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RANDOM FIXED POINT THEOREMS
FOR MULTIVALUED MAPPINGS

HEINZ W. ENGL

We give some random fixed point theorems for random
operators which are defined on subsets of a separable Banach
space and whose values are subsets of the Banach space.
The domains are allowed to be random. One of the results
is a stochastic version of the Bohnenblust-Karlin-Kakutani
fixed point theorem for set-valued maps.

1* Introduction* The Prague school of probabilists in the Fifties
introduced the study of random fixed point theorems (cf. e.g., [10]).
Recently the interest in these questions has been revived, especially
by the review article [3]. Answers to some of the research problems
mentioned there have been given in [5], [6], [7]. In this paper we
will answer the research problem asking for a stochastic version of
the Bohnenblust-Karlin fixed point theorem for set-valued maps ([4],
cf. also [18]), which was proved for finite dimensional spaces by
Kakutani.

A random fixed point theorem for another class of set-valued
maps was recently proved in [13]. A good historic survey about
fixed point theorems for set-valued maps can be found in [9].

2* Definitions and preliminary results* Throughout this paper,
let X be a real separable Banach space, (Ω9 J%ζ μ) a ^-finite measure
space. We will use the words "stochastic" and "random" inter-
changeably also if μ is not a probability measure. By 2X we denote
{A/A ^XAAφφAA closed}, by CB(X) = {A/A e 2X A A bounded}
and by CG{X) = {A/A e 2X A A convex}.

DEFINITION 1. Let C: Ω —> 2X be a set-valued map. We call C
"measurable" iff for all open D S I , {ωeΩ/C(ω)nD^φ}e^r. (Note
that this is called "weakly measurable" in [12].) We call C "separable"
iff it is measurable and there exists a countable set Z £ X such
that for all ω e Ω, cl (Z n C(ω)) = C(ω). The "graph of C" is defined
as Gr C = {(α>, x)eΩ x X/x e C(ω)}.

It can be easily shown that if C is measurable and has closed,
convex, and solid (i.e., nonempty interior) values, then C is separable.
The definition of separability implies that C has closed values.

DEFINITION 2. Let C Q X be closed. T:C->2X is called "upper
semicontinuous (use)" iff for all x e C, T(x) is compact and for all
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closed A £ X, {x e C/T(x) ς\AΦφ} is closed. Γ is called "compact"
iff it is use and cl (\Jxec T(x)) is compact.

Unfortunately the definitions of upper semicontinuity vary in
literature. We will need the following

LEMMA 3. Let C £ X be closed, T:C->2X such that cl (\Jxec T(x))
is compact. Then the following are equivalent:

(1) {(x, y)eC x X/y e T(x)} is closed in the product-topology.
(2) For all (xn) eCN, xeC, yne T(xn), yeX such that (xn) -> x

and (yn) -*y we have y e T(x).
( 3 ) For all xeC, ε > 0, there exists a δ > 0 such that for all

zeC with ||£ — x\\ < δ we have s\xvyeT{z)d(y, T(x)) < ε, where d is
the distance induced by the norm.

(4) For all xeC and all open D £ X with T(x) £ D there
exists a neighborhood U of x such that for all z £ U Π C9 T(z) £ D.

(5) T is compact in the sense of Definition 2.

Proof. (1) <=> (2): obvious.
(1)~(4): [2, p. 118].
(4) ~ (5): follows from [2, p. 115].
(4) =-(3): Let xeC and ε > 0; D= U.ero {» zX/Wv - z\\ < ε} is

open and contains T(x). Therefore there exists a δ > 0 such that for
all z eC with \\z-~x\\<δ, T(z)QDf in other words sup^rc*) d(y, T(x))<ε.

