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SMOOTH G-MANIFOLDS AS COLLECTIONS
OF FIBER BUNDLES

MICHAEL DAvis

This paper is about the general theory of differentiable
actions of compact Lie groups. Let G be a compact Lie
group acting smoothly on a manifold M. Both M and M/G
have natural stratifications, and M/G inherits a ‘“smooth
structure” from M. The map M — M/G exhibits many of
the properties of a smooth fiber bundle. For example, it is
proved that a smooth G-manifold can be pulled back via a
“weakly stratified” map of orbit spaces. Also, it is well-
known (and obvious) that a smoeoth G-manifold is determined
by a certain collection of fiber bundles together with some
attaching data. Several precise formulations of this observa-
tion are given.

TIatroduction. We develop some elementary ideas in what might
be termed “the bundle theoretical aspect” of compact transformation
groups. Suppose that a compact Lie group G acts smoothly on a
manifold M. First consider the case where this action has only one
type of orbit, that is, where all the isotropy groups are conjugate.
In this case, it follows from the Differentiable Slice Theorem that
M/G is a smooth manifold and that M is a smooth fiber bundle over
M/G. When the action has more than one type of orbit; this is no
longer true; however, there are two related points of view.

The first of these is to regard the smooth G-manifold M together
with the natural projection 7n: M — M/G as a prototypical example
of a “singular fiber bundle.” As such, one might expect smooth G-
manifolds to have many of the formal properties of ordinary fiber
bundles. In an appropriate context, this is true (as we shall see in
Chapter III). One of the main purposes of this paper is to describe
this context.

The second point of view is to regard M as a certain collection
of fiber bundles. Here the basic idea is to consider all those points
in M of a given orbit type (that is, all those points with isotropy
groups conjugate to a given subgroup of G). It follows from the
Differentiable Slice Theorem, again, that the union of such points is
an invariant submanifold of M and, therefore, a smooth fiber bundle
over its image in M/G. Thus, M is a union of various fiber bundles.

Our actual approach is a slight modification of this. In Chapter
I, we define a notion of “normal orbit type,” which is better suited
to the study of smooth actions than is the notion of orbit type.
The normal orbit type of a point takes into account the slice repre-

315



316 MICHAEL DAVIS

sentation as well as the isotropy group at the point. M is also
stratified by the invariant submanifolds consisting of those points
of a given normal orbit type. The normal bundle in M of such a
stratum can be regarded as a fiber bundle over the corresponding
stratum of M/G. The associated principal bundle is called a “normal
orbit bundle.” Given the equivariant normal bundles of the strata
and information which describes how these normal bundles fit to-
gether, one can clearly recover M. So, in some sense, a smooth
G-manifold is nothing more or less than a certain collection of
principal bundles together with some attaching data. This simple
observation is one of the most fundamental ideas in the study of
smooth G-actions (see, for example, [2] and [6]). One of the first
people to isolate this basic intuition and to try to formulate it as a
theorem was K. Janich in his paper on O(n)-manifolds [7].

We prove a similar, but more general, version of this theorem
in Chapter IV (Theorem 4.3). It states that there is a functor from
the category of smooth G-manifolds and (equivariant) stratified maps
to the category of “% -normal systems,” and that this functor de-
fines a bijection between equivariant diffeomorphism classes of G-
manifolds and isomorphism classes of “Z-normal systems.” By a
“normal system” we roughly mean a collection of bundles together
with some attaching data. By a “stratified map” of G-manifolds,
we mean a smooth equivariant map which preserves the stratifica-
tion and which maps the normal bundle of each stratum transversely.
A similar result (Theorem 4.4 in Chapter IV) is true for orbit spaces
(or rather for “local G-orbit spaces”). In order to state this result
and in order to describe the context in which G-manifolds behave
like fiber bundles, it is necessary to take a close look at the local
structure of orbit spaces and to carefully consider what should
be meant by a “stratified map” of orbit spaces. This is done in
Chapter II.

We should first point out that there is a natural “smooth struc-
ture” (i.e., functional structure) on M/G. This is essentially obtained
by defining a function f: M/G — R to be smooth if fom: M — R is
smooth. Secondly, as we pointed out above, M/G can be stratified
by normal orbit types. In Chapter II, we give two possible defini-
tions for a “stratified map” of orbit spaces. These two definitions
are distinguished by the use of the terms “weakly stratified” and
“stratified.” In both definitions we consider smooth, strata preserving
maps which “map the normal bundle of each stratum transversely”
(however, there are essentially two possible interpretations of this
last phrase). In Theorem 4.5 of Chapter II, we show that an
(equivariant) stratified of G-manifolds induces a stratified map of
their orbit spaces. Also, stratified maps of orbit spaces are weakly
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stratified (Theorem 4.8 in Chapter II). The converse is an inter-
esting open question.

In Chapter III, we prove that smooth G-manifolds ecan be pulled
back by a weakly stratified map of orbit spaces (Theorem 1.1), a
result suggested in [3]. In the second section of that chapter we
discuss the Covering Homotopy Theorem of G. Schwarz [10]. These
two results are the major justification for the assertion that smooth
G-manifolds exhibit the same formal properties as do smooth fiber
bundles.

The reason for introducing the stronger concept of a stratified
map of orbit spaces is that the theory of normal systems for orbit
spaces works only with this stronger definition.

There are many concrete applications of the above ideas, but
we do not discuss them in this paper. It should be mentioned, how-
ever, that the pullback construction and the theory of normal sys-
tems play key roles in the classification of regular O(n), U(n) and
Sp(n)-manifolds in [4] and [5] (also see [3]).

