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GENERAL SOLVABILITY THEOREMS

MlECZYSLAW ALTMAN

A further development of the method of contractor direc-
tions is presented. In order to make the method applicable to
applied problems, certain conditions are imposed on the sets of
contractor directions. This in turn requires a more sophis-
ticated transfinite induction argument. In terms of contractor
directions, sufficient conditions are given for existence of solut-
ions of nonlinear operator equations in Banach spaces.

Introduction. The general method of contractor directions
seems to be a natural generalization of the method of directional
contractors. However, in order to make the method applicable to
nonlinear differential and integral equations, a further development of
the concept of contractor directions is necessary. Therefore, certain
conditions are imposed on the sets of contractor directions. In this way,
a special class of increasing continuous functions is involved in the
definition of specialized contractor directions. This class is closely
connected with the classical Cauchy integral test for infinite series. By
using the method of specialized contractor directions sufficient conditions
are obtained for general existence theorems of solutions of nonlinear
equations. This method does not require the operator to have closed
range. However, if the range of the operator in question is closed, then
no additional conditions are imposed on the sets of contractor
directions. In this particular case, the method is much simpler. Thus,
the unified theory also yields a generalization of results obtained by
Pohozaev, Browder, Zabreiko and KrasnoseΓskii, Kirk and Caristi. All
the methods used by the authors mentjoned above are different and
applicable only in the case of an operator with closed range.

1. A general solvability principle. Let P:D(P)C
X—> Y be a nonlinear mapping, where D(P) is a vector space and X, Y
are real or complex Banach spaces. Denote by B the class of increasing
continuous functions B such that

(i) B(0) = 0, B(s)>0 for

(ii) I s~ιB(s)ds <°° for some a > 0 ;
Jo

and

(iii) 0 < γ < l implies B(e~Ύt)t ^O as *-><».

i



2 MIECZYSLAW ALTMAN

Let g be a continuous function such that g(t)>0 for t >0.

DEFINITION 1.1. Γx (P) = Γx (P, q) is a set of contractor directions at
x ED(P) for P: D(P)CX^> Y, which has the (B,g)-property, if for
arbitrary y E ΓX(P) there exist a positive number e = e(jc, y)g 1 and an
element h E X such that

(1.1)

(i 2)

where x + eh E D{P) and q — g(P) < 1 is some positive constant inde-
pendent of x ED(P).

DEFINITION 1.2. The nonlinear mapping P:D(P)CX—>Y is
(J3,g)-difϊerentiable at JC ELD{P) if there is a dense subset VCY such
that for arbitrary y E V there exists an element h E X which satisfies
condition (1.2) and ||P(x + eh)-Px-ey ||/e ->0 as e ->0 + .

Given an element x0ED(P), a continuous function g such that
g(ί)>0 for ί >0, and a function B G B , let us put

= 2(1 - q)-1 Γs-1B(s)ds9 b = eι~\
Jo

where 0<q<l is the same as in Definition 1.1. We can find a
polynomial p such that

Then we have

N

i=0

where p dominates p + 1 and has nonnegative coefficients. Now put

(v)

(vi)

o fc=o

i = 0

(vii) p = 1/2N and β = 1/2C.

Let M ^ 1 be such that
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(viii) B(ew(M)+1\\Px0\\e-'(1-q)y < pβ(l- q) for t g M.

A local existence theorem. Let S = S(JC0, 0 be an open ball with
center x0 E X and radius r, and put U = D(P) Π 5, where 5 is the closure
of 5.

THEOREM 1.1. Suppose that the following hypotheses are satisfied:

(1.3) P: U '-> Yis closed on U\

for each x EU0 = D(P)ΠS, a set ΓX(P) of contractor
(1.4) directions with the (B, g)-property exists, being dense in

some ball with center 0 on Y

(1.5) r g 2(1 - q)-1 Γs-
1B(s)ds, a = e^e wiM)\Px0\\;

Jo

(1.6) B(ew(llxJ)+ι\\Pxo\\)M<pβ(l-q) and ew^)\Pχ0\\<l,

where W(\\xo\\),M and p, β are defined by (i)-(viii), respectively. Then
the equation Px = 0 has a solution x E U.

Proof The proof is based upon a further development of the
transfinite induction argument.

We construct well-ordered sequences of positive numbers ta and
elements xaED(P) as follows. Put to = O, and let x0 be the given
element. Suppose that tγ and xΎ have been constructed for all γ < a,
provided, for arbitrary ordinal numbers γ < α, inequalities

(l 8y) | |x γ | |g | |x 0 | |

are satisfied, where p = 1 if ty < 1, and 0 < p < 1 if ίr g 1,0 < β < 1. The
constants p and β will be determined below.

