Let Fm be the field generated by c0 and the ct f or 1 <: I <; m: Since
n is odd, the equation (46) implies there is y in Fm such that
ordi> (y) = k. More systematically, let π be a prime of Fm. We can
assume π belongs to C. Write

(47) cx = τt^τx with TteFm .

Also write

0 — k — 1 = ordz, (π)b with beZ .

Put IP'"*""1 S/ΠJ"& S = L. We may parametrize L by the elements

(48) a(χ) = fr6r with reFu.

That is, since JPW ̂  S/Π S, the map a: r —> frV is an isomorphism
from Fu to L. Of course Fm is a subfield of Fu.

For r in Fu and a suitable r in Gal (FJF) we have

(49) π~ιrπ = τ(r) .

If <0 is defined by (1), then τ = pd with d = — ord^ (TΓ). However,
this will not matter to us.

Denote the form defined by (44) by Q. With the notation of
the preceding paragraph, we have

(50) Q(α(r)) - tγ(tτ\τa™ - l)(r)r)

where t = πfcaϋroπ~~airr17ίa'*rJ?b

f and t r : Fu—>F is the reduction modulo
Π S of tr: S->R. Observe that t belongs to Fx

m. Also tr is the
usual trace map from Fu to F.



472 LAWRENCE CORWIN AND ROGER E. HOWE

We see from (50) that we may consider Q' = Q o a as a quadratic
form on Fu. We are not interested in Q' on all of Fu, but only on
the inverse image orι(Ym Π H*'1*"1 S). It is not hard to see that
this is the subspace

(51) im (τα° - 1) Π Cfϊ ker (τα* - 1)) Γϊ im (τα™ - 1) .

Of course ker (τα — 1) is just the fixed field of τa. Thus the situa-
tion is as follows. Let

K, == fixed field of τα* for 0 ^ I ^ m .

K2 = fixed field of τα ' for 1 ^ I <: m .

iζ, = fixed field of τ α ' for 0 ^ Z ^ m - 1 .

K4 = fixed field of ra* for 1 ^ Z <£ m — 1 .

Then we have a diamond.

# 4

We have the trace maps

defined UL̂  lies above Kj in the diamond. The space in which we are
interested is

(52) J = ker tr42 Π ker t r 4 3 .

Note that Fm is contained in Kx. The main point about Qf and
J is the following lemma.

LEMMA 3. Let G be a finite abelian group of order prime to p
acting on a vector space Y over a finite field F of characteristic p
(p odd). Suppose there are no vectors y such that g(y) = ±y for
all g in G. Let Q' be a nondegenerate quadratic form on Y in-
variant under G. Then Qr is unique, up to isomorphism.

Proof. Consider first the case when G acts irreducibly. Then
reasoning just as in [4] (Lemma, p. 296) we see there is an extension
Fr of F such that if F" is the quadratic extension of F", then there
is an embedding

a\G >F"*
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and an isomorphism

β: Y >F"

such that β(g(y)) —• cc{g)β{y) for g in G and y in Y. Further Qr will
then have the form

Q'{u, v) = tr (F"/F)(cτ(u)v)

where c belongs to F' and τ is the Galois automorphism of F" over
F". If z is in F"x, then the linear map u~+zu commutes with the
action of G and

Q\zu, zv) = tτ(F"/F)((cτ(z)z)τ(u)v) .

Since 2 —> r(s)3 is surjective from F"x to J F " for finite fields, we see
that all possible Q' are isomorphic in this case.

In general write Y — Σ Y% as the decomposition of Y into iso-
typic components for G. If Y3 is the component of Y contragedient
to Yif then Yt must be orthogonal to every Yk except Ys under Q\
In particular if Γ* Φ YSf then Yi 0 Yό is a Q'-orthogonal direct
summand of Y and Q' is split, i.e., a sum of hyperbolic planes, on

Consider the possibility that F4 is self-contragredient. Then Vt

is the direct sum of irreducible G-modules, all mutually isomorphic
and self-contragredient. If V1 is an irreducible submodule, then
either Qf is nondegenerate on V19 or Qr is trivial. To finish, it will
suffice to show that the orthogonal direct sum of two irreducible
modules on which Qf is nondegenerate is equivalent to a split form.
Let the sum be represented by pairs (u, v) with u and v in F".
Then

Q'((ulf vj, (u29 v2)) = tr {F"IF)(c1τ(uύu% + c.φ^v,) ,

with c± and c2 in Fr. Choose a in F" such that aτ{a) = — c^Γ1.
Then if 7 + = fe^);weF'} and T^ = {(u, -du); ueF"), we see
our module is V+ 0 F_ and that both F + and V_ are isotropic for Qr.
This completes the lemma.