Some of the work in this paper was done in my thesis (in the
special case of regular O(n), U(n) and Sp(n)-actions). I would like
to thank my thesis advisor W. C. Hsiang for his help while I was
writing my thesis and for his continuing support and encouragement.
I would also like to thank G. Bredon and G. Schwarz for several
illuminating conversations. Finally, I want to point out that Bredon’s
book [2] is an excellent introduction to this material and that re-
ferences are made to it throughout this paper.

I. Stratification by Normal Orbit Type

1. Normal orbit types. This section contains some preliminary
material. The theorems are well-known; however, some of the de-
finitions are not.

Let G be a compact Lie group. Suppose that H is a closed
subgroup and that V is an H-module. Define an action of H on
G XV by h-(g,v) = (gh™, hv). Let G X,V denote the orbit space
and let [g, v] denote the image of (g, %) in G X5 V. Then GX,V
has the structure of a G-vector bundle over G/H with projection
map defined by [g, v] > ¢gH. In fact, any G-vector bundle over G/H
must be of this form. For if E is such a bundle, then the fiber of
E at the identity coset is an H-module. If we denote this H-module
by V, then the map [g, v]— gv defines an isomorphism G X,V = E.

Now suppose that G acts smoothly on a manifold M. Given
x €M, let G, denote the isotropy group at 2 and let G(x) denote the
orbit passing through x. G(x) can be identified with G/G, via the
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equivariant embedding g¢gG, — gx (see page 302 in [2]). Hence, the
normal bundle of G(x) in M can be identified with a G-vector bundle
over G/G,. The fiber of this normal bundle at z is the G,-module

S, = T.M|T,G(x) .

S, is called the slice representation at x. By our initial remarks,
the normal bundle of G(x) is isomorphic to G X, S,. By the
Equivariant Tubular Neighborhood Theorem, there is an equivariant
diffeomorphism from the normal bundle of G(x) onto a G-invariant
neighborhood of G(x) (see [2]). Taken together these two observa-
tions constitute the following well-known theorem of Koszul.

THEOREM 1.1. (The Differentiable Slice Theorem). FEach point
xeM has a G-invariant meighborhood of the form G X S, where
H=@G, and S = 8§,.

Next, let F, be the subspace of S, on which G, acts trivially,
i.e., let F, = (S,)%. Define a G,-module V,, called the normal rep-
resentation at x, by

V.= S8,/F, .

So to each xe M we have associated a closed subgroup G, and a
G,-module V,.

This situation can be abstracted as follows. Consider all pairs
(H, V) where H is a closed subgroup of G and where V is a H-
module with V# = {0}. Two such pairs (H, V) and (H’, V') are
equivalent if there is an element a€G and a linear isomorphism
L: V— V' such that aHa™* = H’ and such that the following diagram
commutes

H-25 Aut (V)

H -2 Aut (V7).

Here ¢ and ¢ are the associated representations, 4,(h) = aha™ and
1.(f) = LfL™. An equivalence class of such pairs will be called a
normal G-orbit type. Let [H, V] denote the class of (H, V).

If G acts smoothly on M and x € M, then [G,, V,] is called the
normal orbit type of G(x). For this definition to make sense we
must have that (G,, V,) and (G,,, V,,) are equivalent. This is indeed
the case; for, the required equivalence is (g, L), where L: V,— V,,
is the map induced by dg.

REMARK 1.2. Traditionally, one speaks of an “orbit type” by
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which one means a conjugacy class of an (isotropy) subgroup of G.
The notion of normal orbit type should be regarded as a slight
refinement of this, appropriate to the study of smooth actions.

PROPOSITION 1.3. Let (a, L) be an equivalence from (H, V) to
(H', V). Then the map 0,5;:GXuV—G Xz V' defined by
0.9, v]) = [ga™, Lv] is a well-defined isomorphism of G-vector
bundles. Conwversely, any tsomorphism from G X,V to GXz V'
must be of this form.

The proof of this is a routine matter and is left to the reader.

Thus, the normal orbit type [H, V] may also be regarded as
the isomorphism eclass of the G-vector bundle G X, V. This is com-
pletely analogous to the fact that the conjugacy class of H can be
regarded as the G-diffeomorphism class of G/H. (Compare §I.4 in
[2]1.)

Next, we consider the group of automorphisms of G X, V. By
an “automorphism” we simply mean an invertible equivariant bundle
map, that is, a bundle map which covers some equivariant diffeo-
morphism of G/H (not necessarily the identity). There is an em-
bedding H — G x Aut (V) defined by & — (h, ¢(h)), where ¢ is the
representation associated to the H-module V. To simplify notation
we shall identify H with its image under this embedding. Let
Ny(G X Aut (V)) be the normalizer of H in G X Aut (V). Then

Nuy(G x Aut (V) = {(a, L)|aHa™ = H and ¢(aha™) = Le(h)L™*
for all he H}.
Thus, Ny(G x Aut(V)) is just the group of self-equivalences of

(H, V). Also notice that 6, is the identity if and only if ac H
and L = ¢(a). Therefore, (1.3) has the following

COROLLARY 1.4. Let S be the group of automorphisms of G X, V.
Then the map (a, L) — 6., defines an isomorphism of Lie groups
Ny(G x Aut (V))/H = S.

Returning to our G-action on M, suppose that @ is a normal
orbit type. The a-stratum M, is the union of orbits of type «, i.e.,

M, = {we M|[G,, V.] = a}.

Let B be the orbit space of M and let 7: M — B be the natural
projection (z is called the orbit map). Set B, = n(M,) and 7, = 7|,,.
B, is called the a-stratum of B.

ProposITION 1.5. Both M, and B, are smooth manifolds and
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.. M, — B, is the projection map of a smooth fiber bundle.