For first kind ordinal numbers, β = γ +1 < α, the following ine-
qualities are satisfied:

and

(l.llγ + 1) | |ftγ + 1 - Pxy || S (1

and, for second kind (limit) ordinal numbers, γ < α, the following
relations hold:
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(1.127) tΎ = lim tβ, xΎ = lim xβ9 Pxy = lim Pxβ.
βSy βSy βSy

Then it follows from (1.10), (1.12), Lemmas 1.3 and 1.4 [2] that, for
arbitrary λ < γ < a, we have

r | |<χβ\\=

= Σ (tβ+1-

λ^β<y

g Σ ί ' β + 1 B(e 1 ^ W ( l | Λ : J ) | |Pxo
Λ^β<γ Jtβ

= ί'rB(eι" e "r(l* l)

Jty

Hence, we obtain the following estimate

(1.13) I k - *A

In the same way, we obtain from (1.9), (1.11), Lemmas 1.3 and 1.4 [2] that

(1.14) \\Pxγ - Pxλ\\^(l + qy-'WPxoW f V^'dr. .

Suppose that a is a first kind ordinal number. If Pxa^ = 0, then the
proof of the theorem is completed.

If Pxa-ι ^ 0, then we put

(1.15) ί« = ία-i + τα,

and

(1.16) xa = xa-i + τaha,

where ha and τa = e S 1 are chosen so as to satisfy (1.1) and (1.2) with
x = xα-b h = ha and y = - PJCΛ_I. Hence, we obtain, by virtue of (1.7α_i)
and (1.1) with x = xa.u y = - Pxa-U h = ha,

= (1 - (1 - qWWPx^W <
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y±,l/aj | |± Xa II = c ||.f Λo||

Now we consider two cases; case (a), where ta < 1 and case (b),
where ta ^ 1. In both cases we have

N N

\\\ — ^S* r II v II1' < X* r (\\ v II 4- CK(Λ — n\tp Vι\\)~- 2jci\\x<*\\ — 2JC«ΛII*O|Π P V 1 i J r « /
i=0 i=0

V ^ / i \.. ,,k p i_k < 1 ^

i=0 k=0 V1 '

γ \\k\R(λ - n\t?V-k < - V c ^> ( *\\\x \\2k

lΣ
Z ί = 0

Hence, we obtain

provided (1.18α) holds true, where

(1-19) \Σ

(1.20) Σ ) Σ

and where p and β are chosen so as to satisfy

(1.21) P2N = 1 and βC = 1/2.

In case (a), we have, by (1.15), (1.16), (1.2), (1.8a_0 and (iv)-(viii),

Σ
i=0

+ τaB(e »Λ*

Hence,

(1.22) ||χβ || ίg ||xo | |

and

(1.23) \\xa || ^ UJCOII + J8(1 - q)fa^ + τaB(e

Hence, it follows that

or condition (1.8α) will be satisfied with p = 1 if
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(1.24) B(ew*«η\Px0\\)£β(l-q)

is satisfied, where β is defined by (1.21) and (1.20).
Now let us consider case (b). It is easy to see that (1.8α) will be

satisfied if

or

(1.25) B(e ̂ "

by virtue of (1.22). Therefore, replacing ta-x + τα in (1.25) by ί, let M ̂  1
be such that

(1.26) B(ewM)+1\\Px0\\e-^-q)t)t < pβ{\ - q) for t g M,

by virtue of (viii), and let

(1.27) B(ew^^\\Px0\\)M < pβ(l - q),

where p and β are defined by (1.20), (1.21). Then, obviously (1.25) will
be satisfied, and consequently, (1.8α) will be satisfied, too. Thus, in both
cases, conditions (1.26) and (1.27) imply that (1.8α) will be satisfied, where
a is an ordinal number of first kind.

It follows from (1.15), (1.16), (1.2), (1.7.-0, (1.18.-0 and (iv) that

(1.28J \\Xa-Xa-i\\^(ta - t^Biβ^^PxoWe^^^).