Lemma 3 obviously applies to Q' — Qoa as defined by (50). This
Qf is clearly invariant by Gal (FJFm), hence by Gal (KJKt) which,
being cyclic of odd order prime to p and having no fixed points in
J, satisfies the hypotheses of the lemma. Thus Qf is what it has
to be, according to how Gal (KJKJ acts on it. Thus its specific form
(50) is not important. Similarly 7 in (45) is what it must be, as
determined by the diamond of the Kt.

We note at this point formulas (39), (43), and (45) together imply
that vk is nowhere zero and thus effectively completes the proof of
Theorem 1. Furthermore, the above discussion shows that the func-
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tions vk(x)f hence the function ω of Theorem (lb), depend on x only
as an element of the field it generates, and does not depend on the
Hasse invariant of D.

4* We now consider the passage from σ to σ, with a view to
extending the final statement of §3 in suitable fashion. Such an
extension will be tantamount to proving Theorem 2 of [2]. Since
σ = indf* σ, and E12 Vlf we have by Frobenius' formula and (3) that

(53) ch(σ(x)) = Σ chσ(Ad z(x)) for x in Ex .
zeCIC

Here C; = Cfl 2?'. We know that C/KJ vanishes off Et conjugacy
classes which do not intersect E3-_lf so we may as well take x actual-
ly belonging to E0_x. Moreover, we may as well take x to be the
canonical member of its V1 conjugacy class, as described by Lemma
2. Then since z belongs to C, we know Aάz(x) is the canonical
element in its VΊ conjugacy class. It is easy to see that such an
element is conjugate in E1 to an element of Ej^ only if it already
belongs tc E$_x. Hence the nonzero terms in the sum on the right
of (53) come from those z such that Aάz(x) is again in Ej-t.

To begin, let us consider the case when x belongs to F 3 _i. Since
we are only interested in x modulo V3 , we may assume x = 1 + c29

where ordΰ (c2) = j — 1. Formulas (4) and (53) combine to give

(54) chσ(x) = Σ Z(tr (c^c^1)) .
z e C/C

The sum in (54) will actually be invariant under Ad C, since c0 is
invariant under Ad C. To make this explicit we could if we wish
replace the sum over C/C, with *(C/(C Π F))"1 times a sum over
C/(C Π F*). But let just keep it in mind. From (5), we see that

c2 = j — 1 = oxάD (cύπ)~ι .

Thus we may write

zc2z~ι = (<vr)-V(c2, z) with r(c2, z) in

If we do so, (54) then becomes

(55) chσ(x) = (C7(C Π FT1 Σ Z ^ " 1 tr r(c2, z)) .
zeClCOF

What we want to do is to show the set

tτ Z = {trr(c2, z):zeC}

depends only on the minimal polynomials of cQ and of c2f and not on
the Hasse invariant of D, i.e., not on the specific p occurring in (1).

Let b be the smallest positive integer such that n divides b(j — 1),
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say b(j - 1) = nd. Let F'u = K n ΰ ' be the fixed field of Ad cQ.
We may write for r in F'u,

where N: Fu —• i ^ is the usual norm map, and s0 belongs to F'u.
The minimal polynomial of c0 determines s0 up to the action of
Gal (F'JF). Similarly, the minimal polynomial of c2 determines
sQN(r(c2,1)) = s2 up to the action of Gal (FJF). It is well-known
and easy to check that the AdC orbit of c2 is the set

{ueFu: N(u) = 7(s2) for some 7 in G} .

Therefore, for a fixed choice of c0, we have

Z = {r(c2, ^ ) : 2 6 C } - {πc0τ(c2)v: τ eGal (FJF) and x eker iSΓ} .

If we replace c0 by some conjugate of c0, this has the effect of
either (a) multiplying cQ by some element in ker N or (b) replacing
0o by μ(cQ) with μ in Gal (FJF); or (c) both (a) and (b). The opera-
tion (a) does not change the set Z at all. The operation (b) replaces
Z by μ(Z), as does operation (c). Taking traces, we find the set
tr Z does in fact depend only on the irreducible polynomials of c0

and c2, as desired.
Now we pass to the general case, where x is in E5_ly not neces-

sarily in VVi. As stated above, we assume x is the canonical
member of its V1 conjugacy class, as specified by Lemma 2. Thus
we may write

= Σ c< - 0,(1 +
Σ
i=2

where et is in C, all the ci commute, ord^ (c<+1) > ordj) (c,), and ct =
ĉ ĉ 1 for ΐ ^ 2. Since we are working modulo Vif we may as well
assume the sum is finite, say up to I, and that ord^ (if,) = j — 1. (If
ordi, (8i) is never equal to i — 1, we agree to put ct = 0.) Then
modulo Vj we may write

x = Cι(l + y){l + 8Ί)

where

» = Σ 8i .

