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SUFFICIENT CONDITIONS FOR THE SET
OF HAUSDORFF COMPACTIFICATIONS
TO BE A LATTICE

Fu-CHIEN TZUNG

Let K(X) be the complete upper semilattice of com-
pactifications of a completely regular Hausdorff space X.
We show that if SX\X is C*-embedded in X and if either
aX\X is realcompact or is a P-space for some «X in K(X),
then K(X) is a lattice.

1. Introduction. Throughout this paper, all topological spaces
under consideration are supposed to be completely regular and
Hausdorff, unless stated otherwise.

A compactification of a space X is a compact space aX which
contains X as a dense subspace. We say @, X and a,X are equivalent
compactifications of X if there is a homeomorphism % from a,X onto
a,X such that h restricted to X in @ X is the identity map onto X
in ,X. We do not distinguish between equivalent compactifications.
For compactifications a, X and a,X, we say that . X = a,X if and
only if there is continuous function from a, X onto @,X such that
h restricted to X is the identity. Thus, @, X is equivalent to a,X
if and only if ¢, X = a,X and a,X = a,X. Let K(X) denote the set
of all compactifications of X. Then K(X) with the order = defined
as above is a complete upper semilattice. Lubben [3] proved that
X is locally compact if and only if K(X) is a complete lattice.
Next, Shirota [6] showed that if X is first countable then K(X) is
a lattice if and only if X is locally compact. Thus, Q (=rationals)
provides us with the simplest example for which K(Q) is not a
lattice. Visliseni and Flaksmaier [9] showed that if there exists a
sequence in SX\X which converges to a point in X, then K(X) can-
not be a lattice. In the same paper they also constructed a non-
locally compact space X for which K(X) is a lattice.

In this paper we determine two classes of spaces which prop-
erly contain the class of locally compact spaces and for which
K(X) is a lattice, whenever X is a member of either of them.
Examples are constructed to show that none of these conditions

are necessary.

2. Preliminaries. The terminology of [1] and [11] are used
throughout. The following will be needed for subsequent develop-
ment.

565
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DEFINITION 2.1. Let aX e K(X), f,: 8X — aX be continuous and
Sy =1d. Then f, is closed and hence we can consider X as the
quotient space of 8X induced by f,. Define

F(eX) = {f.'(p)|peaX\X} .

THEOREM 2.2 (Magill [4]). Let a X, ,X e K(X). Then a X < a,X
if and only if each set in .+ (e, X) s a subset of a set in 7 (a,X).

DEFINITION 2.3. A space X is said to be of countable type if
and only if every compact subset is contained in a compact set of
countable character (i.e., one having a countable neighborhood
system).

THEOREM 2.4 ([2], page 115). A space X is of countable type if
and only tf BX\X is Lindeldf.

THEOREM 2.5 ([1], page 115). Lindelof spaces are realcompact.

DEFINITION 2.6. A space X is of point countable type if and
only if every point is contained in a compact set of countable
character.

THEOREM 2.7 ([8], page 341). If X 1is a space of point coun-
table type then LX\X is realcompact.

THEOREM 2.8 ([9], page 1424). If, in the subspace BX\X of the
space BX, there exists a countable sequence of points converging to
some point wn X, then K(X) 1s not a lattice.

3. Major results.

LeEMMA 3.1 ([10], page 28). BX\X is C*-embedded in BX if and
only if Flix(BX\X) = B(BX\X).

DEFINITION 3.2. For aX e K(X), let f,: BX — aX be the quotient
map, define

Ay = {p e BX\X| | (Sul0))] > 1},
and

Eu=F S AZ|F = f2(y), some yeaX}.

LEMMA 3.3. If &liy( A4) S BX\X for every aXe K(X), then
K(X) is a lattice.
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Proof. Since K(X) is a complete upper semi-lattice, it is suf-
ficient to show any two elements of K(X) have a lower bound. Let
aX, o, Xe K(X). A=Elx(A#,)UClx(#,) is compact in BX\X.
Obtain @X by identifying A to a point, then aX is a compactifica-
tion of X. Clearly, each set in & (a;X) is a subset of a set in
F(aX) for i =1,2. By Theorem 2.2, aX < o, X, a,X. Hence, K(X)
is a lattice.