Thus, we have shown that if a is a first kind ordinal number, then the
induction assumptions hold true for a. Now suppose that a is an
ordinal number of second kind and put ta - lim r^αί r Let {γn} be an
increasing sequence convergent to α. It follows from (1.13) and (1.14)
that {jcγj and {Pxyn} are Cauchy sequences and so are {xΎ} and
{Pxγ}. Denote by xa and ya their limits, respectively. Since P is closed
on {7, we infer that xa G U and ya = Pxa, provided xΎ G U. If ta < °°,
then the limit passage in (1.7γJ and (1.8γn) yields (1.7α) and (1.8α),
respectively. The relationships (1.12α) are satisfied by definition of ta

and xm since ya = Pxa. This process will terminate if ta = oo? where a is
of second kind. In this case, Pxa — 0, by virtue of (1.7α). The limit xa

exists, by (1.13), since

(1.29) ΓBie^e^^Pxolle-^ηdt = 2(1 - q)~ι ΓS-
1B(s)ds < »,

Jo Jo
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where a = eχ-qeWiίxM\\Px0\\. Finally, it follows from (1.13), (1.29) and
(1.5) that all xy G Uo. It results from (1.5) and (1.6) that

(1.30) 2(1 - q)'1 ίY\B(s)<fr^ 2(1 -qY1!' s-1B(s)ds.
Jo Jo

Hence, it follows that g(||jcα | |)^p(| | jcα | |), i.e., condition (iv) is valid for
t = \\xa ||, and as a consequence, we also obtain that (1.18β) is true. This
completes the proof.

Consider now a particular case of Theorem 1.1.

THEOREM 1.1a. Suppose that the hypotheses (1.3)—(1.5) are satisfied,
where B(s) = s, g(t)= C(t -f 1) for some constant O 0 and

(1.5a) r a 2C(»xo|| + l)\\Pxo\\e«-<»/Q. - q),

where \\xo\\ should be replaced by 1 // | | J C O | | = 1 .

(1.6a) C | | Λ O N ( 1 - < Ϊ ) / 4 .

Then, equation Px = 0 has a solution x E U.

Proof. The general method of proof is similar to that of Theorem
1.1. However, we have to replace the induction assumption (1.8γ) by
the following one.

(Λ R'\ II r l l < l l γ WpPQ-iK a — \n

where ||JCO|| should be replaced by 1 if | | J C O | | = 1 . Then we obtain the
following estimate,

| |χ γ-*xN Σ 1 ^ - ^ 1 1 ^ Σ (tβ+ι-tβ)c(\\xβ\\+i)\\pXβ\\

^ Σ (tβ+ι-tβ)C(\\x0\\e"1-'»'+l)\\Px0\\e-o-<*
KSβ<y

= Σ (^+ 1-
λ^β<y

^ Σ (^.-
λg/3<γ

^ Σ (ίί+i-
λg/3<γ

^ Σ C(\\xo\\+\)\\Pxo\\e{l+<<)l2\'β+1e-^ dt.
λ^β<y Jtβ
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Hence, we obtain

\xΊ xλ || = t e vll*o| ι)\\rχo\\\ e

It remains to show the induction passage for (1.8γ). Suppose that a is an
ordinal number of first kind. We have in case of | |JCO | |> 1,

^ Ik-ill +
< l l r II+ τ 2C\\= I I X a - 1 II ' ' a ^ ^ I I

Hence, it follows that

if

| | X o | | e « i-^- + Tα2C||x0 | | •HΛcolle-*1

where ta = ίo_i + τa. Consider the function

The derivative φ'(τ)>0 if C||Fxo | |<(l-ήf)/4. Hence, it follows that
(1.8α) holds true. Consider now the case, where | | JC O | |=1 Then we
have

Thus, we have to show that

But this inequality is exactly the same as in the case where | | JC O | |>1 .

Hence, it follows that condition (1.8α) holds true in both cases. The
further reasoning is the same as in the proof of Theorem 1.1.

REMARK 1.1. In Theorem 1.1, if B(s) = s for s ^ 0, then the first
inequality in (1.6) can be replaced by the following one.
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(1.31) e W{M\\Px()\\

where W( |M),p, j3 are defined by (1.19), (1.20), (1.21), respectively.

Proof. Put a = e1Vί"JcJ)||Λc()||, then, by virtue of (1.22), we have to
prove that

(1.32) β(ί - q)fa.x + raae-*-<*- - S 0(1 - q){ta-x + τ β ) ' .

Let us consider case (b), where 0 < p < 1, t ^ 1, since case (a) yields the
same condition (1.24). Consider the function

φ(r) = j3(l - 9 ) ( ί + τ) p - τae-^)ι - jS(l - q)tp,

which satisfies the condition ^>(0) = 0, and its derivative is positive if

φ\τ) = pj8(l ~ $)(ί + τ) p -' - ae-^* >0,

that is, if

(1.33) a < pj8(l - ^ )e' ( I ί ? ) /(ί + τ ) p l , 0 < r ^ 1, ί ^ 1.

