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SUFFICIENT CONDITIONS FOR THE SET
OF HAUSDORFF COMPACTIFICATIONS

TO BE A LATTICE

FU-CHIEN TZUNG

Let K{X) be the complete upper semilattice of com-
pactifications of a completely regular Hausdorff space X.
We show that if βX\X is C*-embedded in βX and if either
aX\X is realcompact or is a P-space for some aX in K{X)9

then K(X) is a lattice.

1* Introduction. Throughout this paper, all topological spaces
under consideration are supposed to be completely regular and
Hausdorff, unless stated otherwise.

A compactiίication of a space X is a compact space aX which
contains X as a dense subspace. We say ajί and a2X are equivalent
compactifications of X if there is a homeomorphism h from ajί onto
a2X such that h restricted to X in aλX is the identity map onto X
in a2X. We do not distinguish between equivalent compactifications.
For compactifications aγX and a2X, we say that ajί ^ a2X if and
only if there is continuous function from axX onto a2X such that
h restricted to X is the identity. Thus, ajί is equivalent to a2X
if and only if aλX ^ a2X and a2X >̂ ajί. Let K(X) denote the set
of all compactifications of X. Then K(X) with the order ^ defined
as above is a complete upper semilattice. Lubben [3] proved that
X is locally compact if and only if K(X) is a complete lattice.
Next, Shirota [6] showed that if X is first countable then K(X) is
a lattice if and only if X is locally compact. Thus, Q ( = rationale)
provides us with the simplest example for which K(Q) is not a
lattice. Visliseni and Plaksmaier [9] showed that if there exists a
sequence in βX\X which converges to a point in X, then K(X) can-
not be a lattice. In the same paper they also constructed a non-
locally compact space X for which K(X) is a lattice.

In this paper we determine two classes of spaces which prop-
erly contain the class of locally compact spaces and for which
K{X) is a lattice, whenever X is a member of either of them.
Examples are constructed to show that none of these conditions
are necessary.

2* Preliminaries. The terminology of [1] and [11] are used
throughout. The following will be needed for subsequent develop-
ment.
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566 FU-CHIEN TZUNG

DEFINITION 2.1. Let aXeK(X), fa:βX-+aX be continuous and
fa\x = id. Then fa is closed and hence we can consider aX as the
quotient space of βX induced by fa. Define

jr(aX) = {f-\p)\peaX\X}.

THEOREM 2.2 (Magill [4]). Let a,Xf a.2X e K(X). Then axX ^ a2X
if and only if each set in j?~~(a2X) is a subset of a set in ,^{axX).

DEFINITION 2.3. A space X is said to be of countable type if
and only if every compact subset is contained in a compact set of
countable character (i.e., one having a countable neighborhood
system).

THEOREM 2.4 ([2], page 115). A space X is of countable type if
and only if βX\X is Lindelof.

THEOREM 2.5 ([1], page 115). Lindelof spaces are realcompact.

DEFINITION 2.6. A space X is of point countable type if and
only if every point is contained in a compact set of countable
character.

THEOREM 2.7 ([8], page 341). If X is a space of point coun-
table type then βX\X is realcompact.

THEOREM 2.8 ([9], page 1424). //, in the subspace βX\X of the
space βX, there exists a countable sequence of points converging to
some point in X, then K(X) is not a lattice.

3. Major results*

LEMMA 3.1 ([10], page 28). βX\X is C*'-embedded in βX if and
only if ^lβx(βX\X) = β(βX\X).

DEFINITION 3.2. For aX e K(X), let fa: βX -> aX be the quotient
map, define

.S/Λ = {pe βX\X\ \fΛL{p))\ > 1} ,

and

^ - { f £ ^4Ta\F = f~Λv), some yeaX} .

LEMMA 3.3. If r^lβx{,,//a) £ βX\X for every aXeK(X), then
K(X) is a lattice.
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Proof. Since K{X) is a complete upper semi-lattice, it is suf-
ficient to show any two elements of K(X) have a lower bound. Let
a,X, a2XeK(X). A = ̂ lβx(^eaί) U %?hx(^€a2) is compact in βX\X.
Obtain aX by identifying A to a point, then aX is a compactifica-
tion of X. Clearly, each set in ^(atX) is a subset of a set in
jr(aX) for ί = 1, 2 By Theorem 2.2, aX <, a,X9 a2X. Hence, K(X)
is a lattice.

LEMMA 3.4 ([1], page 62). Let f:X-+Y be continuous, A be
dense in X. If f\A is a homeomorphism, then f(X\A) Q Y\f(A).