LemMMA 3.4 ([1], page 62). Let f: X —Y be continuous, A be
dense in X. If f|, vs a homeomorphism, then f(X\A) S Y\f(A).

DEFINITION 38.5. Let Y be a quotient space of X with the
quotient map P. Let {4}, be a collection of disjoint, nonempty
subsets in X with £ = 2. We say {4;}.., is a section partition
induced by P if and only if there exists B & Y such that P(4,) = B
and P7Y(b)N A, is a singleton for 1 <1<k beB. P induces a
partition on A = U, A;; namely, A = U,yez 45, 4y, N A4, = ¢ if b, b,
where 4, = UL, (P7Y(b)N A4,). This partition induces the section cor-
respondence induced by P on A.

LEmMMA 38.6. If BX\X is C*-embedded in BX then for every
aXe K(X), _#7Z contains no copy of N which is C-embedded in
BX\X.

Proof. Let aX ¢ K(X) such that _#, contains a copy of N which
is C-embedded in AX\X. F is compact for each F'e &,, so it can
contain only finitely many points of N. Form A by choosing one
point from each nonempty F' N N, then A is infinite. Let ke C(BX\X)
such that #(A) = NS R. k|, carries A homeomorphically onto a
closed set in R, so 4 is C-embedded in SX\X by 1.19 of [1]. There-
fore, A is a copy of N, which is C-embedded in SX\X. If F =

(f.(a)) for some ac A then since ac._#, we have Fe&,. Let
& ={Fe &, FnA+g¢}. Form B by choosing one point from each
F\A, Fe.o/ {A, B} is a section partition induced by f,. We want
to show that B is closed in BX\X. Let (b)) be an ultranet in B,
and b; — be(BX\X)\B. Let (a;) be the corresponding ultranet in A
through the section correspondence induced by f, on f,(A). Since
BX is compact, a, —acBX. Clearly, (a;) is nontrivial, since (b;) is
nontrivial. Also, @ € X, since A is closed and discrete in SX\X. It
is known that f, is continuous, so f,(a;) — f.(a) and f,(b;) — f.(b).
Since f,(a;) = f.(by) for all A, and the limit points of these nets are
unique, it follows that f,(a) = f,(b). This is not possible since
FABX\X) € aX\f(X) by Lemma 3.4. Thus B is closed in 8X\X.
Since A is a C-embedded copy of N and B is a closed set disjoint
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from A4, so A and B are completely separated in SX\X by 8B of
[1]. As BX\X is C*-embedded in BX, therefore A and B are com-
pletely separated in SX by 1.17 of [1]. It follows that &l,x(4)N
&lsx(B) = ¢. Choose (a;) in A and (b,) in B as before, with ax —a € X,
b,—~beX. Then f(a) = fu(b). This is a contradiction, since f,|y is
one-to-one. Hence _, contains no copy of N, which is C-embedded
in BX\X for all X in K(X).

THEOREM 38.7.' If BX\X s C*-embedded in BX, and if aX\X
1s realcompact for some aX in K(X) then K(X) is a lattice.

Proof. If aX\X is realcompact for some aX, then BX\X is
realcompact by 8.13 of [1].

Claim. Elsx( ) < BX\X for every aX e K(X). Suppose not,
then there exists aX € K(X) such that _#, has a limit point x,€ X.
Let Y = {x,} U (8X\X) endowed with the relative topology as a sub-
space of BX. BX\X is realcompact and dense in Y, so SX\X is not
C-embedded in Y. Let feC(BX\X) such that f cannot be extended
to Y. Let[— oo, o] be the two-point compactification of R. Clearly,
f can be considered as a continuous function of B8X\X into [— o, ].
f has an extension f from B(BX\X) = @1,x(8X\X) into [—co, ].
Without loss of generality, we may assume f(x,) = «. Since 2, €
Cloyx(.#,), so f is unbounded on _#,. By 1.20 of [1], ..#, contains
a copy of N which is C-embedded in SX\X. This contradicts Lemma
3.6, and hence Cl;x(_.#,) < BX\X for every aX e K(X). Lemma 3.3
shows that K(X) is a lattice.

COROLLARY 3.8. If X 1s a space of point countable type and
BX\X s C*-embedded in BX then K(X) is a lattice.