(3) => (2): Let (xn) e CN with (xn) -* x and yn e T(xn) with (y%) -> y
and choose ε > 0. Then there exists a w0 6 N such that for all
n^nOf d(yn, T{x))<ε-2rι and ||y» —y|| < e 2~1; therefore d(y, Γ(α?))<e.
As ε was arbitrary and T(x) is closed, y e T{x).

DEFINITION 4. Let C be a mapping from Ω to 2X. A mapping
I7: Gr C —• 2X is called "set-valued random operator with stochastic
domain C" iff C is measurable and for all x e X and open D Q X,
{ω 6 Λ/a? 6 C(ω) Λ T(ω, x)ΠDΦ φ}e^f. Such a Γ will be called "use"
("compact") iff for all ωeΩ, T(ω, •) is use (compact). A function
x: Ω —> X will be called "random fixed point of T" iff for /^-almost
all ω 6 β, x(ω) e C(ω) and ίc(α)) e T(ω, x(ω)) and » is measurable (i.e.,
for all open D £ X, {α)e Ω/x(ω) eD}e

PROPOSITION 5. Let C:Ω->2X be separable and T:GτC-> CC{X)
a compact set-valued random operator with stochastic domain C. We
define H:GvC-> GC{X) by

H(ω, x) — Π cl conv \J T(ω, z) ,
neN zeZΠC(ω]_ί

where Z is a countable set as it appears in Definition 1. Then,
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(1) For all (α>, x) e Gr C, φ Φ H{ω, x) £ T{ω, x).
( 2) For all ωeΩ and xeC{ω) Π Z, H{ω, x) = Γ(α>, x).
(3) if is {product-) measurable {i.e., for all open D £ X,

{{ω, x)eΩ x X/x e C{ω) A H{ω, x) Π D Φ φ] ej^ x &, where & is
the o'-algebra on X generated by the open sets).

(4) For all ωeΩ, H{ω, •) is compact.
(5) For all {product-) measurable functions a:ΩxX-^X with

a{ωf x) eC{ω) for all ωeΩ and xeX we have:

jff( , α ( , - ) ) : Ω x X >CC{X)

{ωf x) > H{ω, a{ω, x))

is {product-) measurable {i.e., for all open

DQX, {{ω, x) 6 Ω x X/H{ω, a{ω, x)) n D Φ φ) e Stf x

Proof. As (1), (2), (4) say something about the properties of H
for fixed ω, we do not write the argument ω in their proofs.

(1) Let L be a finite subset of N, k — max L, xeC. Because
T is compact, the sets clconv \J\\z-χ\\<n~Kzeznc T{z) are closed subsets
of a compact set which is independent of n; this is a consequence
of Mazur's theorem on the closed convex hull of a compact set.
Because of

φ Φ cl conv U T{z) £ Π cl conv U T(z)
zeZΓ\C neL zeZC\C

Mz-ίclKfc-1 {\z-x\\<n-ί

the family {clconv \JzezC]CAlz_xϊ[<n-iT{z)/neN} has the finite intersec-
tion property, therefore H{x) Φ φ.

Let ε > 0 be arbitrary, but fixed and choose n e N such that for
all ze Z f]C w i t h \\z — x\\ < n~\ swpyene) d{y, T{x)) < ε, w h i c h is
possible because of Lemma 3(3). Then for all such z, T{z)Q{T{x))ε =
{u e X/d{u, T{x)) < ε} and because of the convexity of {T{x))ε, H{x) £
clconv U*ezn<7,ιι«-»ιι<n-i T{z) Q cl {T{x))ε. As ε was arbitrary, H{x) £
T{x).

(2) Let xeCf]Z. Then for all n e N, T{x)Q\JzeCnz,\\z-*n<n-iT{z),
therefore T{x) Q H{x). Together with (1) we get T{x) = H{x).

