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SMOOTH G-MANIFOLDS AS COLLECTIONS
OF FIBER BUNDLES

MICHAEL DAVIS

This paper is about the general theory of differentiable
actions of compact Lie groups. Let G be a compact Lie
group acting smoothly on a manifold M. Both M and M/G
have natural stratifications, and M/G inherits a "smooth
structure" from M. The map M-+M/G exhibits many of
the properties of a smooth fiber bundle. For example, it is
proved that a smooth G-manifold can be pulled back via a
"weakly stratified'7 map of orbit spaces. Also, it is well-
known (and obvious) that a smooth G-manifold is determined
by a certain collection of fiber bundles together with some
attaching data. Several precise formulations of this observa-
tion are given.

Introduction* We develop some elementary ideas in what might
be termed "the bundle theoretical aspect" of compact transformation
groups. Suppose that a compact Lie group G acts smoothly on a
manifold M. First consider the case where this action has only one
type of orbit, that is, where all the isotropy groups are conjugate.
In this case, it follows from the Differentiable Slice Theorem that
M/G is a smooth manifold and that M is a smooth fiber bundle over
M/G. When the action has more than one type of orbit; this is no
longer true; however, there are two related points of view.

The first of these is to regard the smooth G-manifold M together
with the natural projection π: ikΓ —> M/G as a prototypical example
of a "singular fiber bundle." As such, one might expect smooth G-
manifolds to have many of the formal properties of ordinary fiber
bundles. In an appropriate context, this is true (as we shall see in
Chapter III). One of the main purposes of this paper is to describe
this context.

The second point of view is to regard M as a certain collection
of fiber bundles. Here the basic idea is to consider all those points
in M of a given orbit type (that is, all those points with isotropy
groups conjugate to a given subgroup of G). It follows from the
Differentiable Slice Theorem, again, that the union of such points is
an invariant submanifold of M and, therefore, a smooth fiber bundle
over its image in M/G. Thus, M is a union of various fiber bundles.

Our actual approach is a slight modification of this. In Chapter
I, we define a notion of "normal orbit type," which is better suited
to the study of smooth actions than is the notion of orbit type.
The normal orbit type of a point takes into account the slice repre-

315



316 MICHAEL DAVIS

sentation as well as the isotropy group at the point. M is also
stratified by the invariant submanifolds consisting of those points
of a given normal orbit type. The normal bundle in M of such a
stratum can be regarded as a fiber bundle over the corresponding
stratum of M/G. The associated principal bundle is called a "normal
orbit bundle." Given the equivariant normal bundles of the strata
and information which describes how these normal bundles fit to-
gether, one can clearly recover M. So, in some sense, a smooth
G-manifold is nothing more or less than a certain collection of
principal bundles together with some attaching data. This simple
observation is one of the most fundamental ideas in the study of
smooth G-actions (see, for example, [2] and [6]). One of the first
people to isolate this basic intuition and to try to formulate it as a
theorem was K. Janich in his paper on O(w)-manifolds [7].

We prove a similar, but more general, version of this theorem
in Chapter IV (Theorem 4.3). It states that there is a functor from
the category of smooth G-manifolds and (equivariant) stratified maps
to the category of "S?-normal systems," and that this functor de-
fines a bijection between equivariant diffeomorphism classes of G-
manifolds and isomorphism classes of "5^-normal systems." By a
"normal system" we roughly mean a collection of bundles together
with some attaching data. By a "stratified map" of G-manifolds,
we mean a smooth equivariant map which preserves the stratifica-
tion and which maps the normal bundle of each stratum transversely.
A similar result (Theorem 4.4 in Chapter IV) is true for orbit spaces
(or rather for "local G-orbit spaces"). In order to state this result
and in order to describe the context in which G-manifolds behave
like fiber bundles, it is necessary to take a close look at the local
structure of orbit spaces and to carefully consider what should
be meant by a "stratified map" of orbit spaces. This is done in
Chapter II.

We should first point out that there is a natural "smooth struc-
ture" (i.e., functional structure) on M/G. This is essentially obtained
by defining a function f: M/G-* R to be smooth if foπ:M-*R is
smooth. Secondly, as we pointed out above, M/G can be stratified
by normal orbit types. In Chapter II, we give two possible defini-
tions for a "stratified map" of orbit spaces. These two definitions
are distinguished by the use of the terms "weakly stratified" and
"stratified." In both definitions we consider smooth, strata preserving
maps which "map the normal bundle of each stratum transversely"
(however, there are essentially two possible interpretations of this
last phrase). In Theorem 4.5 of Chapter II, we show that an
(equivariant) stratified of G-manifolds induces a stratified map of
their orbit spaces. Also, stratified maps of orbit spaces are weakly
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stratified (Theorem 4.8 in Chapter II). The converse is an inter-
esting open question.

In Chapter III, we prove that smooth G-manifolds can be pulled
back by a weakly stratified map of orbit spaces (Theorem 1.1), a
result suggested in [3]. In the second section of that chapter we
discuss the Covering Homotopy Theorem of G. Schwarz [10]. These
two results are the major justification for the assertion that smooth
G-manifolds exhibit the same formal properties as do smooth fiber
bundles.

The reason for introducing the stronger concept of a stratified
map of orbit spaces is that the theory of normal systems for orbit
spaces works only with this stronger definition.

There are many concrete applications of the above ideas, but
we do not discuss them in this paper. It should be mentioned, how-
ever, that the pullback construction and the theory of normal sys-
tems play key roles in the classification of regular O(ri), U(n) and
S;p(w)-manifolds in [4] and [5] (also see [3]).

Some of the work in this paper was done in my thesis (in the
special case of regular 0(n), U(n) and Sp(w)-actions). I would like
to thank my thesis advisor W. C. Hsiang for his help while I was
writing my thesis and for his continuing support and encouragement.
I would also like to thank G. Bredon and G. Schwarz for several
illuminating conversations. Finally, I want to point out that Bredon's
book [2] is an excellent introduction to this material and that re-
ferences are made to it throughout this paper.

I. Stratification by Normal Orbit Type

1. Normal orbit types* This section contains some preliminary
material. The theorems are well-known; however, some of the de-
finitions are not.

Let G be a compact Lie group. Suppose that H is a closed
subgroup and that V is an if-module. Define an action of H on
G x V by h (g, v) — (gh~\ hv). Let G XπV denote the orbit space
and let [g, v] denote the image of (g, v) in G XHV. Then G XHV
has the structure of a G-vector bundle over G/H with projection
map defined by [g, v] —> gH. In fact, any G-vector bundle over G/H
must be of this form. For if E is such a bundle, then the fiber of
E at the identity coset is an iϊ-module. If we denote this iϊ-module
by V, then the map [gf v]->gv defines an isomorphism GχHV ~ E.

Now suppose that G acts smoothly on a manifold M. Given
xeM, let Gx denote the isotropy group at x and let G{x) denote the
orbit passing through x. G{x) can be identified with G/Gx via the
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equivariant embedding gGx —> gx (see page 302 in [2]). Hence, the
normal bundle of G(x) in M can be identified with a G-vector bundle
over G/Gx. The fiber of this normal bundle at x is the G -̂module

S, = TxMITxG{x) .

Sx is called the slice representation at x. By our initial remarks,
the normal bundle of G(x) is isomorphic to G XGχ Sx. By the
Equivariant Tubular Neighborhood Theorem, there is an equivariant
diffeomorphism from the normal bundle of G(x) onto a G-invariant
neighborhood of G(x) (see [2]). Taken together these two observa-
tions constitute the following well-known theorem of Koszul.

THEOREM 1.1. (The Differentiate Slice Theorem). Each point
xeM has a G-invariant neighborhood of the form GχHS, where
H=GX and S = S..

Next, let Fx be the subspace of Sx on which Gx acts trivially,
i.e., let Fx = (Sx)

Gχ. Define a G^-module Vx, called the normal rep-
resentation at x, by

V — S IF

So to each xeM we have associated a closed subgroup Gx and a
Gs-module Vx.

This situation can be abstracted as follows. Consider all pairs
(H, V) where H is a closed subgroup of G and where V is a H-
module with VH = {0}. Two such pairs (fl, V) and (H\ V) are
equivalent if there is an element aeG and a linear isomorphism
L: V-*V such that aΈLa~x = i ϊ ' and such that the following diagram
commutes

i ϊ ' - ^ A u t ( F ' ) .

Here ^ and ^' are the associated representations, ia(h) — aha'1 and
iL(f) — LfL"1. An equivalence class of such pairs will be called a
normal G-orbit type. Let [H, V] denote the class of (H, V).

If G acts smoothly on M and xeM, then [Gx, Vx] is called the
normal orbit type of Gix). For this definition to make sense we
must have that (Gβ, Vx) and (Ggx, Vgx) are equivalent. This is indeed
the case; for, the required equivalence is (g, L), where L: Vx —> Vgx

is the map induced by dg.

REMARK 1.2. Traditionally, one speaks of an "orbit type" by
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which one means a conjugacy class of an (isotropy) subgroup of G.
The notion of normal orbit type should be regarded as a slight
refinement of this, appropriate to the study of smooth actions.

PROPOSITION 1.3. Let (α, L) be an equivalence from (H, V) to
(H\ V). Then the map θ[a,L): G XH V-+ G XH, V defined by
0(a,L)([ff, v\) = [ga~\ Lv] is a well-defined isomorphism of G-vector
bundles. Conversely, any isomorphism from G XH V to G XH, V
must be of this form.

The proof of this is a routine matter and is left to the reader.
Thus, the normal orbit type [H, V] may also be regarded as

the isomorphism class of the G-vector bundle G XHV. This is com-
pletely analogous to the fact that the conjugacy class of H can be
regarded as the G-diffeomorphism class of G/H. (Compare § 1.4 in

[2].)
Next, we consider the group of automorphisms of G XHV. By

an "automorphism" we simply mean an invertible equivariant bundle
map, that is, a bundle map which covers some equivariant diffeo-
morphism of G/H (not necessarily the identity). There is an em-
bedding H—>GxAut(F) defined by h-*(h,φ(h)), where φ is the
representation associated to the £Γ-module V. To simplify notation
we shall identify H with its image under this embedding. Let
NH(G x Aut(F)) be the normalizer of H in G x Aut(F). Then

NH(G x Aut (V)) = {(α, L)\aHa~' = H and φ{aha~ι) = Lφ{h)L~ι

for all h e H) .

Thus, NH(G x Aut (V)) is just the group of self-equivalences of
(Jff, V). Also notice that θ{ayL) is the identity if and only if a e H
and L = φ(a). Therefore, (1.3) has the following

COROLLARY 1.4. Let S be the group of automorphisms of GχHV.
Then the map (α, L) —> θ{a,L) defines an isomorphism of Lie groups
NH(G x Ant(V))/H= S.

Returning to our G-action on M, suppose that a is a normal
orbit type. The a-stratum Ma is the union of orbits of type a, i.e.,

Ma = {xeM\[Ga, V.] = α} .

Let B be the orbit space of M and let π: M-> B be the natural
projection (π is called the orbit map). Set Ba = π(Ma) and 7ϋa = π\Ma.
Ba is called the a-stratum of B.

PROPOSITION 1.5. Both Ma and Ba are smooth manifolds and
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πa\ Ma —> Ba is the projection map of a smooth fiber bundle.

Proof. Ssuppose that a is represented by (H, V). Let xeMa.
By the Slice Theorem, x has an invariant neighborhood U^GXHS.
Clearly, (GχHS)a = GXHF = G/H x F, where F is the subspace
fixed by H. Hence,

( * ) Ua = G/Hx F .

Thus, Ma is a smooth manifold. It follows from (*) that πa(Ua) = F.
Therefore, Ba is also a smooth manifold (since F is isomorphic to
euclidean space). Finally, notice that (*) provides a local trivializa-
tion for πa9 and so Ma is a smooth fiber bundle over Ba.

This proposition shows that both M and B are "stratified spaces"
in the sense that they both are the union of smooth manifolds.

Next, we consider /((?), the set of normal G-orbit types. There
is a natural partial ordering on /((?), namely: [H, V] S [K, W] if
the G-manifold GXHV contains an orbit of type [K, W]. Notice
that maximal elements of I{G) are of the form [H, 0] where 0
denotes the zero dimensional iϊ-module.

The following two results are essentially classical.

THEOREM 1.6. Let aeI(G). Then

Wa=\JMβ.
βSoc

THEOREM 1.7. {The Principal Orbit Theorem). Suppose that B
is connected. Then there is a maximum normal orbit type 7 for G
on M called the "principal orbit type." Mγ is open and dense in
M, and Br is open and dense in B. Moreover, Br is connected.

Both theorems follow fairly easily from the Differentiate Slice
Theorem (see pages 179 and 182 in [2]). The Principal Orbit Theo-
rem is due to Montgomery, Samelson and Yang.

Next, suppose that F: M—> M' is a smooth equivariant map
(where G acts smoothly on M and M'). It follows that for each
xeM, Gxd GF{x) and that the differential of F induces a linear map
F*: VX->VF{X), which is G^-equivariant.

DEFINITION 1.8. A smooth equivariant map F:M->Mr is strati-
fied if for each xeM, the following two conditions hold:

( i ) GX = GF{X)

(ii) F*: Vx—>VF{x) is an isomorphism.
Thus, stratified maps preserve normal orbit types. In this paper,

all maps of G-manifolds will be stratified.
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2* Normal orbit bundles* In this section we investigate the
structure of the equivariant normal bundle of a stratum.

Fix a normal G-orbit type a and let (if, V) be a representative
for a. Let Sa be the group of automorphisms of G Xπ V, i.e., let
Sa = NH(G x Aut(V))/H .

As usual, suppose that G acts smoothly on M with orbit map
π:M->B. Let va(M) be the total space of the normal bundle of
Ma in M. When there is no ambiguity we will write simply va

instead of va(M). Let qa: va —> Ma be the projection map and let

PROPOSITION 2.1. Ϊ7ιβ map ra: va(M) —> Ba is the projection map
of a smooth fiber bundle with fiber G X7/ V and with structure
group Sa.