But it is easy to see that

p/8(l - qf/2e(l-qV2 < pβ(l - g)e" ( l ί ? ) ί(ί + τ ) p l .

Thus, it follows from the last inequality that if (1.31) is satisfied, then so is
(1.33) and, consequently, condition (1.32) holds true.

REMARK 1.2. Condition (1.4) can be replaced by the requirement
that P is (J9, g)-differentiable at every x G £/<,.

Proof. It follows from Definitions 1.1 and 1.2 that, for every
JC E C/o, P has a set ΓX(P) of contractor directions with the (B,g)-
property and ΓX(P) is dense in Y.

THEOREM 1.2. Suppose that the hypotheses (1.3), (1.4) and (1.5),
where a = e ι'q, and, in addition, Px0 = y(). Then there exists a ball K with
center y{) such that for every y E K, the equation Px = y has a solution
xEU.

Proof Denote by P the operator with values Px = Px — y. Then
there exists a ball K with center y0 such that condition (1.6) will be
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satisfied for P if y E K. Thus, all hypotheses of Theorem 1.1 are
satisfied.

A global existence theorem. We now assume that P: D(P)CX -> Y
satisfies the following condition.
(a) If the sequence {xn}CD(P) is not bounded, then {Pxn} contains

no Cauchy sequence.
A mapping which satisfies condition (α) will be briefly called a

Cauchy mapping.

THEOREM 1.3. Suppose that the following hypotheses are satisfied.
(1) The graph of the nonlinear mapping P: D(P) CX -^ Y is closed

in X x Y.
(2) For each x E D(P), a set ΓX(P) of contractor directions with the

(β, g)-property exists, which is dense in some ball with center 0 in Y.
(3) P is a Cauchy mapping.
Then P is a mapping onto Y.

Proof. If the range P(D(P)) is closed, then a more general theorem
is true (see [2]). Thus suppose there exists an element y() that is not in
P(D(P)) and a sequence {xn}CD(P) such that

(1.34) \\Pxn-yo\\->0 as n->^

(1.35) ll*«|| = c f ° r n = 1,2, ,

where c is some constant, by virtue of condition (3). Consider the
operator P with values Px = Px - y{). With f defined by condition (iv),
we approximate g(t) on the closed interval 0 ̂  t ^ c + f by the polyno-
mial p{t) and define p(t) as in (iv). Then we put x0 = xm, where xm is an
element of the sequence {xn} which satisfies inequalities (1.6) with x0

replaced by xm. Such an element exists for P, since Pxn -^0 as

n _> oo. With such a choice of x{) for P, all hypotheses of Theorem 1.1 are
satisfied and the equation Px = Px - y() = 0 has a solution. Therefore,
our assumption that y() is not in P(D(P)) leads to a contradiction which
proves the theorem.

As a consequence of Theorem 1.3, we obtain the following.

THEOREM 1.4. A closed Cauchy mapping P : D ( P ) C X - > Y which
is (B, g)-differentiate is a mapping onto Y.

Proof. The proof follows from Remark 1.2.
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As a consequence of Theorem 1.1a, we obtain the following two
theorems which do not require P to be a Cauchy mapping.

THEOREM 1.5. Suppose that conditions (1) and (2) of Theorem 1.3
are satisfied, where B(s) = s and g(t)= C(t + 1) with some constant
C > 0 . Then P: D(P)CX-» Y is a mapping onto Y.

Proof. The proof follows from that of Theorem 1.3 and from
Theorem 1.1a.

THEOREM 1.6. A closed mapping P: D(P)CX-+Y which is
(B,g)-differentiable, where

B(s) = s and g(t)= C(f + 1)

for some constant 0 0, is a mapping onto Y.

Proof The proof follows from that of Theorem 1.6, from Theorem
1.1a and Remark 1.2.

2. Nonbounded directional contractors. The global ex-
istence theorems proved in Section 1 can be applied to nonlinear
operators having directional contractors which may not be
bounded. For the definition of a directional contractor, see
[1]. Denote by L(Y—>X) the set of all linear continuous mappings
from the Banach space Y into the Banach space X.

THEOREM 2.1. A nonlinear closed Cauchy mapping P: D(P)C
X—> Y which has a directional contractor Γ: D(P)—> L(Y"—»X) such
that

(2.1) | |Γ(*) | |^g( | |x | | ) forallx&D(P)9

where g is some continuous function, is a mapping onto Y.