THEOREM 3.9.' If BX\X is C*-embedded in SX and if aX\X is
a P-space for some aX e K(X), then K(X) is a lattice.

Proof. We claim that f,(_~) is finite. For if f(_#,) is infinite
then it contains a countably infinite subset A. By 4K of [1], we
see that A is a copy of N, which is C-embedded in aX\X. Let
feClaX\X) such that f(A) = NS R. Hence, fof,c(BX\X) is un-
bounded on f;(A)S._#,. Thus f;'(A4) contains a copy of N which is
C-embedded in BX\X. Since BX/X is C*-embedded in BX, this con-
tradicts Lemma 3.6. Therefore, f,(_#,) is finite. Let 7YX e K(X).
"1 Yusuf Unli proved independently in his doctoral thesis [7] that K(X) is a lattice

if either (1) SX\X is realcompact and C*-embedded in 58X, or (2) SX\X is a P-space and
Clpx(BX\X) is an F-space.
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Claim. [ #\ +)is finite. Suppose f(. #\ #,) is infinite then
]| #, contains a copy of N which is C-embedded in BX\X. This
is a contradiction. _Z, = U{f.'(p)|pef. )} so that _~Z, is a
finite union of closed (hence compact) subsets of 8X. Thus _/ is
compact. Similarly, .7 S U{f2'(®)|pefu( 2\ #)} U _#, and both
of these sets are compact. Therefore, Cly;(.#;) < SX\X. Since this
is for an arbitrary vX e K(X), the theorem follows from Lemma 3.3.

We summarize the major results of this section in the following
theorem:

THEOREM 3.10. If BX\X is C*-embedded in BX them any of the
following conditions implies that K(X) is a lattice:

(i) aX\X s realcompact for some aX e K(X),

(ii) aX\X is a P-space for some aX e K(X),

(iii) X s of countable type,

(iv) X s of point-countable type.

Note that the class of spaces X for which SX\X is C*-embedded
in BX and for which aX\X is realcompact for some aX in K(X)
contains the class of locally compact spaces. (BX\X is compact so
that it is both realcompact and C*-embedded in BX.) Likewise, the
class of spaces X for which AX\X is C*-embedded in BX and for
which aX\X is a P-space for some aX in K(X) contains the class
of locally compact spaces. (BX\X is C*-embedded in BX since it is
compact and wX\X = {p} is a P-space.) Thus our results here can
be considered as generalizations of those of Lubben [3].

4. Examples. Let 2 denote the class of ordinals. For ac®,
W) ={aecfl|c < a}. ® will denote the smallest member of 2 with
infinitely many predecessors: W(w) is infinite and for all a < w,
W(e) is finite. , will denote the smallest member of 2 with un-
countably many predecessors.

THEOREM 4.1 ([1], page 138). If X 4s compact, with | X| < W.,
a =0, then (X X W(w,) = X X W(w, + 1).

Proof. See ([10], page 92).
THEOREM 4.2 ([1], page 89). X Y < BX, then BY = BX.

LEMMA 4.3. For aY € K(Y), there exists X such that ¥ = SX\X
and Clx(Y) = aY.

Proof. Let N # 0 be choosen, so that |@Y| < W,;. By Theorem
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4.1, we have BaY x W(w,))) = aY x W(w;, +1). Let X = B(aY x
W(@)\(Y X {®;}), then aY x W(w;) € X < B(@Y X W(w,)) and hence
BX = BaY x W(w;)) = aY x W(w;, + 1). Since aY X {w;} is compact
and contains Y X {®w;} = Y as a dense subspace, X.is the space
desired.

COROLLARY 4.4. For any space Y there is an X such that
BX\X =Y and Y is C*-embedded in X.

THEOREM 4.5.2 Given any two spaces X and Y, there is an
aX e K(X) such that Y is homeomorphic to Cl,;(aX\X) iff there s
a continuous map h from Cl,x(BX\X) onto Y such that h(BX\X) C
Y\W(R(X)) and h is one-to-one on R(X), where R(X) is the set of
points at which X is mot locally compact.

ExaMPLE 4.6. (1) Let wN be the one-point compactification of
N. Then there exists X such that SX\X = N and Cl;3(N) = wN.
There exists a sequence, namely IV, which converges to (@, w,) € X.
Thus K(X) is not a lattice by 2.8.