DEFINITION 3.5. Let Y be a quotient space of X with the
quotient map P. Let {AJLi be a collection of disjoint, nonempty
subsets in X with k ̂  2. We say {AJLi is a section partition
induced by P if and only if there exists B £ Y such that P{At) - B
and P~\b) ΓΊ ̂  is a singleton for 1 ̂  i ^ Λ, beB. P induces a
partition o n i = UίU ̂ ό namely, A = \JbeB Ah, Ah f) Ah = φ if b, Φ δ2,
where Ab — UiU (P~\b) Π A*). This partition induces the section cor-
respondence induced by P on A.

LEMMA 3.6. If βX\X is C-embedded in βX then for every
aXeK(X), ^/fa contains no copy of N which is C-embedded in
βX\X.

Proof. Let aX e K(X) such that ^ C contains a copy of N which
is C-embedded in βX\X. F is compact for each Fe g*α, so it can
contain only finitely many points of N. Form A by choosing one
point from each nonempty F 0 N, then A is infinite. Let h e C(βX\X)
such that h(A) = N Q R. h\A carries A homeomorphically onto a
closed set in JB, so A is C-embedded in βX\X by 1.19 of [1]. There-
fore, A is a copy of N, which is C-embedded in βX\X. If F =
fa\fa(β)) for some a 6 A then since a e ̂ C , we have Fe g3

α. Let
J / ^ I F e g ' J F n i ^ ^ . Form 5 by choosing one point from each
F\A, F 6 j^C {A, 5} is a section partition induced by fa. We want
to show that B is closed in βX\X. Let (bλ) be an ultranet in B,
and 6̂  —> 6 6 (βX\X)\B. Let (αΛ) be the corresponding ultranet in A
through the section correspondence induced by fa on fa{A). Since
βX is compact, α ^ α e / 3 X . Clearly, (aλ) is nontrivial, since (&*) is
nontrivial. Also, aeX, since A is closed and discrete in βX\X. It
is known that fa is continuous, so fa(ax) -> /α(α) and fa{bx)-*fa{b).
Since /α(α,0 = /«(&;) for all λ, and the limit points of these nets are
unique, it follows that fa(a) — fa(b). This is not possible since
fa(βX\X) S aX\fa(X) by Lemma 3.4. Thus B is closed in βX\Z.
Since A is a C-embedded copy of N and B is a closed set disjoint
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from Ay so A and B are completely separated in βX\X by 3B of
[1]. As βX\X is C*-embedded in /3X, therefore A and 5 are com-
pletely separated in βX by 1.17 of [1]. It follows that r^lβx{A) Π
^lβx(B) — φ. Choose (aλ) in A and (bλ) in I? as before, with aX —> α e X,
δ2 -> 6 G J . Then /«(α) = fa(b). This is a contradiction, since / α | x is
one-to-one. Hence ^//a contains no copy of N, which is C-embedded
in βX\X for all aX in K{X).

THEOREM 3.7.1 // βX\X is C-embedded in βX, and if aX\X
is realcompact for some aX in K(X) then K(X) is a lattice.

Proof. If aX\X is realcompact for some aX, then βX\X is
realcompact by 8.13 of [1].

Claim. ^lβx{^fa) C βX\X for every aXeK(X). Suppose not,
then there exists aX e K(X) such that ^-f/a has a limit point x0 e X.
Let Y = {x0} U (βX\X) endowed with the relative topology as a sub-
space of βX. βX\X is realcompact and dense in Y, so βX\X is not
C-embedded in Y. Let feC(βX\X) such that / cannot be extended
to Y. Let [—<x>, °°] be the two-point compactification of 72. Clearly,
/ can be considered as a continuous function of βX\X into [— co, co].
/ has an extension / from β(βX\X) = ̂ lβx{βX\X) into [-co, co].
Without loss of generality, we may assume f(x0) = co. Since #oe
ClβχίχC^a)> so / is unbounded on ^ C . By 1.20 of [1], t.*C contains
a copy of JV which is C-embedded in βX\X. This contradicts Lemma
3.6, and hence Clβz(^a) £ βX\X for every aXeK(X). Lemma 3.3
shows that K(X) is a lattice.

COROLLARY 3.8. If X is a space of point countable type and
βX\X is C*-embedded in βX then K(X) is a lattice.

THEOREM 3.9.1 // βX\X is G*-embedded in βX and if aX\X is
a P-space for some aX e K(X), then K(X) is a lattice.