{4) Let (xk) e CN with (xk) —> x {C is closed, therefore xeC),
yk e H{xk) with {yk) —> y. Let n e N be arbitrary, but fixed and choose
KeN so that for all k^K, \\xk-x\\<{2n)~\ For all these k we have

!/* 6 H{xk) £ cl conv U T{z) £ cl conv U T{z) .
zeZOC zeZOC

\ ί 1

Therefore ^/eel conv \Jzeznc,\\z-χ\\<n-ί T{z); because n was arbitrary,
this implies y e H{x). All H{x) are compact, so H is use. Because
of (1) and the compactness of T also H is compact.
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( 3 ) Let for all neN, Tn: Gr C -* {A C X/A Φ φ) be defined by
Tn{ω, x): = Uzβ^noui.iiί-ϊiKn-i T(ω, z) and let D e l be open. Then,

{(ω, z) 6 Gr C/Tn(ω, x) n D φ φ)

= U [{(oo, x) e Gr C/||2 - a;|| < w"1} Π ({<o e Ω/z e CO)
zeZ

A T(ω, z)f]DΦφ} x X)]

Π ({ω e Ω/z e C{ω) A T(ω, z) Π D Φ φ) x X)] e ^f x

because Γ is a set-valued random operator and GrCe sf x & (cf.
[12, Theorem 3.3]). Theorefore Tn is measurable as a set-valued
function on the measurable space (Gr C, ( j ^ x ^ ) n Gr C), and so
is cl Tn (cf. [12, Proposition 2.6]). Now we can apply [12, Theorem
9.1] and get that cl conv Tn = conv cl Tn is measurable (on Gr C).
As all cl conv Tn(a>, x) are compact by Mazur's theorem, we can
apply [12, Theorem 4.1] and get that H = ΓLe vCl conv Tn is meas-
urable as a function on (Gr C, ( J ^ x ^ ) n 6 r C ) . But this means
that {(ω, a;)efix X/ίceC(ω) A H(ω, x) Π D Φ φ) e j / x &.

( 5 ) The function (α>, a;) -^ (α>, α(α>, »)) is j / x ^ - j / x , ^ -
measurable. Using this and (3) we get that for every open D £ X,

{(ω, x) e Ω x X/H(ω, a(ω, x)) f] D φ φ}

(ω,a?)) e{(ώ,«) eGrC/H(ώ,z)ΠDφφ}}

LEMMA 6. Lei (W, S) δβ a measurable space, R: W-^2X meas-
urable and x'.W-^X measurable. Then d(x( ), R( )) is measurable
as a function from W into R.

Proof. Let for the first part of the proof w e W be arbitrary,
but fixed; therefore we do not write the argument w. Let Z be a
countable dense subset of X. Let ε > 0, x e X. If there is a z e Z
with ||cc — z\\ < ε 2"1 and d(z, R) < ε 2~\ then d(ίc, R) < ε. Let now
d(x9 R) < ε. Then there exists a reit? with \\x — r | | < ε. Define
/̂ = (α + r ) 2 ' 1 and 0 < δ < (ε - \\x - r\\) - 2"1. Then there exists a

z e Z with \\z — y\\ < δ. For this z we have:

\ \ x - z \ \ ^ \ \ x - y\\ + \\y - z \ \ = \ \ x - r \ \ . 2 - 1 + \ \ y - z l K e - 2 - 1

and analogously \\z — r | | < ε 2"1, therefore d(«, 72) < ε 2"1. So we
have:

{w e W/d(x(w), R(w)) < ε}

= U [{w e W/\\x(w) - z\\< ε . 2"1} n {w e W/d(z, R(w)) < ε . 2"1}] e S
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because of the measurability of x and [12, Theorem 3.3].

3* A stochastic fixed point theorem of Bohnenblust-Karlin-
Kakutani^type*

THEOREM 7. Let C: Ω —* CG(X) be measurable with solid values.
We assume that there exists a measurable x0: Ω —> X with x0((θ) e
int C((θ) for all ω e Ω. Let T be a compact set-valued random oper-
ator with stochastic domain C such that for all (β), x) e Gr C, T((ι), x)
is a convex subset of C((θ). Then T has a random fixed point.