Proof. Ssuppose that a is represented by (H, V). Let xec M,.
By the Slice Theorem, x has an invariant neighborhood U =G X, S.
Clearly, (GX;S),=GX,F = G/H x F, where F is the subspace
fixed by H. Hence,

(%) U,=G/HXF.

Thus, M, is a smooth manifold. It follows from () that 7 (U,) = F.
Therefore, B, is also a smooth manifold (since F' is isomorphic to
euclidean space). Finally, notice that (x) provides a local trivializa-
tion for =,, and so M, is a smooth fiber bundle over B,.

This proposition shows that both M and B are “stratified spaces”
in the sense that they both are the union of smooth manifolds.

Next, we consider I(G), the set of normal G-orbit types. There
is a natural partial ordering on I(G), namely: [H, V] =< [K, W] if
the G-manifold G XV contains an orbit of type [K, W]. Notice
that maximal elements of I(G) are of the form [H, O] where O
denotes the zero dimensional H-module.

The following two results are essentially classical.

THEOREM 1.6. Let ac I(G). Then
M,=UM,.

Bsa
THEOREM 1.7. (The Principal Orbit Theorem). Suppose that B
18 connected. Then there is a maximum normal orbit type ¥ for G
on M called the “principal orbit type.” M, is open and dense in
M, and B; is open and dense in B. Moreover, B, is connected.

Both theorems follow fairly easily from the Differentiable Slice
Theorem (see pages 179 and 182 in [2]). The Principal Orbit Theo-
rem is due to Montgomery, Samelson and Yang.

Next, suppose that F: M — M’ is a smooth equivariant map
(where G acts smoothly on M and M'). It follows that for each
rxeM, G,C Gr, and that the differential of F' induces a linear map
F..V,— Vz., which is G,-equivariant.

DEFINITION 1.8. A smooth equivariant map F: M — M’ is strati-
fied if for each xz e M, the following two conditions hold:

( i ) Gz = GF(x)

(ii) F,:V,— Vu, is an isomorphism.

Thus, stratified maps preserve normal orbit types. In this paper,
all maps of G-manifolds will be stratified.
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2. Normal orbit bundles. In this section we investigate the
structure of the equivariant normal bundle of a stratum.

Fix a normal G-orbit type a and let (H, V) be a representative
for . Let S, be the group of automorphisms of G X, V, i.e., let
S. = Ny(G x Aut (V))/H .

As usual, suppose that G acts smoothly on M with orbit map
w: M— B. Let v (M) be the total space of the normal bundle of
M, in M. When there is no ambiguity we will write simply v,
instead of vy, (M). Let ¢,:v,— M, be the projection map and let
T4 = Ty° Qo

PROPOSITION 2.1. The map 7. V(M) — B, s the projection map
of a smooth fiber bundle with fiber G X,V and with structure
group S,.

Proof. Let xe M, By the Slice Theorem, x has a neighborhood
in M, of the form G(x) X D where D is a disk in B,. By the de-
finition of the a-stratum, v,|¢. = G X, V. Therefore, we clearly
have that Y.|ewxo = Yulew X D= (G X,; V) x D. The composition
of these two isomorphisms provides a local trivialization of »;'(D).
Thus, v,— B, is a fiber bundle with fiber G X, V. Since local
trivializations such as the above are isomorphisms of G-vector
bundles, it follows that the structure group is S,. This completes
the proof.

Let P (M)— B, be the principal S,-bundle associated to the
bundle v (M) — B,. P, M) is called the a-normal orbit bundle of M
(and is denoted by P, when there is no ambiguity). Explicitly, P,
is the fiber bundle with base space B, and with the fiber over b
consisting of all isomorphisms of G-vector bundles (v,), — G X, V.

These normal orbit bundles are the basic building blocks for a
smooth G-manifold. In the theory which we are developing they
take the place of the more traditional “orbit bundles.”

REMARK 2.2. Suppose that F: M — M’ is stratified. Then the
differential of F induces a bundle map F,.:v (M) — v (M) which is
an isomorphism on the fibers. Hence, F', induces a map of the as-
sociated principal bundles, which we denote by F.,: P(M)— P,(M’).

Next consider the structure group S,. Recall (1.4) that S, =
NG %X G")/H, where G' = Aut(V) and where H is embedded in
G x G’ via h— (h, ¢(h)). (¢ is the representation associated to the
H-module V.) Set H' = ¢(H).

It is clear that the inclusion map a — (a, 1) € G X G’ restricts to
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a map Cu(G) = Ny(G x G'), where C,(G) means the centralizer of
H in G. Let j denote the composition Cx(G) —>Ny(G X G)—
Ny{(GxG)H=S,. In asimilar fashion, inclusion of the second factor
induces a homomorphism j': C;.(G') — S,. Also, there are homomor-
phisms

8: Nu(G x G")/H — Ny (G)|H
and

st Ny(G x G"/H

> NII(G,)/H’

induced by the projections on the first and second factors, respec-
tively. The proof of the next proposition is immediate.

ProrosITION 2.38. The following sequence is exact

1— Cul @) -2 8.~ Nu(G)/H .

Moreover, if the representation ¢: H— G’ is faithful, then the ful-
lowing sequence is also exact

1— Cy(@) 1 S, -2 Nl @) H .

For each «, there are two other important bundles associated
to an action. The first is the “orbit bundle,” 7,: M, — B, which has
fiber G/H. The second is the bundle 7,:v,/G — B,, which has fiber
(GX,V)G. Here 7, is the map induced by 7,. We clearly have
that

M, = G/H Xs, P,
and that

v,/G = (G X, V)G Xs, P,.

Here S, acts on G/H and on (G X V)/G in an obvious fashion. The
problem with the above formulation is that these S,-actions will
generally be ineffective.