Proof. Let x e Ma. By the Slice Theorem, x has a neighborhood
in Ma of the form G(x) x D where D is a disk in Ba. By the de-
finition of the α-stratum, va\G{χ) ~ G XΠV. Therefore, we clearly
have that va\G{χ)xD = va\G{x) x D = (G X7/ F) x JD. The composition
of these two isomorphisms provides a local trivialization of r~L(D).
Thus, va->Ba is a fiber bundle with fiber G χ f f F . Since local
trivializations such as the above are isomorphisms of G-vector
bundles, it follows that the structure group is Sa. This completes
the proof.

Let Pa(M) —> Ba be the principal Sα-bundle associated to the
bundle va(M) —• Ba. Pa(M) is called the a-normal orbit bundle of M
(and is denoted by Pa when there is no ambiguity). Explicitly, Pa

is the fiber bundle with base space Ba and with the fiber over b
consisting of all isomorphisms of G-vector bundles (va)b -> G XHV.

These normal orbit bundles are the basic building blocks for a
smooth G-manifold. In the theory which we are developing they
take the place of the more traditional "orbit bundles."

REMARK 2.2. Suppose that F:M~*M' is stratified. Then the
differential of F induces a bundle map F*: va(M)—> va(Mf) which is
an isomorphism on the fibers. Hence, F* induces a map of the as-
sociated principal bundles, which we denote by Fa: Pa(M) —> Pa(Mf).

Next consider the structure group Sa. Recall (1.4) that Sa —
NH(Gx G')/H, where G' = Aut(V) and where H is embedded in
G x G' via h —> (h, φ(h)). (φ is the representation associated to the
iϊ-module V.) Set H' = φ(H).

It is clear that the inclusion map a —> (α, 1) e G x G' restricts to
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a map CH{G) <=-» NH(G x Gr), where CH{G) means the centralizer of
H in G. Let j denote the composition CH(G) ->NH(G x G') ->
NH(GxG')/H — Sa. In a similar fashion, inclusion of the second factor
induces a homomorphism f: CH,(Gr) -» Sα. Also, there are homomor-
phisms

s:NH(Gx G')IH > NH(G)/H

and

8':NH(G x G')/# >NH{G')IHf

induced by the projections on the first and second factors, respec-
tively. The proof of the next proposition is immediate.

PROPOSITION 2.3. The following sequence is exact

1 > CH,{Gr) - ^ S Λ NH{G)jH .

Moreover, if the representation φ: H->Gr is faithful, then the ful-
lowing sequence is also exact

1 > CH(G )^->Sa-^-> N,ΛG')IH' .

For each a, there are two other important bundles associated
to an action. The first is the "orbit bundle," πa: Ma —> Ba which has
fiber G/H. The second is the bundle ra: vJG -> Ba, which has fiber
(G XHV)/G. Here ra is the map induced by ra. We clearly have
that

Ma~G/HXSaPa

and that

vJG~(GXHV)/GXSaPa.

Here Sa acts on G/H and on (G XH V)/G in an obvious fashion. The
problem with the above formulation is that these Sα-actions will
generally be ineffective.

First let us consider the action of Sa on G/H. If a e CH,(Gf),
then j\a) [g, 0] = [g, a 0] = [g, 0]. In other words, the image of
CHr(Gf) acts trivially on G/H. So we define a quotient group

R* - SJj'(CH,(G')) = s(Sa)

and a principal iί^-bundle Oa —> Ba by

Oa - PJC

NH(G)/H acts freely on G/H and the action of Ra may be identified
with the action of the subgroup s(Sa) c NH{G)/H. Hence Ra acts
freely on G/H.
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The kernel of the action of Sff on (G XH V)/G cannot be described
quite so explicitly. But we can still define a group

Ta = Sa/Za

where Za is defined as the subgroup of Sa which acts trivially on
the orbit space (G XH V)/G. (Notice that ker s' c Za.) We can also
define a principal 2>bundle Qa —> Ba by

Qa = PJZa .

The above remarks are collected in the following proposition.

PROPOSITION 2.4. There are natural isomorphisms

and

vJG = (G XH V)/G XTa Qa .

II. The Structure of Orbit Spaces

1* Smooth invariant theory* Suppose that G acts smoothly on
M and that π: M—> M/G is the orbit map. Let S* be the smooth
structure on M, i.e., let S^ be the sheaf of germs of C°° functions
on M. The induced functional structure π*.9^ is called the quotient
smooth structure on M/G. In this spirit, a function /: M/G —> R is
smooth if foπ is smooth, and a map of such spaces which preserves
the functional structure is a smooth map. This terminology is not
in anyway meant to suggest that M/G is a smooth manifold (see
[2] and [8] for further details).

By the Slice Theorem, each orbit in M has an invariant neigh-
borhood of the form G XH S, where S is the slice representation.
It is clear that a smooth function on G XH S is G-invariant if and
only if its restriction to S is smooth and iϊ-invariant. In other
words, the inclusion of the fiber induces a homeomorphism S/H =
(G XH S)/G of spaces and an isomorphism of smooth structures.
Hence, determining the local smooth structure of M/G is equivalent
to determining the invariant C°° functions on the various slice rep-
presentations.

Classical invariant theory deals with the related problem of
computing the invariant polynomials of a representation. One of
its fundamental theorems, proved by Weyl (on page 275 of [11]),
states that if if is a compact Lie group and if V is an iJ-module,
then the ring of invariant polynomials R[V]H is finitely generated.
The following theorem, proved by G. Schwarz in [8], shows how
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the invariant smooth functions are determined by the invariant
polynomials.

THEOREM 1.1 (Schwarz). Let H be a compact Lie group and let

V be a H-module. Let {θlf •••, θ8} be a set of generators for R[V]H

and let θ = (θί9 - , 0.): V-+ Rs. Then Θ*C"(RS) = C°°{V)H.

REMARK 1.2. Since θ is invariant, it induces a map 0: V/H-+R8,
which is easily seen to be a topological embedding. Give Θ(V) the
smooth structure induced by the inclusion θ(V)aR8, i.e., a function
on 0( V) is smooth if and only if it extends to a smooth function on
Rs. Then Schwarz's theorem is equivalent to the statement that
θ: V/H-+Θ(V) is an isomorphism. Taken together with our remarks
at the beginning of this section, this shows that M/G has a smooth
structure locally isomorphic to that of certain semi-algebraic subsets
of euclidean space. This result is one of the technical underpinnings
of the theory developed in this paper.

If H acts trivially on Rk, then it follows from (1.1) that
(V x Rk)jH is smoothly isomorphic to V/H x Rk, where the smooth
structure on V/H x Rk is induced by the embedding 0 x id: V/H x
Rk —> R8 x Rk (in fact, this is a key lemma in Schwarz's proof).
From this observation we see that it suffices to study the invariant
polynomials of the normal representations.

2 The tangent space of M/G. Let y e M/G. The stalk of
π*S^ at y is a local ring with maximal ideal ^/έy, the germs of G-
invariant smooth functions which vanish at y. The (Zariski) cotan-
gent space at y is defined as

Its dual Ty(M/G) is the tangent space at y.
Let us now consider the tangent space of V/H, where V is an

if-module (or, equivalently, the tangent space of ((G XH V)/G). The
symbol 0 will be used to denote both the origin in V and its image
in V/H. Let t,//* be the ring of germs of iϊ-invariant smooth func-
tions which vanish at 0. There is a corresponding algebraic object

t /foczR[V]H. This is the ideal of invariant polynomials with no
constant terms.

LEMMA 2.1. ^/^£\ =; ̂ /^£\. Furthermore, if {θ19 , 0.} is
a minimal set of generators for %,#0, then the dimension of T0(V/H)

Proof. The inclusion „ ^ c . /fQ induces a linear map λ: ^
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sίlΌ, then by (l. l)/=rog, where r: RS->R is smooth.
By clearly have that

But r'(0) (^, , θ8) 6. ^ 0 ; hence, /f is surjective. A similar argument
shows that Λ is injective and therefore, an isomorphism- The image
of {θί9 •••, θ8] in ,y/ί^y£\ is clearly a basis; so s = dim ^ ^
dim C^o/^rj) - dim (T0(V/H)).

REMARK 2.2. Let {̂ , •••, 0J be a minimal set of generators for
^/Po. Then polynomials in {θt} generate R[V]H. Let θ = (θίf •••, θ$):
V-+R8 and 0: V/H~>RS be as in § 1 . Then θ induces a linear map
Θ*:TO(V/H)-+TQ(R8). Suppose that dxi denotes the image of θt in
,/^\^€\. As we pointed out in the above proof, {dx19 , dx8} is a
basis for Tf(V/H). Let {A, •••, A} be the dual basis for T0(V/H).
Then θ* clearly sends {Dlf •••, D8) to the standard basis for TQ(RS).
Hence, θ* is an isomorphism.

PROPOSITION 2.3. Let xeM and let y = π(x) eM/G. Then
Ty(MjG) = TO(SJGX). In particular, Ty(M/G) is a finite dimensional
vector space.

This is immediate from the Slice Theorem and the above remark.

REMARK 2.4. If /: M/G —> M'/G is any smooth map of orbit
spaces, then / induces, in an obvious fashion, a linear map
Df: Ty(M/G) -> Tf{y)(M'/G). Df is called the differential of f at y.

3* Weakly stratified maps. In this section we define two terms,
"the normal bundle" of a stratum of an orbit space and "a weakly
stratified map of orbit spaces." We shall show in (3.2) that a
stratified map of G-manifolds covers a weakly stratified map of
orbit spaces. Then we shall establish some further properties of
weakly stratified maps in (3.3) and (3.4).

Set B = M/G. Let a be a normal G orbit type represented by
(if, V) and let

X = G XH V .

Let

Ea = U Tb(B) .

It follows from (2.3) that Ea is a vector bundle over Ba. The ordi-
nary tangent bundle of the stratum T(Ba) is clearly a subbundle of
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Eay so one can define the normal bundle of Ba in B by

Na{B) - EJT(Ba) .

We will write simply Na when there is no confusion. For b e Bai

let Nb denote the fiber of Na at 6. Clearly, Nb ~ T0(X/G), where 0
denotes the point in X/G which is the image of the zero-section of X.

REMARK 3.1. Let va be the normal bundle of Ma in M. The
Equivariant Tubular Neighborhood Theomem states that va is equiva-
riantly diffeomorphic to a neighborhood of Ma in M. Hence, vJG
is isomorphic to a neighborhood of Ba in JS. Therefore, Na is iso-
morphic to the normal bundle of Ba in vJG. In § 1.2, it was shown
that the bundle vJG —> Ba has structure group Ta. It follows that
the structure group of Na can also be reduced to Ta. In fact,

Na ~ T0(X/G) XTa Qa

(see 1.2.4). More will be said about this action of Ta on T0(X/G) in
the next section.

Next, suppose that /: B —> B' is a smooth map of orbit spaces
which preserves the stratification, i.e., such that f(Ba) c B'a for each
a. For any b e Bay we have the linear map Df: Tb(B) -* Tf{b)(B')
(see 2.4). Since f(Ba)aBά, Df carries Tb(Ba) into Tf{b)(Bά). Hence,
i)/ induces a map

The map / is said to be weakly stratified at b if Df is an isomor-
phism; / is weakly stratified if it is weakly stratified at each point.
In other words, a smooth strata preserving map of orbit spaces is
weakly stratified if its differential maps the normal bundle of each
stratum transversely.

Recall that if F: Λf -* M' is any equivariant map, then there is
an induced map of orbit spaces f\B-^>Br so that the following
diagram commutes

PROPOSITION 3.2. If F:M-^Mf is stratified, then the induced
map of orbit spaces f:B-*Bf is weakly stratified.

Proof. The map / is clearly smooth and strata preserving. The
remainder of the proof can easily be seen to reduce to the following
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local formulation. Recall that X = G XH V. Suppose F:X->Xis
stratified. Then we must show that the induced map /: X/G —> X/G
is weakly stratified at 0. Since the differential of F must be an
isomorphism at points in the zero-section of X, it follows from the
Inverse Function Theorem that F is an equivariant diίfeomorphism
on some neighborhood of the zero-section. Hence, / is an isomor-
phism on a neighborhood of 0. Therefore, Df: T0(X/G) -* T0(X/G)
must also be an isomorphism, that is, / must be weakly stratified
at 0.

We shall need the next result in Chapter III. It is a sort of
"Inverse Function Theorem" for weakly stratified maps.

PROPOSITION 3.3. Let X = G XH V and let f: X/G -> X/G be a

weakly stratified map. Then f is an isomorphism on some neigh-
borhood of 0.

Proof. First choose a minimal set of polynomial generators
{θι, •••, 08) for R[V]H as in (2.2). Each polynomial 04 extends to a
smooth G-invariant function St on X defined by #*([#, v]) — θt(y).
Let θ = (9lf , θ8): X-> JBS and let θ: X/G -> Rs be the induced em-
bedding. Using Schwarz's theorem (see Remark 1.2), / may be
extended to a smooth map g: Rs -»R8. By (2.2), we have the fol-
lowing commutative diagram

!•
T0(R8) — TO(RS) .

Since Df is an isomorphism so is Dg. So by the Inverse Function
Theorem, there is a neighborhood U of the origin in Rs such that
g\U: U-*g{U) is a diffeomorphism. Set W= Uf]X/G. We will be
done if we can show that f(W) is open in X/G; for, then the map
9^1 f(w) will be a smooth inverse for f\w.