Proof. The proof follows from Theorem 1.3, where B(s) = s.

• We consider now nonlinear operators which are difϊerentiable in the
Gateaux sense.

THEOREM 2.2. Let P: D(P)CX -> Y be a nonlinear closed Cauchy
mapping. Suppose that for each x E D(P), the Gateaux derivative P'(x)
is an additive and homogeneous operator which has a continuous inverse
Γ(x) = P'(x)1 such that
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||Γ(x)||^g(||x||) forallxeD(P),

where g is some continuous function. Then P is a mapping onto Y.

Proof. The proof follows from Theorem 2.1, since
Γ: D(P)-+ L(Y-+X) is a directional contractor for P and satisfies
condition (2.1).

THEOREM 2.3. Let P: D(P)CX-> Y be a nonlinear closed Cauchy
mapping which is differentiable in the sense of Frechet. Suppose that for
each x E D(P), the Frechet derivative P\x) is a mapping onto Y. If there
exists a continuous function g such that

ll) forallxED(P),

where * indicates the adjoint, then P is a mapping onto Y.

Proof. The proof follows from Theorem 1.4 and Lemma 3.4 [2],
since P is (B,g)-differentiable with B(s) = s.

REMARK 2.1. In Theorems 2.1-2.3, the condition that P is a
Cauchy mapping can be omitted if g(t)= C(t + 1) for some constant
C > 0 .

THEOREM 2.4. Let P: D(P) CX —> Y be a nonlinear closed Cauchy
mapping which is differentiable in the Frechet sense with Holder continuous
derivative Pf(x), i.e., there exist positive numbers K, a ^ 1 such that

(2.2) \\P'{x)- P'{x)\\^K\\x - x\\a forallx,xED(P).

Moreover, for every x ED(P), let A(x): X-> Y be a bounded linear
nonsingular operator such that

(2.3) | |A(x)- | |^g( | |x | | ) and | P ' ( x ) - A ( x ) | | g c( |x | |),

for all xGD(P), where g and c are some functions, g being
continuous. Suppose that there exist positive constants r and q < 1 such
that

(2.4) (l + α)-X[g( | |x | | ) ] I -r + c ( | | x | | ) g ( | | : c | | ) ^ ( 7 < l for all x G D(P).

Then P is a mapping onto Y.
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Proof. The proof follows from Theorem 2.1, since Γ(x) = A (x)~ι is
a directional contractor satisfying condition (2.1). In fact, we have, by

\\P(x +Γ(x)y)- Px - y\\^\\P(x +Γ(x)y)- Px - P'(x)Γ(x)y\\

+ \\P'(x)Γ(x)y-A(x)Γ(x)y\\

g (1 + a r κ [ g ( \ \ x | | ) ] 1 + - | | y i r + c(\\x \\)g(\\x \\)\\y ||

*q\\y\\ if

THEOREM 2.5. Let P: D(P)CX-^ Y be a nonlinear closed Cauchy
mapping and let T: D(P)CX—> Y be an operator differentiable in the
Frechet sense with Holder continuous Frechet derivative T'(jt), i.e., there
exist positive constants K and a ^ 1 such that

(2.5) \\T{x)-T{x)\\^K\\χ-χt, 0 < α ^ l ,

for all x E D(P). Moreover, suppose that T'(x) is nonsingular and that
there exist a continuous function g and a function c such that

| | ( ) | | g ( | | | | ) and
(2.6)

\\(Px-Tx)-(Px-Tx)\\^c(\\x\\)\\x-x\\,

for all x, x E D(P). If there exists a positive constant q < 1 such that
condition (2.4) is satisfied, then P is a mapping onto Y.

Proof. The proof follows from Theorem 2.1, since Γ(JC) = Γ(Λ )"1 is
a directional contractor satisfying condition (2.1). In fact, we have, by
(2.5), (2.6) and (2.4),

\\P(x + Γ(x)y) - Px - y \\ ̂  \\ T(x + Γ(x)y)- Tx - T'(x)T(x)y \\

+ \\[P(x + T(x)y - T(x + Γ(x)y)] - [Px - Tx]\\

||)]I+-||y ||1+- + c(\\x \\)g(\\x

^ [(1 + aΓK[g(\\x | | ) ] - r + c(||x

if

REMARK 2.2. Remark 2.1 applies also to Theorems 2.4 and 2.5.
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