First let us consider the action of S, on G/H. If acC,(G),
then j'(a)-[g,0] =[g, a-0] =[g, 0]. In other words, the image of
Cy(G") acts trivially on G/H. So we define a quotient group

Rot = Sa/j,(cli’(G,)) = S(Sa)
and a principal R.-bundle O, — B, by
0, = P,/Cy(G") .

N,(G)/H acts freely on G/H and the action of R, may be identified
with the action of the subgroup s(S,) C N,(G)/H. Hence R, acts
freely on G/H.
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The kernel of the action of S, on (G X V)/G cannot be described
quite so explicitly. But we can still define a group

T,=S.Z,

where Z, is defined as the subgroup of S, which acts trivially on
the orbit space (G X, V)/G. (Notice that kers'c Z,.) We can also
define a principal T,-bundle @,-> B, by

Qe = Po/Z, .

The above remarks are collected in the following proposition.

PROPOSITION 2.4. There are natural tsomorphisms

M, = G/H X, O,
and

/G = (G Xy V)G Xy, Qu -

II. The Structure of Orbit Spaces

1. Smooth invariant theory. Suppose that G acts smoothly on
M and that 7: M — M/G is the orbit map. Let .&” be the smooth
structure on M, i.e., let & be the sheaf of germs of C* functions
on M. The induced functional structure 7..5” is called the quotient
smooth structure on M/G. In this spirit, a function f: M/G — R is
smooth if fom is smooth, and a map of such spaces which preserves
the functional structure is a smooth map. This terminology is not
in anyway meant to suggest that M/G is a smooth manifold (see
[2] and [8] for further details).

By the Slice Theorem, each orbit in M has an invariant neigh-
borhood of the form G X,S, where S is the slice representation.
It is clear that a smooth function on G X, S is G-invariant if and
only if its restriction to S is smooth and H-invariant. In other
words, the inclusion of the fiber induces a homeomorphism S/H =
(G XyS)G of spaces and an isomorphism of smooth structures.
Hence, determining the local smooth structure of M/G is equivalent
to determining the invariant C~ functions on the various slice rep-
presentations.

Classical invariant theory deals with the related problem of
computing the invariant polynomials of a representation. One of
its fundamental theorems, proved by Weyl (on page 275 of [11]),
states that if H is a compact Lie group and if V is an H-module,
then the ring of invariant polynomials R[V]¥ is finitely generated.
The following theorem, proved by G. Schwarz in [8], shows how
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the invariant smooth functions are determined by the invariant
polynomials.

THEOREM 1.1 (Schwarz). Let H be a compact Lie group and let
V be a H-module. Let {6,, ---, 0,} be a set of generators for R[V]*
and let 0 = (0, +--,0,): V— R:. Then 6*C°(R*) = C°(V)".

REMARK 1.2. Since @ is invariant, it induces a map 7: V/H — R’,
which is easily seen to be a topological embedding. Give 6(V) the
smooth structure induced by the inclusion (V) R?, i.e., a function
on A(V) is smooth if and only if it extends to a smooth function on
R:. Then Schwarz’s theorem is equivalent to the statement that
0: V/IH— 6(V) is an isomorphism. Taken together with our remarks
at the beginning of this section, this shows that M/G has a smooth
structure locally isomorphic to that of certain semi-algebraic subsets
of euclidean space. This result is one of the technical underpinnings
of the theory developed in this paper.

If H acts trivially on R*, then it follows from (1.1) that
(V x R"/H is smoothly isomorphic to V/H X R*, where the smooth
structure on V/H x R* is induced by the embedding 6 x id: V/H x
R* — R* x R* (in fact, this is a key lemma in Schwarz’s proof).
From this observation we see that it suffices to study the invariant
polynomials of the normal representations.

2. The tangent space of M/G. Let ye M/G. The stalk of
7. at y is a local ring with maximal ideal . #,, the germs of G-
invariant smooth functions which vanish at y. The (Zariski) cotan-
gent space at y is defined as

T*(M|G) = A, A .

Its dual T,(M/G) is the tangent space at y.

Let us now consider the tangent space of V/H, where V is an
H-module (or, equivalently, the tangent space of (G X, V)/G). The
symbol 0 will be used to denote both the origin in V and its image
in V/H. Let _#, be the ring of germs of H-invariant smooth func-
tions which vanish at 0. There is a corresponding algebraic object
/#.CR[V]¢. This is the ideal of invariant polynomials with no
constant terms.

LEMMA 2.1. 2/ A} = A A} Furthermore, if {6, -+, 0,) is
a minimal set of generators for . 7, then the dimension of T(V/H)
8 8.

Proof. The inclusion . /foc, #, induces a linear map \: /2(,//2’ i
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A AL I fe #, then by (1.1) f=70q, where r: R*— R is smooth.
By clearly have that

f=20)-0,---0,) (mod. .z} .

But 7'(0)-(8,,-+-,8,) €. /Z,, hence, 4 is surjective. A similar argument
shows that 4 is injective and therefore, an isomorphism. The image
of {6, +--,6,} in i) A4 is clearly a basis; so s = dim (,//}ﬁ/?é) =
dim (. #/.#3%) = dim (T V/H)).

REMARK 2.2. Let {6, ---, 6,} be a minimal set of generators for
V»//Ao. Then polynomials in {0,} generate R[V]¥. Let 6 = (6, ---, 0,):
V— R* and 0: V/H — R* be as in §1. Then & induces a linear map
0.: T(V/H)— T,(R*). Suppose that dx, denotes the image of 4, in
Ay A4t  As we pointed out in the above proof, {dz, ---, dz,} is a
basis for T¢(V/H). Let {D, ---, D,} be the dual basis for T, (V/H).
Then &, clearly sends {D,, ---, D,} to the standard basis for T,(R®).
Hence, 8, is an isomorphism.