Proof, (a) First we assume that (Ω, J%ζ μ) is complete. Because
of the remark after Definition 1, C is separable. We define H as
in Proposition 5 and b: Ω x X—> R by b(ω, x) — sup {t ^ O/xo(ω) +
t (x — x0((o)) e C(ω)}. Let

a:Ω x X >X

x if x e C{ώ)
(CO, X) >

xo(w) + b(ω, x) (x — xQ(ω)) if x$ C(ω)

and N: Ω x X->R be defined by N(ω9 x) = \\x — a(ω, x)\\ + d(a(ω, x),

H(ω, a(ω, x))). It is clear that N(ω, x) = 0 if and only if x e C(ω)
and xeH(ω, x). a is measurable in ω ([6, Lemma 4]) and continuous
in x (proof of Lemma 7 in [6]). By [12, Theorem 6.1] a is (product-)
measurable. Furthermore for all (α>, x) 6 Ω x X we have α(α>, a?) e
C(ω). It follows from Proposition 5(5) and Lemma 6 that N is meas-
urable as a function on the measurable space (Ω x X, S/ x &).

Now we define F: Ω -> {A/A £ X} by

ίXω) = {x e X/x 6 C(ω) Λ x e £Γ(α>, a?)} - {x e X/N(ω, x) = 0} .

Because of Proposition 5 (parts (1) and (4)) H(ω, •) fulfills the
assumptions of [18, Theorem 9.2.3] on C(ω), so F(ω) Φ φ. Because
of the upper semicontinuity of each H(ω, •) (Proposition 5(4)) and
Lemma 3(2) each F(ω) is closed. Because of the measurability of N

{(a), x) e Ω x X/x e F(ω)} = N~\{0}) e j / x ^ .

Now we can apply Theorem 3.5(iii) of [12] and get that F is
measurable (in the sense of Definition 1). Because of the Kuratowski-
Ryll-Nardzewski-selection-theorem ([14, p. 398]) there exists a meas-
urable x: Ω —> X such that for all ωeΩ, x(ω) e F(ω), which means
x(ω)eC(ω) and x{ώ) e H(ω, x(ω)) £ T(ω, x{ω)) (Proposition 5(1)). So
x is a random fixed point of T.

(b) Let now (Ω, J*f, μ) be not necessarily complete; by (Ω, Jzf*, μ*)
we denote the Lebesgue-completion. Since j y £= J^*, the assump-
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tions of the theorem are also fulfilled with (Ω, JZf*, μ*) instead of
(Ω, Jϊf, μ). Because of (a) there exists an jy*-measurable x*: Ω-* X
with x*(ω) eC(ω) Π T(ω, x*(ω)) for all ω e Ω. Let 3f be a countable
generator of & which exists because of the separability of X. Then
for all D e &, x*~\Ό) = AD{JLD with AD e J ^ LD Q ND,
and μ(ND) = 0.

x*-\D) =
Let M =

x .Ω-

ω

ADu
—).

u
De .

X

— ^ •

LD with
, NΌ and

te*(α>) if

0 if

AD ejzf,

define

ωίM
ω e M.

Then x is a random fixed point of T.

Of course we can also get the usual corollaries like the following
Rothe-type theorem:

THEOREM 8. Let C and x0 be as in Theorem 7 and T be a com-
pact set-valued random operator with stochastic domain C such that
for all (O e Ω and x e bdC((o), T(ύ), x) is a convex subset ofC(co). Then
T has a random fixed point.

Proof. Analogous to the last proof; instead of [18, Theorem
9.2.3] we use [18, Theorem 9.2.4].

REMARK 9. In the special case that all T((o, x) are singletons
(so T is just an ordinary random operator) Theorem 7 is just a
stochastic version of Schauder's fixed point theorem. This specializa-
tion can be done for all other fixed point theorems in this paper.