Proof. We claim that fa{^/fa) is finite. For if fa{^/fa) is infinite
then it contains a countably infinite subset A. By 4K of [1], we
see that A is a copy of N, which is C-embedded in aX\X. Let
feC(aX\X) such that f(A) = NQR. Hence, fofae(βX\X) is un-
bounded on faXA)Q^fa. Thus fά\A) contains a copy of N which is
C-embedded in βX\X. Since βX/X is C*-embedded in βX, this con-
tradicts Lemma 3.6. Therefore, /α(^C) is finite. Let ΎXeK(X).

1 Yusuf Unlύ proved independently in his doctoral thesis [7] that K(X) is a lattice
if either (1) βX\X is realcompact and C*-embedded in βX, or (2) βX\X is a P-space and
<ίflβAβX\X) is an F-space.
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Claim. fa(^fr\^fa) is finite. Suppose fa(^fr\^fa) is infinite then
C contains a copy of N which is C-embedded in βX\X. This

is a contradiction. ^/Sa = U {fΰ\p) IV e Λ(^C)} so that ^ C is a
finite union of closed (hence compact) subsets of /3X. Thus ^ a is
compact. Similarly, ^fr £ U {fά\p)\P e/«(^WC)} U ̂ C and both
of these sets are compact. Therefore, Clβx(^r) Q βX\X. Since this
is for an arbitrary ΎXeK(X), the theorem follows from Lemma 3.3.

We summarize the major results of this section in the following
theorem:

THEOREM 3.10. If βX\X is C-embedded in βX then any of the
following conditions implies that K(X) is a lattice:

( i ) aX\X is realcompact for some aX e K(X),
(ii) aX\X is a P-space for some aXeK(X),
(iii) X is of countable type,
(iv) X is of point-countable type.

Note that the class of spaces X for which βX\X is C*-embedded
in βX and for which aX\X is realcompact for some aX in K{X)
contains the class of locally compact spaces. (βX\X is compact so
that it is both realcompact and C*-embedded in βX.) Likewise, the
class of spaces X for which βX\X is C*-embedded in βX and for
which aX\X is a P-space for some aX in K(X) contains the class
of locally compact spaces. (βX\X is C*-embedded in βX since it is
compact and ωX\X — {p} is a P-space.) Thus our results here can
be considered as generalizations of those of Lubben [3].

4* Examples* Let Ω denote the class of ordinals. For aeΩ,
W(a) = {aeΩ\σ < a}, ω will denote the smallest member of Ω with
infinitely many predecessors: W(ω) is infinite and for all a < ω,
W(a) is finite. ωι will denote the smallest member of Ω with un-
countably many predecessors.

THEOREM 4.1 ([1], page 138). If X is compact, with \X\ < ̂ α ,
a Φ 0, then β{X x W(ωa)) = X x W(ωa + 1).

Proof. See ([10], page 92).

THEOREM 4.2 ([1], page 89). XQYQ βX, then βY = βX.

LEMMA 4.3. For aYeK{Y), there exists X such that Y = βX\X
and Clβx(Y) = aY.

Proof. Let λ Φ 0 be choosen, so that \aY\ < fc^. By Theorem
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4.1, we have β(aY x W(ωx)) = aY x W(ωx + 1). Let X = β(aY x
W(ωx))\(Y x {α>j}), then α Γ x W(ωx) £ l S /5(αΓ x W(ωx)) and hence
/9X = β(aY x TΓ(ω̂ )) = α 7 x T7(α>; + 1). Since aY x {ωλ} is compact
and contains Y x {ωλ} = F as a dense subspace, X is the space
desired.

COROLLARY 4.4. For any space Y there is an X such that
βX\X = Y and Y is C*-embedded in X.

THEOREM 4.5.2 Given any two spaces X and Y, there is an
aX e K(X) such that Y is homeomorphic to ClaX(aX\X) iff there is
a continuous map h from Glβx(βX\X) onto Y such that h(βX\X) £
Y\h{R{X)) and h is one-to-one on R(X), where R(X) is the set of
points at which X is not locally compact.

EXAMPLE 4.6. (1) Let ωN be the one-point compactification of
N. Then there exists X such that βX\X = N and Clβx(N) = ωN.
There exists a sequence, namely N, which converges to (α>, ωλ) e X.
Thus K{X) is not a lattice by 2.8.

In the above example, βX\X is realcompact and a P-space but
not C*-embedded in βX.