Set Y= g{U) n X/G. We will show that f(W) = Y and hence,
that f(W) is open. Clearly, f(W)cY. We may assume (by
changing U if necessary) that Y is path connected. Let β be the
principal (normal) orbit type for G on X. By the Principal Orbit
Theorem, Yβ is path connected (since Y is). Pick a point xef(Wβ).
Given an arbitrary point y e Yβ, we can find a path ω: [0, 1] -> Yβ

from £ to y. Let J = {ί 6 [0, l]|α>(ί) ef(Wβ)} = ω~\f(Wβ)). Since
r̂|̂  is a diίfeomorphism, D/: T 1 ^ ^ ) —> Γ/(w)(Γ'i3) must be an isomor-

phism; hence, / maps Wβ diίfeomorphically onto an open submanifold
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of Yβ. Thus, / = ω-\f(Wβ)) is open. Pull back the path ω to a
path ψ = g-1 o β>: [0, 1] -> Z7 from ^ ( α ) to flΓ1^). Let C = ω([0, 1]) Π W.
Then C is clearly closed in U. Hence, φ-\C) = J is closed in [0, 1],
Thus, J, being both open and closed, must be all of [0, 1], and so
y = ω(l) 6 /(Wβ). Therefore, Yβ = /(Wβ). According to the Principal
Orbit Theorem, Y is the closure of Yβ in Y and W is the closure
of Wβ in T7. Thus, g~\Y) = g'\Ϋβ)<zg'ι(Yβ) = Wβ = TΓ, and so,
Yczf(W)f as was to be proved.

Here is one further observation which will be needed in Chapter
III.

PROPOSITION 3.4. Lei F:M-+M' be a stratified map and let
f: B —> Br be the induced map of orbit spaces. Then F is an equiva-
riant diffeomorphism if and only if f is an isomorphism.

Proof. Obviously if F is an isomorphism then so is /. So
suppose that / is an isomorphism. From the facts that / is a strata
preserving homeomorphism and that F is equivariant, it follows
easily that F is an equivariant homeomorphism (see page 97 in [2]).
So it suffices to show that the differential of F is everywhere an
isomorphism. The tangent space at xeMa splits as a direct sum of
^-modules as TXM = TxG(x) + Vx + Tπix)Ba. Since F is stratified,
OF maps TxG(x) + Vx isomorphically onto TF{χ)G(F(x)) + VF{χ). Since
Df: TBa —> TB'a is an isomorphism, it follows that DF maps Tπix)Ba

isomorphically onto Tf{π{χ))B'a. Thus, DF is an isomorphism.

4. Stratified maps* In this section the concept of a "stratified
map of orbit spaces" is defined. The difference between stratified
and weakly stratified maps essentially comes from the fact that
there are two possible definitions for the "derivative" of a map of
orbit spaces. The first of these definitions was given in (2.4). The
second one is given below in (4.2). We will show in (4.5) that a
stratified map of smooth G-manifolds induces a stratified map of
orbit spaces. Furthermore, every stratified map of orbit spaces is
weakly stratified. Conversely, one can ask if every weakly stratified
map is stratified. The section concludes with examples.

As before, let a be a normal orbit type and let X — G XH V be
a representative for a. Scalar multiplication on V induces scalar
multiplication on X. Explicitly, if x = [g, v] e X, then this is de-
fined by tx = [g, tv].

DEFINITION 4.1. For any xeX, let x denote its image in X/G.
Scalar multiplication on X induces an action of the real numbers on
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X/G defined by t°x = tx. This is called scalar multiplication on
X/G.

The normal bundle of G/H in X can be naturally identified with
X. So, if F: X -»X is stratified, then its differential induces an
equivariant bundle automorphism F*:X—> X. F* can be defined by

F*{x) = lim t~ιF(tx) .
£->0

Let f: X/G-^ X/G and /*: X/G -> X/G be, respectively, the maps
induced by F and F*, that is, f(x) = F(«) and /*(#) = J^(ί). It
follows that

We have that JF* G Sα and hence, that /* 6 Ta. (Recall that Sα is the
group of automorphisms of X and that Ta is the quotient of this
group by Za.) The above considerations motivate the following de-
finition.

DEFINITION 4.2. Let /: X/G —• X/G be a smooth strata preserving
map. For each t Φ 0, define ft:X/G-*X/G by /t(s) = ί~ lo/(ί°s)-
Then /λ is also smooth and strata preserving. We will say that /
is stratified at 0 (0 6 X/G), if, as t —> 0, the maps / t converge smoothly
to a smooth isomorphism /*, and if /* 6 Ta.

In the following lemma we prove the chain rule for the above
definition of "derivative."

LEMMA 4.3. Suppose that the maps f: X/G -> X/G and g: X/G ->
X/G are stratified at 0. Let h=f°g. Then h is stratified at 0
and h* = /*°0*.

Proof. The proof is formally the same as the proof of the
ordinary chain rule. First pick a minimal set of generators {θ19 , 0J
for /^[y]^, as in (2.2). We may suppose that the 0/s are homo-
geneous polynomials. As before, we get a map θ\ X/G —> R% which
we regard as an inclusion. The action of R on X/G extends to an
action on Rs by the formula t<>(χl9 ...,&,) = (td{1)xίf , έrf(8)#s), where
d(i) is the degree of 0<. We can write #(&) = flf#(ί») + i2ff(ic), where
Rg = 9 - g*:X/G->Rs. Clearly, r 1 oRg(t o x) -+ 0 as ί->0. So the
function P,(£, cc) defined by

is continuous. We have that
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( 1 ) g*(t o x) — lim s"1 o g(st o x)
0

(2) g(toχ) = g*(toχ) + Rg(toχ)

= to[g+(χ) + Pg(t, X)]

(3) lim r 1 o B / ^ t o x)) = lim r 1 o Rf(t o [g^x) + pg(t, x)])
ί->0 ί->0

- 0

( 4 ) t~ιo h(t o x) = r 1 o/(ff(t o a?))

= t-'of^gifox)) + r'

Therefore,

fc*(aθ = lim ί"1 © fe(ί o a;)

= lim r 1 o Λ ί ^ ί o x)) , by (3) and (4)

= lim r 1 <>/,.(« o [^(α) + Pff(έ, «)]) , by (2)

- lim Ug*(x) + Pg(t9 x)) , by (1)

= /*(α*O)) >

which proves the lemma.

Suppose, as before, that G acts smoothly on manifolds M and
M' and that π:M->B and π': Λf' —> Br are the orbit maps. Let
f: B-> B' be a smooth strata preserving map and let b e Ba. By the
Slice Theorem, π~\b) has a neighborhood of the form G XH(Vx Rm) =
X x Rm. So, we can choose an equivariant chart ψ: U—> X x l?w,
where Z7 is an invariant neighborhood of π~\b). Let ψ:π(U)-+
X/G x Rm be the induced map. We may also choose an equivariant
chart ψ'\ U'-*Xx Rm so that f(π(U))(zπ'{U'). Let g be the germ
at fib) of the map X/G x Rm-^ X/G x Rm' defined by ψofoψ~\
Also, let /& be the composition

X/G «=—> X/G x JSm - i U X/G x IT' > X/G

where the first map is the appropriate inclusion and the third map
is projection on the first factor. Clearly, h is smooth and strata
preserving.

DEFINITION 4.4. In the above situation, /: B -*Bf is said to be
stratified at b if h is stratified at 0; / is stratified if it is stratified
at each point.

We must show that this definition is independent of the choice
of charts ψ and ψr. The effect of changing one of these charts is
to alter h be composition with a map from X/G to itself which is
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stratified at 0. So, it follows from (4.3) that the altered h will also
be stratified at 0, as claimed.

THEOREM 4.5. If F: M->M' is a stratified map of G-manifolds,
then the induced map f: B-+ B* of orbit spaces is stratified.

Proof. It clearly suffices to prove this locally, that is, it suffices
to consider the case where M = X x Rm and M' = X x Rm> and to
show that /: X/G x Rm -> X/G x Rm is stratified at points of the
form (0, z). But this case is obvious, as we observed at the be-
ginning of this section.

In order to prove that stratified maps are weakly stratified, we
must examine the action of Ta on X/G more closely. Recall that
s': Sa -> NHf(G')/Hf and that the action of Ta on X/G may be iden-
tified with the restriction of the natural action of NHr(G')/H' (made
effective) to the subgroup s'(Sa). (See § 1.2.) NH,(G') acts linearly
on V and the action preserves iJ-orbits; hence, NH,{Gr)/H' acts
smoothly on V/H = X/G. The restriction of action to Ta preserves
the stratification on X/G (which may be different from the stratifica-
tion of V/H by normal H-orbit type). Since NH,(G') acts linearly
on V, it acts from the right on polynomials. Suppose that φ is an
iϊ-invariant polynomial, that h e H', and that L e NH,(G'). Then
Φ L(hv) = φ(Lhv) = φih'Lv) = φ(Lv) = φ L(v), for some hJ e H'. That
is, R[V]H is invariant under the action of NH>(G'). Since Hr clearly
acts trivially, the action factors through NH,(G')/H' (and hence, the
subgroup Ta acts on R[ V]H). Let Pm c R[ V]H denote the subspace
consisting of those H-invariant polynomials which are homogeneous
of degree m. Pm is clearly invariant under the action of NH>(G')/H'.

LEMMA 4.6. There is a minimal set of generators {θly * ••,#*}
for R[V]H such that

( 1 ) θi is homogeneous degree d(i) and 2 <̂  d(ΐ) ^ d(2) ^ d(s).
( 2 ) If P'm is the subspace of Pm spanned by {θi \ d{i) = m}, then

P'm is invariant under NH,(G')/Hr.

Proof. First we show that the linear representation of NH,{G')
on Pm is completely reducible. Since Hf is compact, it is a (real)
algebraic subgroup of G' = GL(V). Hence, NH,(Gf) is also an algebraic
subgroup. In particular, this implies that πo(NH,(G')) is finite. Next,
let CH,(G') denote the centralizer of ΈLf in Gr and let Gw = CH,(Gf) Π H'
be the center of Hf. Then CH,(Gr) is a product of general linear
groups (over either the real, complex or quaternionic numbers) and
the action of CH,{Gr) on V is via a product of standard representations.
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Hence, CH,(G') is a reductive algebraic group. CH,(G')/CH, is a normal
subgroup of NH,(G')/Hr and both groups clearly have the same Lie
algebra. Therefore, the quotient group is discrete. In fact, the
quotient is finite since \πo(NH>(G')/H')\ < °°. Since the semi-direct
product of a reductive group and a finite group is also reductive, we
conclude that the action of NH,(G')/H' on Pm is completely reducible.

Now, pick a basis {θ19 ••, θp(?)} for P2 (since VH = {0}, Px = {0}).
Assume, by induction, that we have chosen a minimal set of gen-
erators {θlf •••, θv{i)} for the image of P2 + + P, in R[V]H. Let
Qi+1 be the image of P2 + + Pt in PiΛl. Then Q<+1 is obviously
invariant under Nir(G')/H'. Let P*+1 be a complementary invariant
subspace for Qi+ι and let 0p(<)+1, •••, θpli+ί) be a basis for P +1. Since
/J[F]^ is finitely generated this process stops after a finite number
of steps. The result is the desired set of generators.

From now on, we will let {θu •••, θ8] be a minimal set of gen-
erators for R[V]H, chosen as in the above lemma, and we will let
θ == (θ19 . ., θ8): X/G —> Rs be the induced embedding. If dxt denotes
the image of θt in ^/fo/^€2

o = T*(X/G), then {dxt} is a basis. Let
{A, •••, A} be the dual basis for T0(X/G) and let {ê  •••, es} be the
standard basis for R\ We will also use Dt to stand for the standard
basis element of TORS. This notation should cause no confusion, for
a function g: X/G —> i ί is smooth if and only if it extends to a
smooth function g on R8, in which case Dtg — Dtg.

Let a 6 NH,(G')/H'. The action of NH,(G')/H' extends to a linear
action on R8 defined by et a = Σaiάeά where the matrix (atί) is defined
by the formula θt a = Σai3-θj. Here the summations extend over
all j with d(j) =

LEMMA 4.7. If f: X/G —> X/G is stratified at 0, £fcew / is αίso
weakly stratified at 0.

Proo/. We must show that Df: T0(X/G) -> T0(X/G) is an isomor-
phism. Regarding X/G as a subset of R8, we can write / =
(/M , /.): X/G - /2s where /, - θt of. We also have /* - (/1J|t, , / S J
where

(1) /„(*„ , x.) = lim r

Since / # e Ta, it follows from (4.6) and the above remarks that

( 2 ) /<*(&!, •••,».) = ^a<yaj y

where ai5 = 0 whenever d(i) ^ eZ(i). In other words, (aiS) is a matrix
of the form
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0

where there are nonzero blocks A, B, , C only where i and
satisfy d(ϊ) = d(j). Consider what it means for the expression

( 3 )

to converge as t —> 0. Clearly, the first d(i) — 1 derivatives of the
numerator (with respect to t) must vanish at t = 0. Calculation
shows that this implies that D^D^ Djmfi = 0 whenever d(j\) +
d(j2) + + d(jm) < d(i). (Recall that Ds is partial differentiation
at OeR* with respect to the ith coordinate.) In particular, this
shows that Ώifi = 0 whenever d(j) < d(i). Next, use lΉopitaΓs
rule to calculate the limit of expression (3) as t —> 0. Differentiating
the numerator and denominotor d(i) times we obtain

( 4 ) fi(x •••#) =

where ε ίr..iw = dOΊ)! * d(jm)l/d(i)l and where the summation is taken
over all (jιt •••, im) with d(ix) + ••• + d(im) = d(i). But, according
to (2), ft* is a linear combination of the x/s. So, in (4), we must
have that Dh Djmft = 0 whenever m > 1. It follows that
fi*(χit'9 •» χs) — ΣiDjf^ Xj and hence, that Dy/i = α^ whenever d(i) =
d(j). In other words, the matrix (Djft) has the form

B

0

Since (α^ ) is nonsingular so is (Dy/*). But (!),•/<) represents the
linear transformation D/: T0(X/G) -> T0(X/G). Hence, / is weakly
stratified at 0.

By using local charts, the above lemma immediately yields the
following global formulation.

THEOREM 4.8. Every stratified map of orbit spaces is weakly
stratified.

The converse is an interesting question. This is again a local
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problem. According to (3.3), a map f: X/G—> X/G which is weakly
stratified at 0 is a smooth strata preserving isomorphism in some
neighborhood of 0. Thus, this amounts to the following:

Question 4.9. Is every smooth strata preserving isomorphism
/: X/G -> X/G stratified at 0?