REMARK 10. The last two theorems contain the assumption that
there exists a measurable x0: Ω —> X such that xo(ω) e int C(ω) for all
ωeΩ ("measurable selector of intC"). This assumption has been
discussed in [6]. There it turns out that in some applications it
can be verified very easily (cf. the proof of [6, Theorem 20] and [6,
Theorem 21]); furthermore it has been proved that if (Ω, jzf, μ) is
complete, C is uniformly bounded with closed, convex, and solid
values and X is reflexive then a measurable selector of int C always
exists ([6, Theorem 12]).

The assumption, that C has to have solid values, can be done
away with in the case that we consider a fixed (not randomly varying)
domain of our random operator:

THEOREM 11. Let K £ X be nonvoid, closed and convex, T:
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Ω x K —»CC(X) a compact set-valued random operator such that
T(Ω x K) Q K. Then T has a random fixed point.

Proof. Analogous to the proof of Theorem 7; instead of the
function JV there we use

N:Ω x K >R

(α>, x) > d(x, H(ω, x))

which is measurable on (Ω x K, (Ω x K) Π (J& x &))f as can be
shown like in the proof of Theorem 7.

4* Stochastic fixed point theorems for continuous set-valued
random operators* The second class of set-valued operators (beside
the upper semicontinuous or compact operators) which has been
widely studied in the deterministic case are operators which satisfy
Lipschitz-conditions (in the HausdorfF metric); of course all of them
are continuous in the sense to be defined below. In this chapter we
will prove a result which (roughly spoken) tells us that whenever
a (deterministic) fixed point theorem for continuous set-valued oper-
ators is valid then the corresponding stochastic fixed point theorem
is also valid.

DEFINITION 12. For A, BeCB(X) let p(A, B) = suvaeAd(a, B),
where d is the distance induced by the norm on X, and D(A, B) —
max {p(A, B), p(B, A)}. It is well-known that (CB(X), D) is a metric
space; D is called "Hausdorff-metric". Let C: Ω —> 2X be measurable
and T: Gr C —> CB(X) 2, set-valued random operator with stochastic
domain C. T is called "continuous" iff for all ωeΩ, T(ω, •) is con-
tinuous as a mapping from C(ω) into (CB(X), D).

THEOREM 13. Let C: Ω -> 2X be separable and T: Gr C -> CB(X)
a continuous set-valued random operator with stochastic domain C
such that for all ω e Ω, {x e C(ω)/x e T(ω, x)} ψ 0 ("solvability of
the corresponding deterministic fixed point problem"). Then T has
a random fixed point.

Proof. We define N: Gr C->i? by N(ω, x) = d(xf T(ω, x)).
Let ω 6 Ω and x, y e C(ω) be arbitrary, but fixed. Then

\N(ω, x) - N(ω, y)\ = \d(x, T(ω, x)) - d(y, T(ω, y))\

= \D({x}t Γ(ω, x)) - D({x), T(ω, y))

+ D({x), T(ω, y)) - D({y}> T(ω, y))\

^ I D(T(ω, x), {x}) - D({x], T(ω, y)) \
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+ \D({x], T{ω, y)) - D(T(ω, y), {y})\

^ D(T(ω9 x), T(ω9 y)) + d(x, y) .

This shows together with the continuity of T that each N(ω9 •) is
continuous on C(ω).

Now let x e X and r ^ O be chosen arbitrarily, but fixed. Then
{ω e Ω/x 6 C(ω)ΛN(ω, x)<r} = {ω e Ω/x e C(ω)ΛT{ω,x) Π {y e X/\\y-x\\<
r) φ φ) e Ĵ C Because of this, the continuity of each N(ω, ) and the
fact, that GrC is a measurable subset of <s/ x & ([12, Theorem
3.3]) we have (with Z as a countable set as it appears in Definition 1)

{(ω, x) e Gr C/iSΓ(α>, x) ^ r}

= {(ω, x)eΩ x X/xeC(ω) A N(ω, x) ^ r}

Λ ^ ( ω , « ) < r + n'1}

x {ajeX/Hoj- z\\ < n'1}) n Gr C] e j ^ x ^ .