EXAMPLE 4.7. (2) If 7 = W(ωι)f then βY = W(ω, + 1). Let
X - (βY x βY)\(Y x {ωj), then βX\X = Y. Let 3f be the collec-
tion of subsets of βX of the form {(λ + 2j, ωj, (λ + 2j + 1, ωx)} for
λ a limit ordinal, i = 0, 1, 2, , and all other singletons. Then 3f
is a decomposition space of X. Let P: X —> ^ be the quotient map,
then i^" can be considered as the quotient space of X induced by
P. Clearly P(ClβxY) is compact Hausdorff. By 4.5 we have 3ί —
axX^K{X). Similarly, let &P be the collection of subsets of βX
of the form {{a + 2j — 1, α)x), (a + 2i, (wj} for a a limit ordinal,
j = 1, 2, •••, and all other singletons, then ^ ' = α2X6ίΓ(X). If
αX e K(X) and α l ^ ajί, a2X, then the following diagram com-
mutes:

βX
\Λ2

Thus, if /α((λ, a))) = 2/, for some λ a limit ordinal then /((λ + i,

This theorem is a modified version of theorem due to Ray burn [S].
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ωx)) = y for all jeN. Therefore, fa(W x {α>J) = y= fa((ωlf ωx))9

which is a contradiction since fa(βX\X) Q fa(βX)\fa(X). Hence K{X)
is not a lattice.

In this example, the subspace βX\X is C*-embedded but not
realcompact nor a P-space. We also claim that aX\X is not a P-
space for any aXeK(X). For if aX\X is a P-space, then αX\X
contains a C-embedded copy of N, which implies Y contains a C-
embedded copy of iV. But this is not possible since Y is pseudo-
compuct.

EXAMPLE 4.9. (3) Let Y be the subspace of W(ω2) obtained by
deleting all nonisolated points having a countable base, then Y is a
P-space that is not realcompact ([1], page 138).

Let X be chosen so that βX\X = Y ahd Y C*-embedded in βX,
then K(X) is a lattice by Theorem 3.9, βX\X is not realcompact.

EXAMPLE 4.3. (4) Let Q be the set of rationale. Choose X so
that βX\X = Q and Q is C*-embedded in /3X. Since Q is real-
compact, K{X) is a lattice. We claim that aX\X is not a P-space
for any aXeK(X). For if aX\X is a P-space, then/α(^/C) contains
a C-embedded copy of N which contradicts Lemma 3.6.

EXAMPLE 4.10. (5) E={2n\neN} and Q = {2n+l\neN). Then
N= EDO and E n 0 = φ. Define t:N->N by ί(2w) = 2^ + 1 and
ί(2w + ϊ)2n, neN. Thus, ίCJB?) = 0 and ί(0) = E. For each p e βN\N,
there exists a unique free ultrafilter ^/v on JV such that ^/v -» 2?.
Let Ŝ? — {̂ P}p6is/v/Λ. It is clear that ^ is exactly the set of free
ultrafilters on N. Define &E = { ^ e ̂  | E e ̂ } and ^ 0 =
{ ^ e ^ | θ € ^ } . Obviously, ^ ^ and ^ 0 form a partition of i? .
If ^ , e % then ί (^ p ) the ultrafilter generated by {£(%) | % e ̂ ,} is
identical to {t(u)\ue'ZSp}f furthermore, t(^p)e^0. Similarly,
t(^p) 6 ̂ ^ if ^/v 6 ̂ 0 . Thus, t induces a one-to-one correspondence
between <%SE and ^ 0 . Each p in βN\N corresponds to unique ^p in
• ,̂ therefore the partition ^ — ̂ /E U ̂ 0> ^!B Π ̂ O = Φ induces a
partition on βN\N. The induced partition is βN\N = (ClβN(E)\E) U
(ClβN(0)\0) with (ClβN(E)\E) Π (ClβN(0)\0) = <f>. Define a relation - on
/3iV as follows: 2?! — p2 if and only if ^ = p2 or ί ^ ^ ) = ̂ 2 . Then
^ is an equivalence relation on βN. Let ^ be the identification
space βN/ ~ with the quotient map P. Clearly 3$ is compact and
ϊ\. We want to show 32f is Hausdorίf. For a? e P(N), P~\x) is a
singleton in N9 so P""^^) is both open and closed in βN. It follows
that {x} is both open and closed in Sf. Thus x can be separated
from any other point by open sets in Sf. Let p, q e P(βN\N). Then
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P~\p) = {plf p2}, and P~\q) = {qlf q2} for plf qx e Clβ»(E)\E and pt, q> e
ClβN(0)\0. Let u, v be open in βN such that u, v £ ClβN(E), px e u,
q^v and u Γϊ v = φ. Let ί be the extension of t from /3JV to βN.
Obviously, t is a homeomorphism, so ?(u) and t(v) are open in /2JV,
moreover t(u), t(v) £ ClβN(0) and p2 6 ί(%), #2 e t(v). Let G = P(u U
(t(iθ)), if = P(v U (ί(v))). Clearly, p-^G) = u U («(%)) and P~l(ff) -
v U(ί"(v)), so G and Jϊ are open in 3f. Since peG, qeH, Gf)H = φ,
so p, g can be separated by open sets. Thus Sf is Hausdorff. Thus
there is a ΎNeK(N) such that 7iV = 3f.