PROPOSITION 2.3. Let xcM and let y = n(x)e M/G. Then
T, M/G) = T«S.,/G,). In particular, T,(M/G) is a finite dimensional
vector space.

This is immediate from the Slice Theorem and the above remark.

REMARK 2.4. If f: M/G— M'/G is any smooth map of orbit
spaces, then f induces, in an obvious fashion, a linear map
Df: T, (M|G)— Ty, (M'/G). Df is called the differential of f at y.

3. Weakly stratified maps. In this section we define two terms,
“the normal bundle” of a stratum of an orbit space and “a weakly
stratified map of orbit spaces.” We shall show in (3.2) that a
stratified map of G-manifolds covers a weakly stratified map of
orbit spaces. Then we shall establish some further properties of
weakly stratified maps in (3.3) and (3.4).

Set B= M/G. Let a be a normal G orbit type represented by
(H, V) and let

X=G Xu V.
Let
E.= U TyB) .
be By

It follows from (2.3) that E, is a vector bundle over B,. The ordi-
nary tangent bundle of the stratum T(B,) is clearly a subbundle of
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E,, so one can define the normal bundle of B, in B by
N.B) = E,/T(B,) .

We will write simply N, when there is no confusion. For b€ B,,
let N, denote the fiber of N, at b. Clearly, N, = T\(X/G), where 0
denotes the point in X/G which is the image of the zero-section of X.

REMARK 3.1. Let vy, be the normal bundle of M, in M. The
Equivariant Tubular Neighborhood Theomem states that v, is equiva-
riantly diffeomorphic to a neighborhood of M, in M. Hence, v, /G
is isomorphic to a neighborhood of B, in B. Therefore, N, is iso-
morphic to the normal bundle of B, in v,/G. In §1.2, it was shown
that the bundle v,/G — B, has structure group T,. It follows that
the structure group of N, can also be reduced to T,. In fact,

N, = T(X/G) X1, Q.

(see 1.2.4). More will be said about this action of T, on T(X/G) in
the next section.

Next, suppose that f: B— B’ is a smooth map of orbit spaces
which preserves the stratification, i.e., such that f(B,) C B, for each
a. For any be B, we have the linear map Df: T,(B) — T;u(B')
(see 2.4). Since f(B.) C B., Df carries T,(B,) into T,,(Bs). Hence,
Df induces a map

DTE N, — me .

The map f is said to be weakly stratified at b if Df is an isomor-
phism; f is weakly stratified if it is weakly stratified at each point.
In other words, a smooth strata preserving map of orbit spaces is
weakly stratified if its differential maps the normal bundle of each
stratum transversely.

Recall that if F: M — M’ is any equivariant map, then there is
an induced map of orbit spaces f: B— B’ so that the following
diagram commutes

M-

|, |

B-1.p.

PRroOPOSITION 3.2. If F: M — M’ is stratified, then the induced
map of orbit spaces f: B— B’ is weakly stratified.

Proof. The map f is clearly smooth and strata preserving. The
remainder of the proof can easily be seen to reduce to the following
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local formulation. Recall that X = G X5 V. Suppose F: X — X is
stratified. Then we must show that the induced map f: X/G — X/G
is weakly stratified at 0. Since the differential of F must be an
isomorphism at points in the zero-section of X, it follows from the
Inverse Function Theorem that F' is an equivariant diffeomorphism
on some neighborhood of the zero-section. Hence, f is an isomor-
phism on a neighborhood of 0. Therefore, Df: T\(X/G)— T(X/G)
must also be an isomorphism, that is, f must be weakly stratified
at 0.

We shall need the next result in Chapter III. It is a sort of
“Inverse Function Theorem” for weakly stratified maps.

PROPOSITION 3.3. Let X =G X5V and let f: X/G— X/G be a
weakly stratified map. Then f ts an isomorphism on some meigh-
borhood of 0.

Proof. First choose a minimal set of polynomial generators
{6, +--,0,} for R[V]” as in (2.2). Each polynomial 6, extends to a
smooth G-invariant function ¢, on X defined by 4,([g, v]) = 6;(v).
Let 6 = (4, +++,0,): X — R* and let §: X/G — R* be the induced em-
bedding. Using Schwarz’s theorem (see Remark 1.2), f may be
extended to a smooth map g: R°— R*. By (2.2), we have the fol-
lowing commutative diagram

7,X/6) 2L T(X/6)

=

T(R) 2% T(R).

Since Df is an isomorphism so is Dg. So by the Inverse Function
Theorem, there is a neighborhood U of the origin in R® such that
g|U: U— g(U) is a diffeomorphism. Set W= UnN X/G. We will be
done if we can show that f(W) is open in X/G; for, then the map
9 s Wwill be a smooth inverse for f|.

Set Y=¢(U)N X/G. We will show that f(W) = Y and hence,
that f(W) is open. Clearly, f(W)cCY. We may assume (by
changing U if necessary) that Y is path connected. Let # be the
principal (normal) orbit type for G on X. By the Principal Orbit
Theorem, Y, is path connected (since Y is). Pick a point x € f(W,).
Given an arbitrary point y € Y;, we can find a path w:[0,1] - Y,
from 2 to y. Let J= {te[0, 1]|w@®) e f(W,)} = o (f(W,). Since
gl is a diffeomorphism, Df: T.(W;) — Ts.(Y:) must be an isomor-
phism; hence, f maps W, diffeomorphically onto an open submanifold
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of Y;. Thus, J = o '(f(W,)) is open. Pull back the path @ to a
path « = g7 to@: [0, 1] — U from g~*(x) to g7*(y). Let C= w([0, 1))N W.
Then C is clearly closed in U. Hence, ¢+ (C) = J is closed in [0, 1].
Thus, J, being both open and closed, must be all of [0, 1], and so
¥y = w(1) € f(W;). Therefore, Y; = f(W;). According to the Principal
Orbit Theorem, Y is the closure of Y, in ¥ and W is the closure
of W, in W. Thus, ¢g(Y) =g Y:)cg (Y, = Ws= W, and so,
Y c f(W), as was to be proved.