The Covering Isotopy Theorem (see [1], [10] and § IIL2) provides
the following partial answer: if ft:X/G-*X/G is a smooth one-
parameter family of (weakly stratified) isomorphisms and if f0 is
stratified at 0, then so is each ft. G. Schwarz has pointed out that
the answer to (4.9) is not always affirmative. For example, let W
denote the real 8-dimensional spin representation of G — Spin (7),
and let X = 4 W. Then X/G embeds in R11 and there is a linear
automorphism of Rn which restricts to a strata preserving automor-
phism of X/G and which is not in the image of NG(GL(X)). Hence,
this automorphism is not stratified. In the next example we con-
sider a case where the answer to (4.9) is affirmative.

EXAMPLE 4.10. Suppose that G = O(n + m), H = O(n) and that
V is M(n, k), the space of n x k matrices (on which O(n) acts by
matrix multiplication on the left). Let H(k) be the space of k x k
symmetric matrices and let H+(k) be the subspace of positive semi-
definite ones. Define a polynomial mapping θ: M(n, k) —> H(k) by
θ(x) = x* x. According to [11], the entries of θ generate the in-
variant polynomials on M(n, k). If n ^ k, then the image of θ is
H+{k), so in this case X/G = H+(k). It is easily checked that Sa =
O(m) x GL(k) and that Ta = GL(k)/{±l} which acts on H+(k) by
(g, x) —> g*xg. Suppose that /: H+(k) -> H+(k) is a strata preserving
isomorphism and that Df is the differential at 0. Then Df(z) =
lim^o t~ιf(tz) is an isomorphism. It follows that /*(#) = limf_0 t'2f(t2z)
also exists and can be identified with the same isomorphism of H(k).
The pertinent point is that the entries of θ are homogeneous poly-
nomials of the same degree (namely, of degree two). We claim
that Λ e GL(k). Let det: H{k)~^R be the determinant. For t Φ 0,
let ft(z) = t~2f(t2z). Since ft preserves the stratification, it preserves
def^O) Π H+(k). It follows that /* belongs to the subgroup of
Aut (H(k)) which preserve the hypersurface det"1 (0) and positive
semi-definiteness, but this subgroup is precisely PGL(k). This last
statement is essentially a well-known theorem of Frobenius (see [4]
for details). Thus, /* 6 Ta, i.e., / is stratified at 0.

More generally, suppose O(n) acts smoothly on M. We say that
M is a regular O(nymanίfold or is modeled on kpn if the normal
orbit types of O(ri) on M are of the form [O(n — i), M(n — i, k — %)],
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0 ^ i ^ k, (these are the normal orbit types of O(n) on M(n, &)).
It follows from the above analysis that for orbit spaces of regular
O0)-manifolds weakly stratified maps are stratified. The same result
is true for regular U(n) or Sp(n)-ma,nifolds by an essentially identical
analysis (see [2] and [4]).

5* The category of local G-orbit spaces* In this section, we
shall define "local G-orbit spaces" and "weak local G-orbit spaces."
The definition of the previous section will be extended to define
"stratified maps of local G-orbit spaces." Roughly speaking, a local
G-orbit space will be a space together with a collection of local
charts to orbit spaces so that the transition maps are stratified iso-
morphisms. Also, for each stratum of a local G-orbit space B, we
shall define a bundle Ca(B) -> Bat and examine its properties.

Let I(G) be the set of normal G-orbit types. Pick a representa-
tive (H\ Va) for each aeI(G), and let Xa = G X7/« V".

If B is a space, then an I{G)-chart of type a is a homeomor-
phism ψ: U —»Xa/G x Rm from an open set UaB onto an open
neighborhood of (0, 0) in Xa/G x Rm. Let J / be a collection of
/(G)-charts which cover JS. Suppose that if ψ and ψf are charts in
Szf of type a and ar, respectively, then the following two condi-
tions hold:

(1) U Π V is empty unless a <, a! or a' <. a (where U and Ur

are the domains of ψ and <ψ>', respectively).
(2) φ'ψ-1: ψ(Ud U') -> f (UΠ 17') is a stratified isomorphism of

orbit spaces.
Such an Stf is called an I(G)-atlas for B. A local G-orbit βpαce is
a Hausdorff space I? together with a maximal /(G)-atlas. We shall
usually also require that m + dim Xa is constant for each chart (this
is automatic if B is connected). Local G-orbit spaces are similar to
G. Schwarz's "Q-manifolds."

REMARK 5.1. Suppose that we replace condition (2) in the above
definition by condition

(2') φ'φ-1: ψ(Uf) Uf) -> φ'(Un U') is a weakly stratified isomor-
phism.
Then we obtain the notion of a weak I(G)-atlas and the corresponding
notion of a weak local G-orbit space. Clearly, any local G-orbit
space is a weak local G-orbit space.

Since each Xa/G has a "smooth" structure (see § 1), a weak
/(G)-atlas defines a smooth structure on a weak local G-orbit space
B. Also there is a natural stratification on B defined as follows.
If ψ: U->Xa!G x Rm is a chart of type α, then let Ua = ψ~\{0} x Rm).
The a-stratum of B consists of all those points which lie in some



336 MICHAEL DAVIS

Ua (for a fixed a). Clearly the strata are disjoint smooth manifolds
and B = U Ba.

It should be clear how to define a stratified map of local G-
orbit spaces. Explicitly, /: B —> B' is stratified if for each chart ψ
on B and ψr on B'f the map fΌ/oψ" 1 is stratified (where the com-
position is defined). Similarly, one can define a weakly stratified
map of weak local G-orbit spaces.

Let & be the category with objects local G-orbit spaces and
with morphisms stratified maps. & is, indeed, a category; for, the
only axiom which is not obviously satisfied is that the composition
of two stratified maps is stratified, but this is immediate from (4.3).
Similarly, there is a category έ@w of weak local G-orbit spaces and
weakly stratified maps.

THEOREM 5.2. Suppose that G acts smoothly on M. Then M/G
naturally has the structure of a local G-orbit space.

Proof. The point is that we can choose a collection of equi-
variant charts on M of the form Φ: W~-> Xa x jRm, where {W} is an
open cover for M and where the transition maps are equivariant
diffeomorphisms. It then follows from (4.5) that the induced charts
ψ: WjG -* Xa/G x Br will be an I(G)-atlas for M/G.

If B is actually the orbit space of a smooth G-action on M,
then there is a fiber bundle over Ba which is isomorphic to a neigh-
borhood of Ba in JB; namely, CJJS) — va(M)/G. We want to show
how to define Ca(B) without mentioning M, that is, how to define
Ca(B) for an arbitrary local G-orbit space B.

Consider a smooth curve ω: [0, 1] —> X/G such that α>(0) — 0.
We say that ω is a good curve at 0 if t'1 o ω(t) converges to a point
in X/G as t —• 0, in which case this point is denoted by ω*(0) 6 X/G.
Notice that if /: X/G -> X/G is stratified at 0, then foω is also a
good curve at 0 and (/ofi))#(0)=Λ(α)#(0)). Also, notice that if
θ: [0,1] —> X is a smooth curve and if π: X~^> X/G is the orbit map,
then π°d is a good curve at 0 and (π0 0)^(0) can be identified with
the image of θ^{d/dt) in X/G. (Here we are identifying X with the
normal bundle of G/H in X, as usual.)

This definition can be promoted to an arbitrary local orbit space
JB, as follows. Let b e Ba. Suppose that ω: [0, 1] —> B is a smooth
curve with ω(0) — b. Let ψ: U-+Xa/G x Rm be a chart of type a
defined on some neighborhood of 6. Let p: Xa/G x Rm —> X*/C? be
projection on the first factor. Finally, let ώ — poψoω: [0, ε] —>X/G,
where [0, G\CGΓ\TJ). We say that ω is a good curve at b if ώ is
a good curve at 0. If a>t is another good curve at 6, then ω is
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equivalent to ωλ if ώ*(0) = ώi*(0). Clearly, the notions of good
curve and of equivalence of good curves are independent of the
choice of chart. Thus, let (Ca)h be the set of equivalence classes of
good curves at ί>, and let

Ca{B) =
be

The chart ψ provides us with a bijection ^* Ca(U) ~> Ca(Xa/G x Rm) ^
Xa/G x Rm. If for each chart ψ we require that ψ^ be a homeo-
morphism, then this defines a topology on CJβ) and gives Ca(B) the
structure of a (locally trivial) fiber bundle over Ba with fiber Xa/G.
Since the transition functions are stratified, it follows that the struc-
ture group of this bundle is Ta. As usual, we shall often write
simply Ca instead of Ca{B).

REMARK 5.3. If £ = M/G, then Ca(B) = va(M)/G.

REMARK 5.4. If f:B-*Br is a stratified map of local G-orbit
spaces, then for each aeI(G), f induces a bundle map f*:Ca(B)—>
Ca(B') defined by α>->/oα>.

We shall need the following "Tubular Neighborhood Theorem"
in Chapter IV.

THEOREM 5.5 (Tubular Neighborhood Theorem). Let B be a local
G-orbit space and let a be a normal orbit type.

(Existence). There is a stratified map T:Ca—> B which maps Ga

isomorphically onto some neighborhood of Ba in B that T\Ba is the
inclusion and such that T*: Ca-> Ca is the identity.

(Uniqueness). If T': Ca —> B is another such stratified map then
there is a stratified isotopy Φ: Ca x [0, 1] —> B such that Φo — T and
Φλ - Γ'

If B is actually an orbit space, then this theorem follows im-
mediately from the Equivariant Tubular Neighborhood Theorem (and
this is really the only case in which we need the above theorem).
The proof of existence in the general case will be omitted, since it
would take us too far afield. As we shall show below, the proof
of uniqueness is virtually identical to the proof of the uniqueness
part of the ordinary Tubular Neighborhood Theorem. By altering
T by an isotopy we may assume that T(Ca) c T\Ca). Consider Λ —
T~ι°Tf:Ca-± Ca. The real numbers act by fiber wise scalar multi-
plication on Ca as in (4.1). For £e(0, 1], define Λt(x) — t~ιoΛ(t°x)
and set Λo = Λ* = id. Define Φ(x, t) = T(Λt(x)). Then Φ(x, 0) = T(x)
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and Φ(x, 1)== To Γ o f ^ ) = T'(x), as claimed.

6* The category of smooth G-manifolds*

DEFINITION 6.1. A smooth G-manifold is a triple (Λf, B, p) where
M is a manifold on which G acts smoothly, B is a local G-orbit
space, and p:M-^B is a smooth map which is constant on orbits
and which induces a stratified isomorphism p: M/G -» 2?. Λf is called
the ίoίαϊ space, B is the δαse space, and p is the projection map.

In the usual fashion, we will sometimes blur the distinction be-
tween a G-manifold and its total space and write simply "M is a
G-manifold." When we wish to emphasize the base space, we shall
say that M is a G-manifold over B.

Let <3f be the category, the objects of which are smooth G-
manifolds and the morphisms of which are stratified maps of the
total spaces (see 1.1.8). If F:M-^Mf is stratified, then there is an
induced map π(F)\B—>Br which makes the following diagram
commute

AT — M'

\<

It follows from (4.5), that π{F) is a stratified map of local orbit
spaces. We state this as the following proposition.

PROPOSITION 6.2. There is a functor π: 3$ —> & which assigns
to each G-manifold its base space and to each stratified map F the
induced map π(F).

REMARK 6.3. There is also a functor W: & -> ̂  which as-
sociates to each local G-orbit space the underlying weak local G-orbit
space and therefore, a functor πw = W°π; & -> &w.

III. Pullbacks

1Φ The pullback construction* Let M be a smooth G-manifold
over B with projection map p:M-+B. Suppose that A is a weak
local orbit space and that f: A—> B is weakly stratified (see §11.3),
Define /*(Λf), the pullback of M via /, as

/*(Λf) - {(x, a)eMx A\p{x) = /(α)} .

There is a commutative square
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f*(M) -L, M

\,

where / and q are the maps induced by projection on the first and
second factor, respectively.

THEOREM 1.1. With the above hypotheses, A naturally has the
structure of a local G-orbit space, and (/*(Λf), A, q) is a smooth
G-manifold over A. Moreover, f is stratified.

REMARK 1.2. The subspace f*(M) c M x A could have been de-
fined for any map /; however, in this generality, it definitely would
not be a manifold. The main point of Theorem 1.1 is that f*(M)
will be a smooth manifold whenever / is weakly stratified. The
proof given below was suggested by the proof of a special case in
[3]. For a stratified map /, a different proof could be given by
using the results of Chapter IV.

Proof of (1.1). Since M is a smooth manifold and since A is a
weak local orbit space, M x A has a natural "smooth" structure
(i.e., a functional structure). Let G act trivially on A and via the
product action on M x A. Then this action on M x A is through
smooth isomorphisms. The subspace f*(M) is clearly G-invariant.
Moreover, it inherits a smooth structure induced by the inclusion.