Put xt = CjfX + y). It is clear that for Ad z(x) to belong to E^lf it
is necessary and sufficient that Ad z(x^) belong to Όtz. Let xlf , xm

be representatives for the C conjugacy classes of Ad C(x^) Π D'. If
Xi = A d ^ J J , put 1 + Si = Ad 3,(1 + if,). Denote by Ct intersection
of G with the centralizer of xt, and write C't = Cΐ Π D'. In these
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terms we may rewrite (53) in the form

(56) chσ(x) = Σ chσ{xt)( Σ A t Ψ(Ad* z(l + β,)) .

It remains to investigate the individual terms in (56). Evidently
each xif as an element of JD', generates an extension of Ff. The
degree of this extension must divide the degree m of Df over F\
which satisfies m dim (F'/F) = n = deg (D/F). The nature of the
extension xt generates over F' is determined by the irreducible
polynomial qt over Ff satisfied by xt. This irreducible polynomial
qt also determines the conjugacy class of xt in D'. As is well-known,
qt is a factor of the irreducible polynomial of x± over F. Thus we
see, the xt are in one-one correspondence with the .F'-irreducible factors
of degree dividing m of the irreducible polynomial of xx over F. (Here
we use the fact [5] that p-adic division algebras contain all fields of
the appropriate degrees.)

There is another way of viewing the xt that makes things more
symmetric between xx and c0. Let us suppose that xι and c0 are
embedded in some algebraic closure K of F, and let G be the Galois
group of K over F. Let Hx be the isotropy group of xx in G and
let H2 be the isotropy group of c0. The irreducible polynomial of
x1 over F is

q(X)= Π (X - flrfo))
/

Each i^'-irreducible factor of q is a product of the X — g(%^) over
an f/g-orbit in G/H^ In other words, the irreducible polynomials over
Ff that conjugates of xx satisfy are in natural bijection with the
(Hlf H2) double cosets. From this point of view, the relation between
xι and c0 is obviously symmetric, and there is thus a natural bijection
between the irreducible polynomials satisfied by conjugates of xt over
F' and the irreducible polynomials satisfied by conjugates of c0 over
the field generated by ^ over F. The degree of the extension over
F generated by c0 and g(βx), or by xx and g~\c0) is the index of
gH.g-1 Π H2 in G.

From this discussion we may conclude that for each xt in (56),
the element c0 lies in a well-defined conjugacy class in the centralizer
of Xi. Furthermore, it is not hard to see that the conjugacy class
of Cx in the centralizer of xι is determined by x. Hence for each s4

occurring in (56), the irreducible polynomial over the field generated
by Xi is determined by x, or more precisely, the irreducible poly-
nomial of x. Hence the considerations of the earlier part of this
section show that the sums
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occurring in (56) are determined by the irreducible polynomials of x
over F and xt over F\ Since we know from §3, together with an
obvious induction hypothesis that the quantities chσ(Xi) depend only
on the irreducible polynomials of the xt over F'9 we find that (56)
is entirely determined by the irreducible polynomial of x over F.
This establishes Theorem 2 of [2].

5* We will finish by making two remarks. First, if the
formula (35) is drawn out over several steps, it reads

Thus the ω's are alternating products of the v's. This circumstance
has an homological flavor.

Second, it should be pointed out how much the foregoing analysis
simplifies if Fr happens to be unramified over F. In that case, we
have Ej = E^u or in other words V'^ maps onto Vf-JV,. It follows
that the Gauss sums of §3 defining the vk are simply volumes of
certain groups, and are positive numbers in particular, and relatively
simple to compute. No quadratic forms need be considered. Further-
more, (53) reduces to a sedate sum over the Gal (F'/F) conjugates of x
in Drχ, and consideration of the character sums of (54) is completely
unnecessary. Written out explicitly, one finds

chσ(x) = ( Σ ch{σr 0 ψ){g{x))ω{x))
sreGal (FΊF)

where ω(x) is a factor which accounts for the difference of volume
between conjugacy classes in D and Dr. The analogy with the Weyl
character formula, also suggested in [4], is clear. On the other
hand, the formula (56) would seem to depart in certain ways from
the Weyl formula. This may be attributed to the existence of non-
Galois extensions.
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