Here is one further observation which will be needed in Chapter
II1.

PROPOSITION 3.4. Let F: M — M be a stratified map and let
f: B— B’ be the induced map of orbit spaces. Then F is an equiva-
riant diffeomorphism if and only if f ts an isomorphism.

Proof. Obviously if F is an isomorphism then so is f. So
suppose that f is an isomorphism. From the facts that f is a strata
preserving homeomorphism and that F' is equivariant, it follows
easily that F is an equivariant homeomorphism (see page 97 in [2]).
So it suffices to show that the differential of F is everywhere an
isomorphism. The tangent space at x € M, splits as a direct sum of
G,-modules as T,M = T,G(x) + V, + T..,,B,. Since F is stratified,
DF maps T,G(x) + V, isomorphically onto T5,,G(F(x)) + Vr,). Since
Df: TB,— TB, is an isomorphism, it follows that DF maps T B,
isomorphically onto T (,)Bs:. Thus, DF is an isomorphism.

4, Stratified maps. In this section the concept of a “stratified
map of orbit spaces” is defined. The difference between stratified
and weakly stratified maps essentially comes from the fact that
there are two possible definitions for the “derivative” of a map of
orbit spaces. The first of these definitions was given in (2.4). The
second one is given below in (4.2). We will show in (4.5) that a
stratified map of smooth G-manifolds induces a stratified map of
orbit spaces. Furthermore, every stratified map of orbit spaces is
weakly stratified. Conversely, one can ask if every weakly stratified
map is stratified. The section concludes with examples.

As before, let @ be a normal orbit type and let X = G X,V be
a representative for a. Scalar multiplication on V induces scalar
multiplication on X. Explicitly, if x = [g, v]€ X, then this is de-
fined by tx = [g, tv].

DEFINITION 4.1. For any x € X, let Z denote its image in X/G.
Scalar multiplication on X induces an action of the real numbers on
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X/G defined by toZ% = tx. This is called scalar multiplication on
X/G.

The normal bundle of G/H in X can be naturally identified with
X. So, if F: X — X 1is stratified, then its differential induces an
equivariant bundle automorphism F,: X — X. F, can be defined by

F. (x) =limt'F(tx) .
t—0

Let f: X/G — X/G and f,: X/G— X/G be, respectively, the maps
induced by F and F,, that is, f(Z) = F(x) and f.(Z) = F.(x). It
follows that

fo@) = lm 7o f(to7)

We have that F, €S, and hence, that f, € T,. (Recall that S, is the
group of automorphisms of X and that T, is the quotient of this
group by Z,.) The above considerations motivate the following de-
finition.

DEFINITION 4.2. Let f: X/G— X/G be a smooth strata preserving
map. For each ¢t 0, define f,: X/G— X/G by fi(z) =t o f(toz).
Then f, is also smooth and strata preserving. We will say that f
is stratified at 0 (0 € X/G), if, as t — 0, the maps f, converge smoothly
to a smooth isomorphism f,, and if f, e T.,.

In the following lemma we prove the chain rule for the above
definition of “derivative.”

LEMMA 4.3. Suppose that the maps f: X/G — X/G and g: X|G —
X/G are stratified at 0. Let h = fog. Then h 1is stratified at 0
and hy, = frog,.

Proof. The proof is formally the same as the proof of the
ordinary chain rule. First pick a minimal set of generators {4, ---, 6,}
for R[V]%, as in (2.2). We may suppose that the 6,’s are homo-
geneous polynomials. As before, we get a map §: X/G — R*, which
we regard as an inclusion. The action of R on X/G extends to an
action on R* by the formula ¢o(z, ---, ,) = (t*Vx, ---, t%¥%,), where
d(t) is the degree of 4,. We can write g(x) = g.(x) + R,(x), where
R,=9— g,: X/|G— R°*. Clearly, t7"oR,(tox) >0 as t—0. So the
function P,(t, x) defined by

t7oR,(tox); t=+0

P,t, x) =
(¢ @) 0 ; t=0

is continuous. We have that
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(1) g«(tew)=lim s og(stom)
8—0
= tog,()

(2) g(tex) = gy (tow) + R (tox)
= to[g.(x) + P2, v)]

(8) lim¢oRy(g(tew)) = limto Ry(to[g.() + Py(t, )]
=0

(4) t7oh(tox) =t f(g(to )
=17 fu(g(tow)) + 17 o Ry(g(tow)) .

Therefore,

ho(x) = limt o h(tox)

= lim t7*o f,.(g(t o ) , by (3) and (4)
= lim ¢ o fy(to[g.(x) + P, (¢, )]) , by (2)

= lim f,(g+(x) + Pg(t, 2)) , by (1)

= fi(g:(®) ,

which proves the lemma.

Suppose, as before, that G acts smoothly on manifolds M and
M’ and that n: M — B and #n’: M’ — B’ are the orbit maps. Let
f: B— B’ be a smooth strata preserving map and let be B,. By the
Slice Theorem, 7~'(b) has a neighborhood of the form G X, (V x R®) =
X x R™. So, we can choose an equivariant chart «: U— X X R™,
where U is an invariant neighborhood of z7'(b). Let +:#n(U)—
X/G X R™ be the induced map. We may also choose an equivariant
chart «': U’ — X x R™ so that f(m(U))czn’(U’). Let g be the germ
at 4(b) of the map X/G X R™— X/G X R™ defined by ' ofovy*.
Also, let & be the composition

X/G = X/G x R*—L> X/G x R* — X/G

where the first map is the appropriate inclusion and the third map
is projection on the first factor. Clearly, 2 is smooth and strata
preserving.