We shall show that with this induced smooth structure gives
f*(M) the structure of a smooth manifold. Since the problem is
local, by choosing charts, we may assume that M — X x R%, that
B == X/GxRm and that A = X/G x Rn, where X ( = Xa) is a G-vector
bundle representing a normal orbit type a. As usual, we regard
X/G as a subset of R8. Since /: A —> B is smooth, it extends to a
smooth map g: Rsx Rm->RS x J8\ For each z e Rm, define gz: Rs -> Rs

by flrβ(i/) = pr (g(y, z)), where pr: Rs x Rn —> Rs is the projection on
the first factor. Let fz:X/G —> X/G be the restriction of ^ . Since
/ is weakly stratified, so is fz. So, it follows from the proof of
Proposition 3.3 in Chapter II, that there is an open neighborhood
U of the origin in Rs such that gz\v is an embedding and such that
fz\ix/Gf)u) is an isomorphism onto some neighborhood of 0 in X/G.
It is then easy to see that we can choose a neighborhood Y x Wcz
Rs x Rm so that for each zeW, fz maps Y Π X/G isomorphically
onto a neighborhood of 0 in X/G. Consider the map Φ: Mx (YxW)—>
Rs x Rn defined by

Φ(x, y, z) = p(x) - g(y, z) .
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We assert that Φ is a submersion. Suppose that z = (r, s) e X x Rn

(recall that M = X x iJw). Clearly, the differential Dgiy,z) maps Γ/Γ)
isomorphically onto the subspace Tgz{y)(Rs) and i ? ^ maps the sub-
space Ts(Rn) c TX{M) isomorphically2 onto Tp{χ)(Rn). Thus, DΦ =
Dp — D<7 is everywhere surjective, i.e., Φ is a submersion. So, by
the Implicit Function Theorem, Φ~\0, 0) is a smooth submanifold of
M x (Γ x W). Clearly, /*(M) n M x (Γ x TF) c φ-^O, 0). On the
other hand, if (#, #, z) e Φ~\0, 0), then g(y, z) = p(a?) and therefore,
flrβ(y) e X/G. But by the proof of Proposition Π.3.3, Image (/,) =
Image (gz) n X/G; so it follows that fϊ\gM(y)) =' » e X/G. Thus,
(x, y, z)ef*(M) and so /*(ΛΓ) Π M x ( 7 x I f ) = Φ"1^, 0), that is,
f*(M) is a smooth manifold.

Next, consider the smooth map g: f*(M) —»A. It induces a
smooth map <j: f*(M)/G —> A which clearly preserves the stratifica-
tion. We can identify f*(M)/G with the graph of / and q with
the map (/(α), α) -> α. Since α —> (/(α), α) is obviously a smooth
inverse for g, it follows that q is a (weakly stratified) isomorphism.
Since f*(M)/G is an orbit space, it is a local orbit space. Thus,
the isomorphism q defines a local orbit space structure on A.

It remains to check that /: f*(M) —> M is stratified, i.e., that it
is smooth and equivariant and that it preserves normal representa-
tions (see 1.1.8). / is clearly smooth and equivariant. Moreover,
G(Xta) = Gx = Gf{x,a). Let us compute the normal representation at
(a?, a)ef*(M). We have that

T{x,a)f*(M) = {(v, w) 6 TM x T.A\Dp.(v) = U/β(w)} .

In particular, ker dpx c T{χ>a)f*(M). Let V̂  and F(a.>α) be the respec-
tive normal representations at xeM and (x, a) e f*(M). Since
ker "dp. = V. + T.(G(x))f it follows that T{χ,a)f*{M) = V. + Γ.(G(a?)) + F,
where F is a trivial G^-module. Hence, F(a.fβ, = Ve. Since the pro-
jection Γ^M x ΓαA —• T^M maps T̂ . onto itself, the same is true for
its restriction to Df: T{β,a)f*(M) -> TXM. Thus, / is stratified.

The hypothesis of the above theorem is that A is a weak local
orbit space and that / is weakly stratified. If we had assumed at
the outset that A was a local orbit space and that / was stratified,
then one might well ask if the isomorphism q: f*(M)/G —> A is
stratified. This is indeed the case. For, foq\f*(M)IG-*B is cer-
tainly stratified, since it is covered by the stratified map/. Since
/ is also assumed to be stratified, it follows easily that so is q.
Therefore, Theorem 1.1 has the following corollary.

THEOREM 1.3. Let M be a smooth G-manifold over B and let
f: A—> B be a stratified map (of local orbit spaces). Then f*(M)
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is a smooth G-manifold over A.
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To justify the terminology "pullback," we should show that
f*(M) satisfies the universal property of pullbacks. First let us
briefly recall the relevant definitions from category theory. Let
ό:C->D be a functor. For any object Y in D, we can define a
category φ"\Y) called the fiber at Y. The objects of φ~\Y) consist
of those Xeob C such that φ(X) = Y, and Hom r i ( r ) ( I , X') consists
of those morphisms u: X —> Xf such that φ(u) = id r. An arbitrary
morphism u\X-^Xr in C is cartesian if for any X" e ob φ~\φ(X)),
the natural map HomΓi (^ (J) ) (X", X) -> {t e Hom^ (X",
is a bijection.

Φ(X')

The functor 0 is prefibered if for every morphism s: Y—> Yf in D
with F' = φ(X'), there is a cartesian arrow u:X-+X' lying over it
(i.e., with φ(u) — s). φ is fibered if, in addition, the composition of
cartesian arrows is cartesian (the terminology "C is a fibered category
over D" is perhaps more common).

Recall that & and &w are the categories of local G-orbit spaces
and weak local G-orbit spaces, respectively, and that π: & -* &
and πw\ & —> ^ w are the canonical functors (see II.8).

THEOREM 1.4. The functors π:
fibered. In fact, every morphism in
to either π or πw).

> & and πw: & -> 3$w are
is cartesian (with respect

Proof. We prove the theorem for πw, the proof for π being
identical. Let M be a smooth G-manifold over B (i.e., πw(M) = B)
and let /: A -»B be weakly stratified. First we show that /:
f*(M) —> ikf is cartesian. Suppose that Λf' is another smooth G-
manifold over A with projection map r: M' -» A and that t: M' —> M
is a stratified map covering /. Define ft: ikf' —> /*(ikf) by ft(α ) =
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Since r and t are smooth so is h; furthermore, h is stratified since
t is. Thus, πw is prefibered. Since πw(h) is the identity, it follows
from Proposition Π.3.4 that h is an isomorphism (i.e., that h is an
equivariant diffeomorphism). Thus, t is also cartesian. But we
could have started with an arbitrary stratified map t: Mf —> M, set
/ = πw(t) and reached the same conclusion. Thus, every isomorphism
is cartesian and therefore, πw is a fibered functor.

REMARK 1.5. The fiber π~\B) is called the category of G-
manifolds over B. As we pointed out in the above proof, it follows
from II.3.4 that the morphisms of π"\B) are equivariant diffeomor-
phisms which cover the identity on B.

2* The Covering Homotopy Theorem*

THE COVERING ISOTOPY THEOREM 2.1. Let M be a smooth G-
manifold over B. Suppose that Φ: B x I-+B is a smooth one pa-
rameter family of (weakly stratified) isomorphisms with Φo = id*
(Φ is an "isotopy"). Then there is an equivariant isotopy ψ: M x
J—> M with πw(ψ) = Φ and with ψ0 = id^.

This was conjectured by G. Bredon. It was proved for finite
groups by E. Bierstone [1], for regular O(n), U(n) and Sp(n) actions
in the author's thesis, and in full generality by G. Schwarz [10].

The Covering Isotopy Theorem is implied by the statement that
a vector field on B which is tangent to each stratum can be lifted
to an invariant vector field on M. The proofs of both Bierstone
and Schwarz involve first proving this "Vector Field Lifting Theo-
rem." Using the pullback construction, we shall show how this
implies the following smooth version of Palais' Covering Homotopy
Theorem (see [2], [8]).

M'
THEOREM 2.2 (The Covering Homotopy Theorem). Let M and
be smooth G-manifolds over B and Bf and let F: M —> M! be
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stratified. Suppose that h: Bx I->Bf is a weakly stratified homotopy
with h0 = πw(F). Then, there is a stratified homotopy H: ilίx I->M!
extending F and covering h {i.e., with τtw(H) = h).

Proof. Since h0: h*(M') —> Mf is cartesian, there is an equivariant
diffeomorphism F':M-*hZ{M') covering the identity on B (see 1.4).
The theorem now follows from the assertion that there is an equi-
variant diffeomorphism ψ:h*(Mf) x I—>h*(M') covering the identity
on B x I. For, assuming this, the homotopy H can be defined to
be the composition H=h,oψo(F'xid): MxI-» Ao*(ΛΓ)x I-*h*(M')-»M'.

So, it remains to produce the equivalence ψ. Consider the vector
field d/dt on B x I. By the Covering Isotopy Theorem, djdt lifts
to an invariant vector field X on h*(M'). Let r be the map
h*(M') —> B x /—>J. Let Λz be an integral curve for X through
zeh*{M'). Then, r*(dΛz/dt) = 1. Hence, r(Λz(t)) = t+ constant. So,
by reparameterizing, we may assume that r(Λz(t)) = t. Let c denote
the composition h*(M')-+Bx /—>!?. Since Λz stays inside the com-
pact set c~\c(z)), it extends to a maximal integral curve parame-
terized by [0, 1]. So, define ψ: h%(Mf) x I-*h*(M') by ψ(z, t) = Az(t).
This is the required equivalence.

Let M and M' be smooth G-manifolds over B and Br. Put the
coarse C°°-topology on Hom^ (AT, M') and on Hom^ (B, Bf). Let
Diff? (M) = Hom,-i(ΰ) (M, M) be the group of equivariant diffeomor-
phisms of M which cover the identity on B. The following con-
jecture would be a strengthened version of 2.2.

Conjecture 2.3. π: Hom^ (ikf, M') —• Hom^ (JB, JS') is a principal
fibration with fiber Difff (ikf), (by "fibration" we only mean that π
has the Covering Homotopy Property).

IV. Normal Systems

In this chapter we show how a smooth G-manifold can naturally
be regarded as a collection of principal fiber bundles over certain
manifolds with corners. These collections of bundles are called
"normal systems." The main ideas of this construction are explained
in § 1, where we describe a functorial association of normal systems
to G-manifolds. The principal results are stated in § 4. One of
them, Theorem 4.3, states that this functor from & to the category
of normal systems defines a bisection on isomorphism classes. This
result was essentially proved by Janich in [7]. From a certain point
of view, this is just the Equivariant Tubular Neighborhood Theorem.
This idea can be pushed further. Indeed, the next result (Theorem
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4.4) is the analogous theorem for local G-orbit spaces. Then, using
the Covering Homotopy Theorem, we are able to prove another
similar result (Theorem 4.5) for the category π~\B) of G-manifolds
over B. This last result is the one which, perhaps, best isolates
the bundle theoretic aspects of smooth G-manifolds.

1Φ Removing a tubular neighborhood* In this section, we
shall describe a certain functorial process of "removing" a tubular
neighborhood of a stratum. Actually, rather than removing a
tubular neighborhood, this process involves attaching a boundary to
the complement of a stratum—essentially, by passing to "fiberwise
polar coordinates" on a tubular neighborhood of the stratum. The
discussion follows Janich [7].

In order to focus our ideas, we shall, for the moment, forget
about G-manifolds and local orbit spaces and concentrate simply on
"removing" a tubular neighborhood of a submanifold. First, we
need some preliminary material.

Suppose that E is a smooth vector bundle over a manifold A.
Let Eo denote the complement of the zero-section. The positive real
numbers R+ act on E and on Eo by fiber wise scalar multiplication.
There is an associated bundle C+E, called the nonnegative cylinder
bundle, which is defined by

where a positive real number s acts on (x, t)eEox [0, oo) by s (sc, t) =
(xs~\ st). Denote the image of (x, t) in C+E by [x, ί]. The boundary
of C+E is called the sphere bundle, ΣE; it is the subset

ΣE = EQ XR+ {0} s EJR+ .

There is a canonical map c: G+E-+ E defined by c([x, t\) — tx, which
takes C+E — ΣE diffeomorphically onto Eo and ΣE onto A via the
projection mapping.

REMARK 1.1. If we pick a metric for E, then the map [x, 0] ->
x/\x\ identifies ΣE with the set of vectors of unit length in E.
Notice that C+E can also be regarded as a bundle over ΣE with
fiber [0, oo) and with projection map [x, t] —> [x, 0]. Furthermore,
given a metric, there is a bundle trivialization s: C+E-+ΣEx [0, <χ>)
defined by s([x, t]) = (x/\x\, t\x\).

The following lemma is the key to our construction.

LEMMA 1.2. Let E and E' be smooth vector bundles over A and
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A!, respectively. Let ψ: E->Er be a smooth map such that ψ~\Af) = A
and such that the restriction of ψ*:E-+ Er to any fiber is an iso-
morphism (i.e., ψ is transverse to A). Then there is a unique
smooth map: ψ: C+E —» C+E making the following diagram commute

In fact, ψ is defined by the formula

c\ \c

777 Ψ 777

JLU > Jjj .

~r*(x), 0] t = 0 .

In particular, this formula shows that f \ΣE is a bundle map.

Proof. Since c\0+s-χE is a diffeomorphism, it follows that there
is exactly one way to define ψ on C+E — ΣE so that the diagram
will commute; namely, by ψ([x, t]) = [ψ(tx), 1] = [t~ι<f(t(x)), t\. Since
lim^o [t~iff(tx), t] = [ψ*(x), 0] and since ψ must be continuous, we see
that ψ must be defined by the given formula. Moreover, this
formula clearly defines a smooth map.

Now, suppose that M is a smooth manifold and that A is a
submanifold and a closed subset. Let N be the normal bundle of A
in M. Pick a "tubular map" T:N-+M. By a tubular map, we
mean an embedding T: N—> M such that

( i ) T\A is the inclusion and
(ii) 2V iV—> N is the identity.

(Here T* denotes the map from the normal bundle of A in N to
the normal bundle of A in M induced by the differential.) A smooth
manifold with boundary M(*)A can be defined as follows. As a
set, M 0 A is the disjoint union of M — A and ΣN. The tubular
map T induces a map τ: C+N—> M — A U ΣN defined by

θ]; i . e .

As Janich points out, M — A U 2W has exactly one smooth structure
as a manifold with boundary which agrees with the original smooth
structure on M — A and with respect to which r is a diffeomorphism
onto a neighborhood of ΣN in M — A U ̂ iSΓ. This manifold with
boundary is denoted by M®A. The map τ: C+N—>M® A may be
regarded as a collared neighborhood of the boundary.

In everything that follows, we shall only be concerned with the
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"germ" of a tubular map or of a collared neighborhood. So let us
adopt the following conventions. If E is a smooth vector bundle,
then the symbols "/: E -> X" will mean only that the domain of /
is some neighborhood of the zero-section. Similarly, the domain of
g: C+E —> X will only be required to be some neighborhood of ΣE.
The phrase "/: E-> X (respectively, g: C+E-^ X) is a diffeomorphism"
will only mean that / (respectively, g) is a diffeomorphism from
some neighborhood on the zero-section (respectively, ΣE) onto its
image.