In the above example, SX\X is realcompact and a P-space but
not C*-embedded in BX.

ExampLE 4.7. (2) If Y = W(w,), then BY = W(w, + 1). Let
X =(BY X BY\(Y X {®w}), then BX\X =Y. Let & be the collec-
tion of subsets of BX of the form {(\ + 27, @,), (N + 27 + 1, w,)} for
A a limit ordinal, 7 = 0,1, 2, ---, and all other singletons. Then &
is a decomposition space of X. Let P: X — < be the quotient map,
then & can be considered as the quotient space of X induced by
P. Clearly P(Cl;;Y) is compact Hausdorff. By 4.5 we have & =
o, X e K(X). Similarly, let &’ be the collection of subsets of 8X
of the form {(a + 27 — 1, w,), (¢ + 27, w,)} for @ a limit ordinal,
j=1,2 ---, and all other singletons, then 2’ = a,Xe K(X). If
aXe K(X) and aX £ a X, X, then the following diagram com-
mutes:

BX
AN
CZIX \ lfa / a2X
AN | e

aX
Thus, if f(\, ®)) =y, for some A a limit ordinal then f(» + 7,

2 This theorem is a modified version of theorem due to Rayburn [5].
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®)) =y for all jeN. Therefore, f (W X {w)})) =y = f.(w, @),
which is a contradiction since f,(BX\X) S f(BX)\f(X). Hence K(X)
is not a lattice.

In this example, the subspace SX\X is C*-embedded but not
realcompact nor a P-space. We also claim that aX\X is not a P-
space for any aX e K(X). For if aX\X is a P-space, then aX\X
contains a C-embedded copy of N, which implies Y contains a C-
embedded copy of IN. But this is not possible since Y is pseudo-
compuct.

EXAMPLE 4.9. (3) Let Y be the subspace of W(w,) obtained by
deleting all nonisolated points having a countable base, then Y is a
P-space that is not realcompact ([1], page 138).

Let X be chosen so that SX\X = Y ahd Y C*-embedded in BX,
then K(X) is a lattice by Theorem 3.9, 8X\X is not realcompact.

EXAMPLE 4.3. (4) Let @ be the set of rationals. Choose X so
that BX\X =@ and @ is C*-embedded in AX. Since @ is real-
compact, K(X) is a lattice. We claim that aX\X is not a P-space
for any aX e K(X). For if aX\X is a P-space, then f,(_#) contains
a C-embedded copy of N which contradicts Lemma 3.6.

ExampLE 4.10. (5) E={2n|ne N} and 0={2n-+1|n e N}. Then
N=FEUO0 and EN0=¢. Define t: N— N by t@2n)=2n + 1 and
t(2n + 1)2n, ne€ N. Thus, t¢(E) = 0 and £(0) = E. For each p € SN\N,
there exists a unique free ultrafilter %/, on N such that Z, — p.
Let % = {%,}pesnix- It is clear that % is exactly the set of free
ultrafilters on N. Define Z,={%,e%|Ee%, and %, =
(#,e 7 |0e#,}. Obviously, Z, and Z, form a partition of Z.
If Z,€ %y then t(%,) the ultrafilter generated by {t(u)|u e %,} is
identical to {t(w)|we %}, furthermore, #%,) €%,  Similarly,
W%, €%y if Z,e%, Thus, t induces a one-to-one correspondence
between %z and %,. Each p in SBN\N corresponds to unique %/, in
Z, therefore the partition % = Z, U %,, %= N %, = ¢ induces a
partition on BAN\N. The induced partition is BN\N = (Cl;,(E)\E) U
(Clen(0)\0) with (ClL:x(E)\E) N (Clen(0)\0) = 6. Define a relation ~ on
BN as follows: p, ~ p, if and only if p, = p, or {(%,,) = %,,- Then
~ is an equivalence relation on AN. Let <& be the identification
space BN/ ~ with the quotient map P. Clearly & is compact and
T,. We want to show <& is Hausdorff. For xe P(N), P Xx) is a
singleton in N, so P7*(x) is both open and closed in BN. It follows
that {x} is both open and closed in &2. Thus « can be separated
from any other point by open sets in &7. Let p, g€ P(BN\N). Then
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P~ (p) = {p,, p.}, and P7(q) = {q,, ¢} for p,, g, € Clyx(E)\E and p,, g, €
Clsn(00\0. Let u, v be open in AN such that u, v S Clyw(E), p.€u,
¢.€v and uNv=¢. Let t be the extension of ¢ from BN to BN.
Obviously, ¢ is a homeomorphism, so t(u) and t(v) are open in AN,
moreover t(u), t(v) & Clsy(0) and p, e t(u), ¢, €t(v). Let G = P(u U
(t(w))), H= P(w U (¥(v))). Clearly, P7%(G) = u U (¥(u)) and P™(H) =
vU(t(v)), so G and H are open in &. Since peG, qe H, GNH = 4,
S0 P, q can be separated by open sets. Thus <& is Hausdorff. Thus
there is a YNe K(N) such that TN = 2.