So iNΓ is a measurable function from the measurable space (GrC,
Gr C Π ( J ^ x ^ ) ) into iί. Especially {(ω, a;) 6 Gr C/N(ω, x) = 0} 6

f x ^ .
Now we define F : J2 -> {A/A £ X) by ^(α)): ={xeX/x eC(ω) n

>, a?)}. By assumption each -F(ω) is nonvoid. We choose ωeΩ
arbitrary, but fixed. Let (xk) e F(ω)N such that (xk) —> a?. Then
x G C((») and because of

, a?)) ^ ||a? - a?4|| + d(a?4, Γ(ω, a?*)) + D(Γ(α), a?4), Γ(α>, a?))

and the continuity of T(ω, •) we have xeF(ω). Therefore each
F(ω) is closed and we can proceed analogously to the proof of
Theorem 7.

REMARK 14. If we specialize Theorem 13 to the case where T
is single-valued, we get a generalization of [6, Theorem 8].

COROLLARY 15. Let C:Ω->2X be separable and T:GrC->CB(X)
a set-valued random operator with stochastic domain C such that
for all ωeΩ there exists a k(ώ) e [0, 1) such that for all x, y e C(ω),
D(T(ω, x), T(ω, y)) ^ k(ω) \\x — y\\. Furthermore we assume that
for all ωeΩ and x e bdC(ω), T(ω, x) £ C(ω). Then T has a random
fixed point.

Proof. Because of [1, Theorem 1] Theorem 13 is applicable.

REMARK 16. Corollary 15 generalizes the main result of [13] (in
the Banach space case). Itoh's result was formulated in Polish
spaces. If we choose our "domain-function" C to be constant, we
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could prove Theorem 13 also in the case where X is merely a Polish
space and T defined an Ω x X. The proof carries over with the
obvious changes. So we could also get Itoh's theorem in its original
formulation as a corollary to Theorem 13 using [16, Theorem 5].

DEFINITION 17. A Banach space Y is called "Opial space" iff for
all sequences (xn) in Y which converge weakly to x e Y and all y Φ x
we have lim inf \\xn — y\\ > liminf \\xn — a?||.

Z. Opial introduced this condition in [17] as a property of Hubert
spaces. For a discussion of Opial spaces see there and in [8], [15].

COROLLARY 18. Let X be a separable Opial space, C: Ω -> CC(X)
separable such that for all ω e Ω, C(ώ) is weakly compact and T:
Gr C —> CB(X) a set-valued random operator with stochastic domain
C such that for all (α>, x) e Gr C, T(ω, x) is compact and for all ω e Ω
and x e bdC(ω), T(ω, x) Q C(ω). Furthermore we assume that for
all ωeΩ and x, yeC(ω), D(T(ω, x), T(ω, y))^\\x — y\\. Then T has
a random fixed point.

Proof. Because of [1, Theorem 2] Theorem 13 is applicable.

REMARK 19. Throughout this paper separability plays an im-
portant role. As far as the separability of the domain function is
concerned, this is not too restrictive for applications (cf. the remark
after Definition 1). Of course it might be desirable to get random
fixed point theorems in the case where X is not separable. But at
the present time there seems to be little hope to get such results
with methods similiar to those used in this paper. Up to now not
even measurability theory for set-valued maps with values in non-
separable spaces seems to be developed. And even for single-valued
functions the situation seems to be a little bit pathological: The
sum of two measurable (single-valued) functions with values in a
nonseparable Banach space need not be measurable. Considering
this, one has to ask if one really desires to get random fixed point
theorems in nonseparable spaces!
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