Let us consider the effect on our construction of altering the
choice of tubular maps. We claim that the smooth structure on
M®A is independent of the choice of T. For, let TΊN-+M be
another tubular map and let r': C+N-+ M® A be the induced collared
neighborhood. Since the smooth structure on M ® A was defined
by requiring τ to be a diffeomorphism, our claim amounts to the
assertion that Γ ^ r ' : C+N—> C+N is a diffeomorphism. But, clearly
τ^oτ' — ψ, where ψ = T~ι°T'\ N'—»N; so this assertion follows
from Lemma 1.2. This argument also suggests how to define an
equivalence relation on collared neighborhoods so as to make the
equivalence class of r independent of the choice of tubular maps.
To be specific, two collared neighborhoods τ:C+N->M®A and
τ':C+N-+ M®A are equivalent if Γ ^ Γ ' ^ Ϋ , where ψ:N-*N is
the germ of some diffeomorphism with ψ~\A) = A and with ψ* — id^.

So, given a manifold M and a submanifold A, we have con-
structed a 4-tuple (M ® A, N, Θ, [τ]) consisting of

(1) a manifold with boundary, M ® A,
(2) a vector bundle N over a manifold A
(3) a diffeomorphism θ: ΣN-^ d(M ® A), and
( 4) an equivalence class [τ] of a collared neighborhood τ: C+N->

M® A, where τ \ΣN — θ.
Conversely, given any such 4-tuple (Y, E, θ> [τ]), one can recover

a manifold M together with a submanifold A (the base space of E).
For, let τ: C+E->7 be a collared neighborhood in the given equi-
valence class. As a set, M will then be defined as the disjoint union
(Y-dY)UA. There is an obvious map T: J?-> (Γ - dY) U A de-
fined by

{ x a? 6 A .

Λf can be given the structure of a smooth manifold by requiring
that T be a diffeomorphism from i? onto some neighborhood of A
in M. This structure is well-defined, since our definition of the
equivalence relation on collared neighborhoods is obviously rigged
so that the smooth structure on M will be independent of the choice
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of τ within the given equivalence class.
These constructions are clearly inverse to one another. Moreover,

they are functorial in a sense which we shall explain below. If
(Y,E,θ,[τ]) and (Y7, E\ θ', [τ']) are 4-tuples satisfying the above
conditions, then by a morphism (Γ, E, θ, [τ]) -> (Y'9 E', θ\ [τ']), we
mean

( i ) a smooth map h:(Y9dY)-+ (Γ', dY')9 together with
(ii) a bundle map X:E -+ Er which is a fiberwise isomorphism,

such that the following diagram commutes

ΣE-^ΣE

(iii) *j Jtf'

h\dγ

Furthermore, if τ and τr are choices of collared neighborhoods in
the given equivalence classes, then we require that

(iv) There exists a smooth map (germ) ψ: E —> £" transverse
to A', such that ψ~\Af) = A, ψ* = λ, and t == τ'"1 oft or: C+E-+C+E.
Notice that if ψ exists it is uniquely determined by τ, τr and ft.

Given two pairs (M, A) and (ikf', A'), we consider as morphisms
smooth maps F: M^ M' which are transverse to A! and which
satisfy F~\A!) = A. Such an F induces a morphism of 4-tuples
(M ® A, JV, 0, [r]) -> (ΛP ® A', JSP, 0', [τ'J) defined, in the obvious fash-
ion, by λ = F*, h\{M<s>A)-d(X®A) = FU-^, and ftUjf®^ = F*\ΣN. It is
immediate from Lemma 1.2 that ft is smooth and that condition (iv)
holds. It is just as easy to see that, conversely, a morphism of
4-tuples induces a morphism of the associated manifold pairs.

The above construction clearly works equivariantly. For, sup-
pose that M is a smooth G-manifold and that A is an invariant sub-
manifold. Then we can choose an equivariant tubular map T: N-+M
and define M ® A as before (actually, it is not necessary for T to
be equivariant). Since G acts smoothly on M and since the construc-
tion is functorial, it acts smoothly on M ® A.

We are particularly interested in the case where A = Ma is a
minimal stratum of M, i.e., where Mβ = φ whenever β < a. In this
case Ma is closed (by 1.1.6). So we obtain a G-manifold with bound-
ary M (•) Ma, which has one less stratum. Notice that a stratified
map Λf —> M' is a morphism of manifold pairs (M, Ma) ~> (ikf', Λf«) in
the sense we discussed above. We can continue this process of
"removing" tubular neighborhoods of the strata, all the while keeping
track of the relevant information (normal bundles, identifications on
the boundaries, and collared neighborhoods). Just as we associated
a 4-tuple to a manifold pair, we are led to associate an "augmented
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normal system" to a smooth G-manifold. As one might suspect,
this association is an equivalence of the appropriate categories (see
4.9).

For many purposes an "augmented normal system" contains too
much information. To see this, let us again consider 4-tuples
(Y, E, θ, [τ]), as defined above. If we forget about the equivalence
class [τ] (condition (4) in the definition), and consider only the triple
(Y, E, θ), then we have not lost anything crucial; for, by the Col-
lared Neighborhood Theorem, dY always has a collared neighborhood
and any two such collared neighborhoods are isotopic. Morphisms
of such triples can be defined as before, except that now we must
forget about condition (iv), which no longer makes sense. Forgetting
the collared neighborhoods leads to the notion of a "normal system"
associated to a G-manifold. The category of normal systems is
conceptually much simpler than the category of augmented normal
systems (just as the triples are simpler than the 4-tuples). The as-
sociation of a normal system to a G-manifold is still a functor, but
there is no adjoint. However, a normal system still determines a
smooth G-manifold, well-defined up to equivariant diffeomorphism
(see 4.3).

REMARK 1.3. There is a similar procedure for local G-orbit
spaces. Suppose that Ba is a minimal stratum of a local orbit space
B. Recall that in § II.5 we showed that there was a bundle Ca -> Ba

with fiber Xa/G. The positive real numbers act by fiberwise scalar
multiplication on Ca and on Ca — Ba (see Π.4.1). So we can define
a nonnegative cylinder bundle

o+Ca = (Cβ - Ba) XR+ [0, oo)

and a sphere bundle

σCa = (Ca - Ba) XR+ {0} = (Ca - Ba)/R+

as before. Also, if ψ: Ca -> Cά is a stratified map, then there is a
smooth stratified map ψ:c+Ca-+c+Cά defined by the formula given
in Lemma 1.2. (Also, notice that an equivariant version of this
lemma is clearly true.) Finally, by Theorem II.4, there is a "tubular
map" T: Ca —> B. So we can construct B © Ba in the same manner
as we constructed M ® Ma. Moreover, it is clear that if M/G = B,
then (M ® Ma)/G = B © Ba.

We should point out, however, that there is no such construc-
tion for weak local orbit spaces, for two reasons. First of all, for
weak local orbit spaces, we do not know that the bundles Ga exist.
Secondly, if ψ: Ca —> Cά is only weakly stratified, thet there is no
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guarantee that ψ : c+Ca-+c+Cά exists (essentially because as t —> 0
the limit of t~~ιo<f(toX) may not exist). Thus, there is no analogue
of Lemma 1.2 for weakly stratified maps.

2. The closure of a stratum* In this section we attach bound-
aries to the strata and to the normal orbit bundles.

Recall that a smooth n-dimensional manifold with corners M is
differentiably modeled on open subsets of {x eRn\x1 ^ 0, , xn Ξ> 0}.
If xeM is represented by local coordinates (x19 •••,#„), then we
denote by c(x) the number of zeros in this w-tuple. Following [7],
we say that M is a manifold with faces if every xeM belongs to
exactly c{x) different connected components of {y eM\c(y) — 1}. Any
disjoint union of the closures of such components is called a fact of
M. Notice that any face is an (n — l)-dimensional manifold with
faces (see [7]).

DEFINITION 2.1. Let S be a partially ordered set. A manifold
with S-faces is a manifold with faces M together with an S-tuple
of faces (dsM)s6S such that

( i ) dM= UsesdsM.
(ii) dsM and dtM are disjoint unless s ^ t or t ^ s.
(iii) If s < t, then dsM n dtM is a fact of dsM and of dtM.

Similarly, one has the notion of G-manifold with S-faces.
Next we define a function d: I(G) —> Z+. If a is a normal G-

orbit type, then d(a), the length of a, is the maximum length of
any chain beginning at a, i.e., d(a) — max {n\a = ax < a2 < < an).
Suppose that a and β are represented by (H°, Va) and (Hβ, Vβ),
respectively. If β > a, then dim Vβ < dim Va. Consequently, d(a) <
dim Va + 1.

Suppose that M is a smooth G-manifold. Let J be the set of
normal orbit types of G on My i.e., let J— {ae I(G)\Ma Φ ψ). By
the remark in the above paragraph, every element of J has length
bounded by d i m M + 1 ; hence, the integer m — max {d(a) \ a e J} is
defined. Set

J(i) = {a 6 J\ d(a) > i)

and

Jβ = {ae J\a < β} .

Obviously, J^ c J{i) if d(/3) = i.
For each ΐ ^ m, we shall now define a G-manifold Jf(ί) with

J(i)-faces First, set M(m) = ikί. If d(/3) = m, then Mβ is a minimal
stratum of M, and hence, a closed subset (by 1.1.6). So, we can
apply the construction of the previous section to define
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Λf(m- 1) = M®\JMβ ,

where the union is taken over all β with d(β) = m. M(m — 1) is a
G-manifold with boundary. Let dβM(m — 1) denote those boundary
components determined by Mβ, that is, let dβM(m — 1) = Σvβ(M).
This gives M(m — 1) the structure of a manifold with J(m — 1)-
faces. The general definition is made by induction (downwards).
Suppose that we have defined a G-manifold M(i + 1) with J{i + 1)-
faces. Further suppose, by induction, that

(a) M(i + ΐ)r Φ φ if and only if d(Ύ) <: i + 1, and that
(b) if d(β) = i + 1, then (daM(i + 1)), Φ φ if and only if α < /S.

Then for all β with d(β) = i + 1, Λf(i + 1)̂  is a minimal stratum
of Λf(i + 1). For each such β, we can choose an equivariant tubular
map vβ(M(i + 1)) —• M(i + 1), which is compatible with the manifold
with corner structure on M(i + 1) (see [7]). Therefore, we can
define

M(i) = Λf(i + 1) © U M{i + 1)̂  ,

where, as before, the union is taken over all β with d(β) — i + 1.
One can easily check that M(ϊ) is again a manifold with faces. If
d(a) > i + 1, then set 9Jbf(i) = 3αM(ί + 1) ® U (3Jί"(i + 1))^ This
is clearly a face of M(i). If d(a) = i + l, then set 3Jlf(i) = ̂ i;e(Jli(i + l)),
which is clearly also a face of M(i). With these definitions, it fol-
lows from the inductive hypothesis (b), that M(i) is a manifold with
J(Ό-faces. It is also easy to check that the inductive hypothesis
(a) and (b) hold for M(i).

If B is a local G-orbit space with strata indexed by J, then, in
a similar fashion, we can define B(i), a "local G-orbit space with
J(i)-faces." In particular, suppose that M is a smooth G-manifold
over B with projection map p:M-+B. Then the interior of M(i)
can be identified with the complement in M of the strata of M
length greater than i, and plmtMU) extends to a map p(i): M(ϊ) —>B(ϊ)
in an obvious fashion. For simplicity, we shall use the notation
M(a) = M{i), B(a) = B(ΐ) and p(α) = p(i), where i — d(a).

DEFINITION 2.2. Suppose that M is a smooth G-manifold over
B. Let

Ba = B{a)a.

va = vβ(Λί), the normal bundle of Ma in
p α = Pa(M), the principal Sα-bundle over Ba associated to Va.
Ca = Ca{B), the budle over Ba with fiber Xa/G(Ca = VJG).
Qa = Qa(M), the principal Γα-bundle over Ba associated to Ca

(Qa = PJZa, where Za is the kernel of the natural
map Sa -> Ta).
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Ma is called the closed a-stratum of M, Ba is the closed a-stratum
of B and Pa is the closed a-normal orbit bundle.

Next, consider daM(β)Γ)Mβ, where d{a) > d(β). This intersection
is empty unless a < β, in which case we define

djaβ = djuβ) n Mβ.

This gives Mβ the structure of a manifold with J^-faces (recall that
Jβ — {a e J\a < β}). Similarly, for each a < β, we can define daBβ =
3α£(/3) n Bβ,_daΐ>β = vβ\daMβ, BaPβ = P , ^ , and 3*3, - Q ^ l ^ So, 2?,,
Vp, P^ and Q̂  are also manifolds with J r faces.

Let F: M-+ M' be a stratified map of G-manif olds and let
/ = π(F): B—> B'. It follows from the discussion in the previous
section that for each a, F\intMia) extends to a stratified map F(a):
M(a) -> M\a) covering f(a): B{a) -+ B\a). The differential of F(a)
induces an equivariant linear bundle map F(a)*\ va(M) -> va(M') and
therefore, a map of the associated principal bundles Fa: Pa(M) —•
Pa(M'). Similarly, / ( α ) # : Ca(B) -> Ca(B') induces fa: Qa{B) -+ Qa(B>).

3. The linear data* The purpose of this section is to set up
some notation. First of all, for the remainder of this chapter, we
shall only be interested in the closed strata. For simplicity we shall
change our notation as follows.

NOTATION 3.1. From now on, Ma (respectively, Ba) will denote
the closed α-stratum of M (respectively B). Similarly, vaf PQ and
Qa will denote the appropriate bundles over the closed α-stratum.