DEFINITION 4.4. In the above situation, f: B—B’ is said to be
stratified at b if h is stratified at 0; f is stratified if it is stratified
at each point.

We must show that this definition is independent of the choice
of charts « and +'. The effect of changing one of these charts is
to alter h be composition with a map from X/G to itself which is
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stratified at 0. So, it follows from (4.3) that the altered 2 will also
be stratified at 0, as claimed.

THEOREM 4.5. If F: M — M’ is a stratified map of G-manifolds,
then the induced map f: B— B’ of orbit spaces is stratified.

Proof. It clearly suffices to prove this locally, that is, it suffices
to consider the case where M = X X R™ and M' = X X R™ and to
show that f: X/G X R™— X/G x R™ is stratified at points of the
form (0, z). But this case is obvious, as we observed at the be-
ginning of this section.

In order to prove that stratified maps are weakly stratified, we
must examine the action of 7, on X/G more closely. Recall that
st S,— Ny.(G)/H' and that the action of T, on X/G may be iden-
tified with the restriction of the natural action of N.(G')/H' (made
effective) to the subgroup s'(S,). (See §I1.2.) N (G') acts linearly
on V and the action preserves H-orbits; hence, N,.(G')/H' acts
smoothly on V/H = X/G. The restriction of action to 7, preserves
the stratification on X/G (which may be different from the stratifica-
tion of V/H by normal H-orbit type). Since N,.(G') acts linearly
on V, it acts from the right on polynomials. Suppose that ¢ is an
H-invariant polynomial, that #e H’, and that L e N,(G'). Then
6+ L(hw) = ¢(Lhv) = ¢(h'Lv) = ¢(Lv) = ¢+ L(v), for some b’ € H'. That
is, R[V]¥ is invariant under the action of N,.(G'). Since H’ clearly
acts trivially, the action factors through N,.(G')/H’ (and hence, the
subgroup T, acts on R[V]¥). Let P,C R[V]¥ denote the subspace
consisting of those H-invariant polynomials which are homogeneous
of degree m. P, is clearly invariant under the action of N,.(G")/H'.

LEMMA 4.6. There is a minimal set of gemerators {6, ---, 6.}
for R[V¥ such that

(1) 0, vs homogeneous degree d(i) and 2 < dd) < d(2) --- < d(s).

(2) If P, is the subspace of P, spanned by {6,|d(i) = m}, then
P, 1s invariant under Ny (G)/H'.

Proof. First we show that the linear representation of N.(G')
on P, is completely reducible. Since H’ is compact, it is a (real)
algebraic subgroup of G’ = GL(V). Hence, N,(G') is also an algebraic
subgroup. In particular, this implies that 7(Ny.(G")) is finite. Next,
let Cy/(G’) denote the centralizer of H' in G’ and let Cy = Cy(G)NH'
be the center of H’. Then C,(G') is a product of general linear
groups (over either the real, complex or quaternionic numbers) and
the action of Cy.(G') on V is via a product of standard representations.
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Hence, C,.(G') is a reductive algebraic group. C,.(G')/C,. is a normal
subgroup of N,.(G)/H' and both groups clearly have the same Lie
algebra. Therefore, the quotient group is discrete. In fact, the
quotient is finite since |w (N (G')/H')| < o=. Since the semi-direct
product of a reductive group and a finite group is also reductive, we
conclude that the action of N,.(G')/H' on P, is completely reducible.

Now, pick a basis {4, .-, 0,,} for P, (since V# = {0}, P, = {0}).
Assume, by induction, that we have chosen a minimal set of gen-
erators {@, ---, 6, ) for the image of P, + --- + P, in R[V]¥. Let
Q.4; be the image of P, + --+« + P, in P,,,. Then Q,,, is obviously
invariant under N,.(G')/H'. Let P;,, be a complementary invariant
subspace for Q,,, and let 6, ., ***, O be a basis for P;,,. Since
R[V]# is finitely generated this process stops after a finite number
of steps. The result is the desired set of generators.

From now on, we will let {4, ---, 6,}] be a minimal set of gen-
erators for R[V]”, chosen as in the above lemma, and we will let
6=(, +--,0,): X/G— R* be the induced embedding. If dx, denotes
the image of 6, in .2,/ #%= T{¢X/GF), then {dx,} is a basis. Let
{D, ---, D)} be the dual basis for T\(X/G) and let {e, ---, ¢,} be the
standard basis for R*. We will also use D, to stand for the standard
basis element of T,R:. This notation should cause no confusion, for
a function g: X/G — R is smooth if and only if it extends to a
smooth function § on R*, in which case D,g = D,§.

Let a € Ny (G')/H'. The action of N,.(G")/H' extends to a linear
action on R® defined by ¢, - a = Ya,;e; where the matrix (a,;) is defined
by the formula 6,-a = Ya,;6;, Here the summations extend over
all j with d(j) = d(3).

LEMMA 4.7. If f: X/G — X/G is stratified at 0, then f is also
wealkly stratified at 0.

Proof. We must show that Df: T(X/G) — T\(X/G) is an isomor-
phism. Regarding X/G as a subset of R°, we can write f=
(fy +++, [): X/G — R’ where f;=0,of. We also have fy = (fix, ***, fix)
where

( 1 ) fi*(xu cc xs) = ltlrf)l t—d(i)fi(td(l)xu ] td(s)xs) .