Let X be obtained as in Lemma 4.3 such that βX\X = JV and
ClβX(N) — ΎN. For ^XGiΓ(X), we claim 6iX has the following
properties.

(1) ,5*? = {Fe gfβ| |2?Ί ̂  3} is finite,
(2) ^ 2

α - ( F G g^α | |F| = 2, F S # } and
^ « = {Fe ξ?a\\F\ =2,FQE} are finite,

( 3 ) Let <ifa = {Fe &a\\Fn E\ = \FΠ0\ = 1}, then
S?l = {Fe<&a\F Φ {2n, 2n + 1} for any neN] is finite.

Proof of (1). If ,5̂ f is infinite, then K^Za contains three copies
of N, say {AJLi, which are C-embedded in JV £ βX such that {AJLi
is a section partition induced by fa. Clearly, {fj\A^}\^ is a section
partition induced by ga°fr where ga is the restriction of fa to
Clβx{N) = TJV Let (α^) be an ultranet in A, and aψ -> αt e tfiVVV.
Let (α^2)) £ A2, (a[3)) £ A3 be ultranets induced by the section cor-
respondences which are induced by ga°fr on (gaofγ)(A^). Let a[2) -»α2,
^i3) —> ̂ 3> where α2, α3 e βN\N. Obviously a19 α2, α3 are distinct. By
the definition of ΎN9 !Λ({αJLi)| ^ 2. fγ]x is one-to-one, so
Kί7αoΛXWϊ=i)l ^ 2. This is not possible, since (gaofr)(a[1)) =
(<7*°Λ)(αi2)) = (flrβo/r)(α?0 for all λ which implies |(^o/ r)({αJU)| - 1.
Thus (1) holds.

Proof of (2). It is sufficient to show S^l cannot be infinite.
Suppose Sf% is infinite, then E contains two copies of JV, say At

and A2, which are C-embedded in JV = βX\X such that {Alf A2} is a
section partition induced by fa. This is not possible, since no two-
points in ClβN(E) are equivalent with respect to ~, and f7]z is one-
to-one. Thus (2) holds.

Proof of (3). If 6^1 is infinite, then there exists A = {α J~=o £ E,
B — {&%}~=o £ 0 such that {A, E) is a section partition induced by fa9

K , bn) e S^l for n e JV, and t(A) Π B = φ. Let ae ClβN, then ί (^ β ) ->
F(α) 0 ClβN(B), since B g <(^β). Let (α*) be the ultranet in A based
on A Π ̂  such that aλ -> α. Let (6̂ ) be the ultranet in B induced
by the map an-*bn. Then bλ-^beClβN(B)N. a and δ are not
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equivalent with respect to ~ . Thus/r(α)^/r(6). However, (ga°fa)(a) =
(ga°fr)(b). This is a contradiction. Hence (3) holds.

Let Si = {Fe^a\F = {2n, 2n + 1} for some neN}, Ga = {xe
eF for some Fe Sζ}. Let Ka = {xe^a\xe U U £**}. Then

Γa = GUi U Ka.
Using these notations, for axX, a2XeK(X), we write ^fSa. =

Gα. U i£αi, i = 1, 2. We want to show that α^X and <x2X have a
lower bound in K(X). Let rX be obtained by idetifying subsets of
βX of the form {2n, 2n + 1} to a point for each neN. It is clear
that τXeK(X). Let K = fτ(Kai U Ka%). Obtain aX by identifying
K to a point, then αXei£(X). Each set in ^"{aJC) is a subset of
a set in ^~(aX)f thus ίΓ(X) is a lattice by Theorem 2.2.

This example shows that the condition Clβx(^fa) £ βX\X for
every α:X 6 K(X) in Lemma 3.3 is not necessary for K(X) to be a
lattice.
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