As before, for each normal orbit type a e /((?), choose a repre-
sentative (Ha, Va) and let Xa = G XHa Va. We regard Xa as a left
G-space and as a right Sα-spaee, where Sa is defined as in § 1.2.
Let Ja be the set of normal orbit types of G on Xa, i.e., let Ja =
{βeI(G)\β ;> a}. For each β with β ^ a, we shall denote by Xa

β

the closed ^-stratum of Xa. Similarly, we shall denote the closed
/3-stratum of Xa/G by Bβ. Also, we can define the bundles va

β9 Pβ

and Qa

β as in the previous section. . All of these spaces are manifolds
with J>faces, where Ja

β = {y e I{G)\β > 7 ^ a).
The action of Sa on Xa preserves the stratification by normal

G-orbit types. Hence, the normal bundle of each stratum is a
(G x SJ-vector bundle, and consequently, Sa also acts on the normal
sphere bundle of each stratum. It follows by the naturality of the
construction, that for each β>af Xa(a), Xa

β and va

β are all Sα-spaces.
Since Sa acts on va

β through bundle maps, it also acts on P% the
total space of the associated principal bundle. In a similar fashion,
Ba(β), Ba

β and Qa

β become right Γα-spaces.
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For any smooth G-manifold M, we have (by definition) that
djίβ = Σ(va)βf where va = Xa XSa Pa. If ΣXa denotes the sphere
bundle of Xa -> G/Ha, then

= daX°β Xsa P^ .

Hence, for each a < β,

(3.1) ajkf, = aαx? χ, α p α .

Similarly,

(3.2) daPβ = daP«βXSaPa

(3.3) 3 A = 3βJ5?X Γ βQβ

(3.4) 3 α Q, = 3aQ
a

β Xτa Qa .

*4 Normal systems. A subset JdI(G) is closed if for every
α e J" and every /3 with β > a, we have that /9 6 J. If / is any such
subset and if aeJ, then let Ja = {Ύe J\7 < a}.

DEFINITION 4.1. An n-dimensional ^-normal system is the fol-
lowing data:

( i ) A closed set J of normal G-orbit types.
(ii) For each aeJ, a principal Sα-bundle Pa over a manifold

Ba with Jα-faces (where dim Ba + dim Xa = w).
(iii) For each pair (a, β)eJ x J with β > a, an isomorphism

of S^-bundles

θa>β:daP«βXSaPa >9αP, ,

where by definition 3αP^ = Pβ\d(χBβ. Moreover, there is the following
compatibility condition.

(iv) For each triple (a, β, 7) with 7 > β > a, the following
diagram of isomorphisms commutes

dβPϊχSβdap«βχSapa

X θa>β/ \dβθaJ

dβp? χs dapβ — — > dapa n 3 , p r .
P Oaθβ,γ

Here dβda>r denotes the restriction of θa>r to (dβPaf) daP") XSaPa and
daθβ}ΐ denotes the restriction of θβ,r to dβP

β

r XSβdaPβ. If ί is a Ŝ -
normal system, then we shall sometimes use the notation J(ξ), Ba(ξ),
Pβ(ί) and θatβ(ξ) for the above data.
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If ξ and ξ' are ^-normal systems with J(ξ) c J(ζr), then by a
morphism φ: ζ —> ξ' we mean a collection of smooth bundle maps
φa: Pa(ζ) —> Pa(ξ')> oi 6 J(f), such that the following obvious diagram
commutes

daP"β XSa Pβ(ί) — 5αP£ X*α P«(ί')

3α.P,(f) — 3αPa(f)

for each a,BeJ with β > a. For technical reasons, we shall also
require that the differential of φβ maps the normal bundle of daPβ(ξ)
in P^f) transversely to the normal bundle of daPβ(ξf).

The definition of .^-normal systems and their morphisms is
completely similar—in condition (ii) of 4.1, we merely replace the
phrase "a principal Sα-bundle Pα" by "a principal ΪVbundle Qa."

Let ^V be the category of ^-normal systems and let Λr' be
the category of .^-normal systems. As we indicated in Sections
1 and 2, there is a faithful functor D: & —> ̂ /^ which associates
to a G-manifold Λf the normal system with bundles {Pα(Λf)}, the set
of closed normal orbit bundles. The maps θa)β are the identity maps,
as indicated in (3.2). Condition (iv) of the definition, which asserts
that the identifications agree on the intersection of two faces, is
clearly satisfied. In a similar fashion, there is a faithful functor
Όr\ & —> ^V*' which associates to each local G-orbit space B the &-
normal system with bundles {Qa(B)}.

Also, there is a functor ft: ^V* —> ̂ /^' which associates to each
Sf-normal system a .^-normal system. To be specific, if ξ =
\J, Ba, Pa, θa>β} is a ^ - n o r m a l system, then set π(ξ) = {J, Baf Qa, Xa>β},

where Qa — PJZa and where Xa>β is the bundle map covered by θatβ.
We summarize the above remarks in the following proposition.

PROPOSITION 4.2. There is a commutative diagram of functors

•Tΐ
t D' l •

In the next theorem we assert that the normal system is a com-
plete invariant of a smooth G-manifold.

THEOREM 4.3. The functor D: if —• Λ" defines a bijection be-
tween equivariant diffeomorphism classes of smooth G-manifolds
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and isomorphism classes of ^-normal systems.

For the special case of compact regular O(»-manifolds, this
theorem is the main result of Janich's paper [7]. We shall also
prove the following two results. Theorem 4.5 is perhaps the most
interesting of the three.

THEOREM 4.4. The functor Df: & —> Λ"' defines a bisection be-
tween isomorphism classes of local G-orbit spaces and isomorphism
classes of ^-normal system.

THEOREM 4.5. Let B be a local G-orbit space. Then the functor
D defines a bisection between isomorphism classes in π~\B) and
isomorphism classes in π~\D\B))9 {where π~\B) is the category of
G-manifolds over B defined in (III. 1.5)).

Before proving these three theorems, we will introduce the no-
tion of an "augmented normal system," which takes into account
the equivalence class of the appropriate collared neighborhoods.
Recall that in order to define the normal system of M9 we had to
choose equivariant tubular maps Ta: va(M) —> M(a). Let us consider
what information such a tubular map gives us in terms of normal
systems, that is, let us apply the functor D to Ta. The closed
/3-normal orbit bundle of va is Pa

β XSa Pa. So, D(Ta) is essentially
a collection of bundle maps D(Ta)β = τatβ: Pa

β χS(χ Pa -> Pβ, indexed by
Ja. Also, consider the fact that Ta and Tβ differ by an equivariant
diffeomorphism where they overlap. Another way to express this
fact is that for each pair (α, β) with β > α, Ta and Tβ define the
germ of an equivariant diffeomorphism μa>β: Xβ χSβ (Pa

β χSa Pa) -> va(β),
which should be thought of as a tubular map from the closed β-
stratum of va into va{β). The map μa,β is defined by the following
diagram of (germs of) equivariant embeddings.

X>XΛPaXP) — V

\Tβ

M(β).

We should also point out that μaJ is completely determined by
{rα,r, r ί > r |7 ^ β}. For if 7 S; β, then the restriction of μa<β to the
closed Ύ-stratum is determined by the diagram

X> XSβ (Pa

β XSa Pa) - - ^ X'r XSβ

(4.6) ^ J
X" Xsα Pa —— Mr ,

τa,r
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where τa%r and tβtT are the maps covered by rα,r and τβtTf respectively.
These considerations motivate the following definition.

DEFINITION 4.7. A collaring τ for a ^-normal system is a
collection of smooth bundle maps τay. Pβ XSa Pα—> Pβ indexed by
{(a, β)ejχ J\β > a) and satisfying the following two conditions:

(a) The restriction of τa,β to daP
a

β XSa Pa is θatβ.
(b) If μay. X* XSβ {Pa

β XSa Pa) -* X«(β) XSa Pa is the map defined
(on each stratum) by diagram (4.6), then μa%β is the germ of a G-
equivariant diffeomorphism on some neighborhood of daX

a

β XS(χ Pa.
If τ' is another collaring for the same normal system, then τ' is
equivalent to τ if for each aeJ, there is an equivariant diffeomor-
phism ψa: Xa XSaPa-+ Xa Xsa Pa (defined on some neighborhood of
the zero-section) with (ψv,)* = id and such that the following diagram
commutes for each β ^ a.

D(φa)

DEFINITION 4.8. An augmented ^-normal system is a ^-normal
system together with an equivalence class of collar ings.

Suppose that f and ζ' are normal systems with collarings τ and
τ'. A morphism φ: ξ -* ξ' is said to be a morphism of augmented
normal systems if for each a e J(ξ), there is a stratified map
Ga: Xa XSa Pa(ξ) -> Xa XSa Pa{ξ') so that the following diagram com-
mutes.

? X β β β ( 5 ) r
"£ a ,β

As usual, the map Ga is only required to be defined on some neigh-
borhood of the zero-section. The notion of a morphism of augmented
^-normal systems clearly depends only on the equivalence class of
the collarings. For, if we alter τ or τf by an equivalence, the
effect is to alter Ga by composition with an equivariant diffeomor-
phism.

Augmented .^-normal systems can be defined in a similar
fashion.
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Let ^Ϋl and <yV^'a be the categories of augmented gf-normal
systems and of augmented ^-normal systems, respectively. As we
indicated in the remarks following (4.5), choosing tubular neigh-
borhoods for the strata of a G-manifold amounts to choosing a
collaring for the associated normal system. The definition of equi-
valence of collarings mirrors the fact that any two tubular maps
differ by an equivariant diffeomorphism. Hence, we can associate
an augmented ^-normal system to each smooth G-manif old and this
correspondence is independent of the choices of tubular maps. In
other words, we have a functor Da: & —> ^fZ- Similarly, there is
a functor D'a: & —• ^^«. Also, there is a canonical functor πa:
Λ^'a such that the following diagram commutes

1-
THEOREM 4.9. The functors Da: ^ - > ( / ^ and Ό'a\ & --> t ^l are

equivalences of categories.

The theorem asserts that there are functors A: ,yί^a —> & and
A!\ Λ^'a —> Ŝ  (called assembling functors) and natural isomorphisms
AoDa = U, DaoA = l^a, 'Ά'oft'όz 1^ and Ό'a°A! ~ l n . The func-
tors A and A! are defined by reversing the process by which we
defined Da and D'a. In the case of two strata, this process of
building a G-manifold was described in § 1. The cletails in the
general case are sketched below.

Proof of 4.9. Suppose that ζ = {J, Ba, Pa, θa>β, [τ]} is an aug-
mented g^-normal system. We wish to reconstruct a smooth G-
manifold M = A(ζ). Let va = Xa,χSa Pa and let Ma = G/Ha XSa Pa.
Define

k = U Mά.
rf()l

Suppose, by induction, that we have defined M(i). For each aeJ
with d(a) = i + 1, we wish to define an equivariant collared neigh-
borhood ta: C+va-^ M(i). The point is that we can define a map by
defining its restriction to each stratum. If τ is a collaring in the
given equivalence class, then vajβ is a bundle map from the /S-normal
orbit bundle of C+va to the /9-normal orbit bundle of M(i). Thus,
τα,^ induces a map (ίj^: (C+va)β —> M(i)β. We define ία by requiring
that its restriction to the ^-stratum be (tj^. It follows easily from
our definition of a collaring that ta is a diffeomorphism. As a set,
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M(i + 1) will now be defined to be the disjoint union

M(ί + 1) = (M(i) — dM(i)) U \J Ma .

Define Ta: va -> M(i + 1) by

ta([x, 1]); xeva~ Ma

x xeMa .

We give M(i + 1) the structure of a smooth manifold with J(i + 1)-
faces by requiring that each Ta be an equivariant tubular map.
This completes the inductive step. Thus, on the objects of * ^ , A
is given by

A(ξ) = M{m) = M

where m is the maximum length of any chain in J. If φ:ξ-> ξ' is
any morphism, then we must also show how to define a stratified
map A(φ): A(ξ) -> A(ξ'). Essentially, this is done by the same pro-
cedure we used to construct ta from {τa>β}t that is, the restriction
of A(φ) to the α-stratum is defined to be the equivariant map

X φa: G/H* XSa Pa(ξ) > G/H* XS(X Pa(ξ') .

This defines an equivariant function A(φ): A(ζ) —> A(f'), which we
leave to the reader to check is a stratified map of (τ-manifolds. The
functor A! is defined similarly.

To finish the proof, we must exhibit natural isomorphisms of
functors AoDa = 1^, etc. Let M be a smooth G-manifold and let
ζ — Da(M). Then Pa(ξ) is the closed α-normal orbit bundle of M.

Therefore, there is a canonical isomorphism Φa: X
a XSa Pa •-+ va(M)

(and this is the main point). The restriction of Φa to the zero-
section yields a canonical isomorphism ψa: A(ζ)a -> Ma. Hence, we
have defined a function ψ: A(ξ) -> M, which, again, is easily checked
to be an equivariant diffeomorphism. It follows that the natural
transformation which assigns to each Meob^ the morphism ψ\
A(Da(M))-+M is a natural isomorphism AoDa = 1^. The descrip-
tions of the other natural isomorphisms are similar.

In order to prove Theorems (4.3) and (4.4), we need two lemmas
(see (4.10) and (4.12), below). These lemmas essentially are the
existence and uniqueness parts of the Equivariant Collared Neigh-
borhood Theorem in somewhat disguised form. We shall also need
more delicate versions of these lemmas (see (4.10)' and (4.12)', below)
in order to prove Theorem 4.5.

Let /: ^Va, —> ^V* and /' : c ^ Ί —• ^V* be the functors which associ-
ate to an augmented normal system the underlying normal system.
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LEMMA 4.10 (Existence of Collared Neighborhoods). Let Λ be a
^-normal system. Then there is an augmented ^-normal system
ξ, with f(ξ) = A. The analogous statement is true for .^-normal
systems.

Proof. The lemma asserts that we can choose a collaring τ for
A. As before, let Ma = G/Ha XS(χ Pa(Λ) and let Λf(l) be the union of
those Ma with d(a) = 1. By the Equivariant Collared Neighborhood
Theorem, for each a with d(a) = 2, we can choose a collared neigh-
borhood ta\ C+va —• Λf(l) such that ta\ΣVa is the natural identification.
Applying D to taf we get a bundle map ta>β: P% XSa P

a -> Pβ where
d(β) — 1 (as in the remarks following 4.5). We can also use the
ta's to construct M(2) (as in the proof of (4.9)). One continues in
this fashion, by inductively constructing M(i) and then choosing
collared neighborhoods ta\ C+va —> M(i) with d(a) = i + 1, in order to
define {τatβ} and to construct M(i + 1). The maps μa,β defined by
diagram (4.6) are clearly equivariant diffeomorphisms. Hence, {r^}
defines a collaring. The proof for ^-normal systems is similar.