Let X be obtained as in Lemma 4.3 such that SX\X = N and
Cl;x(N) = YN. For aXe K(X), we claim aX has the following
properties.

(1) &t ={Fe&,||F|z 3} is finite,

(2) /“—- {Fe &,||F| =2, F< E} and

={Fe &,||F| = 2, F Z E} are finite,
(3) Let .= {Fe &,|FNE =|FNO0 =1}, then
= {Feffa]F # {2n, 2n + 1} for any » € N} is finite.

Proof of (1). If .&#¢ is infinite, then _/, contains three copies
of N, say {4.,}-,, which are C-embedded in N & BX such that {4,};_,
is a section partition induced by f,. Clearly, {f;(4,)}, is a section
partition induced by g.of, where g, is the restriction of f, to
Clsx(N) = YN. Let (a{®) be an ultranet in A, and a{’ — a,€ BN\N.
Let (a?) & A4,, (@) £ A, be ultranets induced by the section cor-
respondences which are induced by g,0f; on (g.°f;)(4,). Let a{® — a,,
a® — a,, where a,, a;€ SN\N. Obviously a,, a,, a, are distinct. By
the definition of YN, |f.({a})| = 2. fnx 18 one-to-one, so
I(ga o fr{a:iz)] = 2. This is not possible, since (g,°f;)(a{’) =
(geof)@P) = (geof)af) for all v which implies |(g.of))({a}i-)| = 1.
Thus (1) holds.

Proof of (2). It is sufficient to show .2°% cannot be infinite.
Suppose .7 is infinite, then E contains two copies of N, say A,
and 4,, which are C-embedded in N = SX\X such that {4, 4,} is a
section partition induced by f,. This is not possible, since no two-
points in Cl,y(E) are equivalent with respect to ~, and f,y is one-
to-one. Thus (2) holds.

Proof of (3). If &7¢is infinite, then there exists A = {a,}7, S E,
B = {b,}7-, < 0 such that {A, B} is a section partition induced by f,
{a,, b,} € & for ne N, and t(4) N B = ¢. Let acClsy, then {(Z%,) —
t(a) ¢ Clyy(B), since B¢t(%,). Let (a;) be the ultranet in A based
on AN %, such that a; —a. Let (b;) be the ultranet in B induced
by the map a,—b,. Then b,—beCl;y(B)N. a and b are not
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equivalent with respect to ~. Thus f,(a)#f;(b). However, (g.of,)(a)=
(goof;)(). This is a contradiction. Hence (3) holds.

Let &4 ={Fec%,|F ={2n,2n + 1} for some neN}, G,= {xec
A,Jxe F for some Fe %4}, Let K, ={rxe _Z|xcUi, &¢. Then
My = Go, U K,

Using these notations, for @, X, a,Xe¢ K(X), we write 7, =
G.,UK,, t=1,2. We want to show that X and @, X have a
lower bound in K(X). Let zX be obtained by idetifying subsets of
BX of the form {2n, 2n + 1} to a point for each ne N. It is clear
that X e K(X). Let K = f(K,, UK,,). Obtain aX by identifying
K to a point, then X e K(X). Each set in .# (@, X) is a subset of
a set in & (@X), thus K(X) is a lattice by Theorem 2.2.

This example shows that the condition Cls;z(_#) < BX\X for
every aX e K(X) in Lemma 3.3 is not necessary for K(X) to be a
lattice.
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