LEMMA 4.10'. Let A be a ^-normal systems and let 7] be an
augmented ^-normal system with ff(η) — π(A). Then there is an
augmented ^-normal system ξ with /(£) = A and with ττβ(£) = rj.

Proof. Let f be a collaring for η in the given equivalence
class. The lemma asserts that we can find a collaring τ for λ which
"covers" τ. The collaring τ defines collared neighborhoods of the
form ta:c+Ca-+ B(i) with ta\σCa being the canonical identification.
(Here Ca = Xa/G XTaQ«(V) a n ( i C+Ca and σCa are as defined in 1.3.)
The lemma will follow, if we can modify the proof of Lemma 4.10
by choosing collared neighborhoods ta: C+va —> M(ϊ) with π(ta) = ta.
We know that C+va ~ Σva x [0, oo) and that c+Ca = σCa x [0, °o).
Also, the restriction of ta to Σva must be the canonical identifica-
tion; hence, it must cover ta \aGa. Thus, it follows from the Covering
Homotopy Theorem (III.2.2) that there is a stratified map ta cover-
ing ta.

Σva x [0, oo)--a-->M{ϊ)

σCax [0, co) J

Since ta maps c+Ca isomorphically, it follows that ta maps C+va iso-
morphically; hence ta: C+v« -> M(i) is a collared neighborhood. The
augmented ^"-normal system ξ so produced will then lie over η.



SMOOTH G-MANIFOLDS 359

DEFINITION 4.11. Let A = {J, BM Pa, θa,β) be a normal system.
There is a normal system A x I with data {/, Ba x /, Pa x I, #α>jS x id}.
If φ: A —• Λf is an isomorphism then as isotopy of φ is a morphism
Φ:AxI-^Λf which is an isomorphism on each level and which
satisfies Φ\AχW = ^.

LEMMA 4.12 (Uniqueness of Collared Neighborhoods). Suppose
that ζ and ξf are augmented ^-normal systems and that φ: f(ζ) —*
/(£') is α% isomorphism of the underlying normal systems. Then
there is an isomorphism θ: ζ —> ξ' and an isotopy of φ to f(θ). The
analogous result is true for augmented .^-normal systems.

Proof. The procedure will be to modify φ by a sequence of
isotopies. At the first stage, we shall only change those φβ with
d(β) — 1. Associated to Pβ{ζ) and Pβ(ζf) we have the G-manifolds
with Jrfaces Mβ and Mβ. Let φβ\ Mβ —> Mβ be the equivariant
diffeomorphism induced by φβ. Let τ and τ' be collarings for ζ and
ξ'. Let (α, β) be a pair with d(β) ~ 1, eZ(α) = 2 and with a < β.
The maps τα>^ and τiJi8 induce collared neighborhoods ta: C+va —> Mβ

and t'a: C+v'a->Mβ. There is an equivariant diffeomorphism F: C+v'a—>
C+va which is defined on some neighborhood of Σv'a and which makes
the following diagram commute

Mβ — M;

C,va<-F--C+v'a

Also, since C+va is a bundle associated to Pa(ξ), there is an induced
bundle isomorphism (x^ α ): C+va —> C+v'a. Consider the map G —
F°(xφa): C+va—> C+va. It follows from the definition of morphism,
that G is the identity on Σva and on C+(drva), for any 7 < a. We
claim that there is an equivariant isotopy ψt: C+va -•» C+va such that
ψ1 =z G, such that ψ0 is the identity on some small collared neigh-
borhood oΐΣva in C+va, and such that ^t — G on the complement of
a slightly larger neighborhood. Moreover, ψt will be the identity
on C+(drva). In order to construct ψ, first let r: C+va —-> [0, 1] be a
smooth invariant function, which is 1 on a neighborhood of Σva and
which vanishes outside a slightly larger neighborhood, and let
q: C+va x I—> I be given by q(x, t) — 1 + r(x)(t — 1). Recall that
C+va is a bundle over Σva and that [0, oo) acts on it by fiberwise
scalar multiplication. Consider the isotopy ψt(x) = q(xf t)~ιG(q(x, t)-x).
This is well-defined when r(x) < 1 or when t > 0. For r(x) = 1 it
converges smoothly to the bundle map ψo(x) — lim^o t~ιG(tx) ~ G*(x).
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But a bundle map differs from the identity by a scalar multiple on
each fiber, so by a possible further isotopy we may assume that ψ0

is the identity near Σva. Clearly ψt = G and ψt \c+i8rua) — id. Con-
sider the isotopy H: C+va x I—> C+v'a defined by Ή(x, t) = ψt

o(xφa)~~X%).
Since H(x, t) — F{x) off of a neighborhood of Σvaf it extends to an
ambient isotopy on Mβ. That is to say, there is an equivariant
isotopy ΦβiMβ x I->M'β of φβ to θβ so that the following diagram
commutes,

Mβx I
t

C+va x I

Mi

fa

We see that θβ — Φβ\MβX{1} is a bundle map on a small collared neigh-
borhood of Σva. Moreover, Φβ(x, t) = φβ(x) for x e dMβ and for x e
Mβ — ta(C+va). The equivariant map Φβ induces an isotopy of the
associated normal orbit bundles, and we denote this map by Φβ:
Pβ[ξ) x I->Pβ(ξ'). Since Φβ is constant on dPβ(ζ) we can find an
isotopy Φ: f(ξ) x I-+f(ξ') which is equal to Φβ on the /3-stratum
and which is φ x id7 on every other stratum. This completes the
description of the first in our sequence of isotopies. It should be
clear that we can continue this process inductively. At the next
stage, for example, we consider collared neighborhoods of the form
tr: C+va -* Λf(2), where d(J) = 3, and we alter φ(2): Λf(2) ->M'(2) by
an isotopy so that it will be a bundle map on C+va. This will lead
to an isotopy of φ which will only change those ψa with d(a) ^ 2.
This completes the proof. The argument for .^-normal systems is
essentially identical.

LEMMA 4.12'. Suppose that ξ and ξ' are augmented ^-normal
systems lying over the same augmented .^-normal system rj (i.e.,
πα(f) = 7Γβ(£') — V)- Suppose further that φ: /(£) -> f(ξr) is an iso-
morphism lying over the identity (i.e., π(φ) = id//(,,). Then the
isotopy Φ constructed in the proof of (4.12) also lies over the identity
(i.e., π{Φt) = id).

Proof. Let us reconsider the proof of (4.12). There we con-
structed an equivariant diffeomorphism G: C+va —> C+va. With the
hypotheses of the above lemma, it will follow that π(G) = id: c+Ca —>
c+Ca. We assert that this implies that the isotopy ψt(x) —
q(x, ty1 G(q(x, t) x) also satisfies π(ψt) = id. For indeed, π(ψt){z) —
q(z, t)~ι o π(G)(q(z, t)<>z) = q(z, t)~ι ° q(z, t) o z = z, where q: c+Ca x /-> /
is the map induced by q. (Also notice that no further correction
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of ψt is necessary; for, it follows from the fact that π(G#) = id
that the bundle map (?* is automatically the identity,) The above
observations imply that the sequence of isotopies constructed in
(4.12) will all cover the identity on η.

Proof of 4.3 {and of 4.4). The proofs of (4.3) and (4.4) are
essentially identical. The functor D: & —> Λ" clearly induces a
function from the set of equivariant diffeomorphism classes of smooth
G-manifolds to the set of isomorphism classes of ^-normal systems.
It follows from Lemma 4.10 that this function is a surjection. For,
if Λeob^Γ, then, by (4.10), we can find an augmented normal sys-
tem £ lying over it. Then A(ξ) is a G-manifold and by (4.9),
Da(A(ξ)) is isomorphic to ξ. Hence, D{A{ξ)) is isomorphic to f(ξ) = A.
Similarly, it follows from Lemma 4.12 that this function is an injec-
tion. For, if D{M) s D(M'), then, by (4.12), Da(M) = Da{M'). But
then (4.9) implies that M = Mf. This completes the proof.

Proof of 4.5. Again, D clearly defines a function from isomor-
phism classes in π~\B) to isomorphism classes in π~\D\B)). First
we show that this function is surjective. Suppose that A is a Ŝ -
normal system with π(Λ) = D\B). By (4.10)', there is an augmented
^-normal system ζ with /(£) = A and with πa(ξ) = D'a(B). Then
A(ξ) 6 obπ~\B) and D(A(ζ)) e obπ~1(B); so the function is surjective.
Similarly, it follows from (4.12)' that the function is injective.

REMARK 4.13. Since Hom^ (Λf, M') is a subset of the space of
all C°° maps from M to M' (with the coarse C°°-topology), it has an
induced topology, also called the coarse C™-topology. Similarly it
makes sense to speak of the "coarse C°°-topology" on Hom^ (B, Br)
and on Diflf? (M) (=Homff-i(jB) (M, M)). The theory of normal systems
can be used to gain insight into the homotopy theory of these three
spaces of stratified maps. We sketch a few ideas below.

Let ξ and ζf be ^-normal systems with bundles indexed by
j = J(ξ) = /(£'). Let Pa = Pa(ξ) and P'a - Pa(ξ'). Recall that a mor-
phism φ: ζ —» £'• is a J-tuple of bundle maps φa: Pa —> P'a satisfying
the compatibility condition expressed by the following commutative
diagram.

Λ Pa V P > Λ P α V P '

dapβ —-> 3αp;

In other words, Hom^ , (ξ, ζ') is a certain subset of ΐ[aeJ Horn (Pα, P«),
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where Horn (Pa, P'a) denotes the space of smooth Sα-bundle maps
from Pa to Pa with coarse C°°-topology. The induced topology on
Hom^ (f, ζf) is again called the coarse C°°-topology. In a similar
fashion, we can define the "coarse C°°-topology" on Horn r , (η, rf) and
on Hom;-i(̂ )(f, ζ). We assert that with these topologies, the maps

D: Horn,, (AT, M') > Hom^ (D(M), D{M'))

Ό'\ Horn,, (B, J5') > Hom^, (D'(B), D'(B'))

D: Diff? (M) > Rom~-HD,{B)) (D(M), D(M))

are homotopy equivalences, (This assertion is a generalization of
Lemmas 4.12 and 4.12'.) The map D: Hom^ (AT, M') -> Hom^ (D(M),
D(M')) is an embedding and may be regarded as the inclusion. One
proves that D is a homotopy equivalence by showing that both
spaces are homotopy equivalent to a common subspace; namely, the
subspace consisting of those maps which are linear bundle maps on
some prescribed tubular neighborhoods of the strata. The argument,
which is a fairly standard application of some ideas of Cerf, is
omitted. Of course, the proof that the other two maps are also
homotopy equivalences is entirely analogous.

The homotopy of such space of morphisms of normal systems,
e.g., of Horn r (£, £')> can be analyzed via a "stratum by stratum"
approach. Set Jι = {a e J\ d(a) ^ m — %} where m is the maximum
length of any chain of normal orbit types in J. Let h*(ζf ξ') be the
space of /^tuples of bundle maps (φa)aeJi, which satisfy the above
compatibility condition. It is easy to see that there is a sequence
of fibrations pt: hi+1(ξ, ζ')-»h%ζ, £') converging to hm(ζ, f') = Hom^(£, £')
(Pt is the obvious map). The point is that the first space in this
sequence and each of the fibers are fairly well-understood spaces.
To be precise, h\ξ, £') = Π«6^Hom(Pα, P'a) and the fiber of pt over
a given path component is Π Horn (Pα, P«)9, where the product is
over all aeJ1 — Jι~γ and where Horn (Pa, P'a)d denotes the subspace
of Horn (Pα, Pa) consisting of those maps which carry dPa to dP'a and
which are equal to some fixed map on dPa.

This approach works best in the category π~\η). If P is a
principal S-bundle, then it is well-known (and easy to see) that the
space of bundle automorphisms of P can be identified with the space
of sections of an associated bundle P* = SχsP, where the action
of S on itself is via conjugation. If ξ is a ^-normal system lying
over Ύ], then we can form the associated bundles P«. Let Za denote
the kernel of the natural projection Sa -> Ta. Define a subbundle
Ra of Pϊ , by Ra = ZaXSa Pa Then the sections of Ra correspond
to those automorphisms of Pα which cover the identity on Qa

(=zQa(η)). If β < a, then a section of Rβ induces a section of dβRa.
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Thus, an automorphism φ e ΈLom^-iiη) (f, ξ) can be identified with a
/-tuple of sections satisfying the compatibility condition that the
section of dβRa is induced by a section of Rβ. We can let Γι be the
space of J*-tuples of sections satisfying this same compatibility con-
dition. Then, as in the above paragraph, we get a sequence of
fibrations qt\ Γi+1 -»Γι (this sequence of fibrations was suggested by
Bredon in [3]). The fiber of qt is Π Γ(Ra)f where a e Jι - Jι~x and
where Γ(Ra) denotes the space of sections of Ra which are the
"identity section" on dRa. Thus, both Γ° and the fiber of qt are
spaces with homotopy groups which can be computed by standard
methods. In this way, the homotopy of Difff (M) can be studied by
methods which are completely bundle theoretic. When there are
relatively few strata and when B is a simple enough space, this
procedure can actually be to compute πQ Diίff (M), e.g., see [3].

REMARK 4.14. The theory of normal systems clarifies the problem
of constructing classifying spaces for smooth G-manifolds. Theorem
4.3 shows that we must actually construct a classifying space for
^-normal systems. But it is fairly clear how to do this. We hope
to give the details in a later paper. In [4], the theory of normal
systems is used to construct classifying spaces for the special case
of regular O(n)9 U(n) and SpO)-manifolds.
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