Since f, e T,, it follows from (4.6) and the above remarks that
(2) fi*(xu ) xs) = Zatiwj

where a,; = 0 whenever d(z) # d(j). In other words, (a;;) is a matrix
of the form
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A 0
B

(@:5) =
0 C
where there are nonzero blocks A, B, ---, C only where 7 and j

satisfy d(7) = d(j). Consider what it means for the expression

(3) fi(2Vxy, -, ')

td(i)

to converge as t — 0. Clearly, the first d(7) — 1 derivatives of the
numerator (with respect to £) must vanish at ¢ = 0. Calculation
shows that this implies that D;D;,--- D; f; =0 whenever d(j,) +
d(Jy) + +++ + d(j.) < d(3). (Recall that D; is partial differentiation
at 0e R* with respect to the jth coordinate.) In particular, this
shows that D;f, =0 whenever d(j) < d(¢). Next, use I’Hopital’s
rule to calculate the limit of expression (8) as t — 0. Differentiating
the numerator and denominotor d(z) times we obtain

(4) Foltty ==+ @) = 3840, Dsy ++ Dy Jsy =+ 05,

where ¢;,...;, = d(J)!--d(J,)!/d(?)! and where the summation is taken
over all (5, «+-, 7, with d(5) + -+ + d(j..) = d(¢). But, according
to (2), fix is a linear combination of the z;’s. So, in (4), we must
have that D; ---D; f,=0 whenever m >1. It {follows that
Sis(@y, + o+, ) = Z(D;f)-x; and hence, that D,f; = a,; whenever d(:) =
d(7). In other words, the matrix (D;f;) has the form
A *
B

0 C
Since (a;;) is nonsingular so is (D;f;). But (D;f,) represents the
linear transformation Df: T(X/G) — T«(X/G). Hence, f is weakly

stratified at 0.
By using local charts, the above lemma immediately yields the

following global formulation.

THEOREM 4.8. Ewvery stratified map of orbit spaces is weakly
stratified.

The converse is an interesting question. This is again a local
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problem. According to (3.3), a map f: X/G — X/G which is weakly
stratified at 0 is a smooth strata preserving isomorphism in some
neighborhood of 0. Thus, this amounts to the following:

Question 4.9. Is every smooth strata preserving isomorphism
f: X/G — X/G stratified at 07

The Covering Isotopy Theorem (see [1], [10] and § III.2) provides
the following partial answer: if f,: X/G — X/G is a smooth one-
parameter family of (weakly stratified) isomorphisms and if f, is
stratified at 0, then so is each f,. G. Schwarz has pointed out that
the answer to (4.9) is not always affirmative. For example, let W
denote the real 8-dimensional spin representation of G = Spin (7),
and let X =4W. Then X/G embeds in R" and there is a linear
automorphism of R" which restricts to a strata preserving automor-
phism of X/G and which is not in the image of N,(GL(X)). Hence,
this automorphism is not stratified. In the next example we con-
sider a case where the answer to (4.9) is affirmative.

ExampLE 4.10. Suppose that G = O(n + m), H = O(n) and that
V is M(n, k), the space of = X k matrices (on which O(n) acts by
matrix multiplication on the left). Let H(k) be the space of k X k
symmetric matrices and let H_ (k) be the subspace of positive semi-
definite ones. Define a polynomial mapping 6: M(n, k) — H(k) by
O(x) = xt-x. According to [11], the entries of ¢ generate the in-
variant polynomials on M(n, k). If n =k, then the image of 6 is
H_(k), so in this case X/G = H_(k). It is easily checked that S, =
O(m) x GL(k) and that T, = GL(k)/{{x1} which acts on H. (k) by
(g9, ) — ¢g*xg. Suppose that f: H (k) — H, (k) is a strata preserving
isomorphism and that Df is the differential at 0. Then Df(z) =
lim, ., t7*f(¢2) is an isomorphism. It follows that f,.(z) = lim,_, t7%f(¢%)
also exists and can be identified with the same isomorphism of H(k).
The pertinent point is that the entries of # are homogeneous poly-
nomials of the same degree (namely, of degree two). We claim
that f.e€GL(k). Let det: H(k) — R be the determinant. For ¢ # 0,
let fi(z) = t7%f(t*%2). Sinee f, preserves the stratification, it preserves
det™(0) N H (k). It follows that f, belongs to the subgroup of
Aut (H(k)) which preserve the hypersurface det™(0) and positive
semi-definiteness, but this subgroup is precisely PGL(k). This last
statement is essentially a well-known theorem of Frobenius (see [4]
for details). Thus, f.eT,, i.e., f is stratified at 0.

More generally, suppose O(n) acts smoothly on M. We say that
M is a regular O(n)-manifold or is modeled on ko, if the normal
orbit types of O(n) on M are of the form [O(n — %), M(n — 1, k — )],
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0<1=k, (these are the normal orbit types of O(n) on M(n, k)).
It follows from the above analysis that for orbit spaces of regular
O(n)-manifolds weakly stratified maps are stratified. The same result
is true for regular U(nw) or Sp(n)-manifolds by an essentially identical
analysis (see [2] and [4]).

5. The category of local G-orbit spaces. In this section, we
shall define “local G-orbit spaces” and “weak local G-orbit spaces.”
The definition of the previous section will be extended to define
“stratified maps of local G-orbit spaces.” Roughly speaking, a local
G-orbit space will be a space together with a collection of local
charts to orbit spaces so that the transition maps are stratified iso-
morphisms. Also, for each stratum of a local G-orbit space B, we
shall define a bundle C,(B) — B,, and examine its properties.

Let I(G) be the set of normal G-orbit types. Pick a representa-
tive (H®* V%) for each a € I(G), and let X* = G X« V.

If B is a space, then an I(G)-chart of type « is a homeomor-
phism «+: U— X*/G x R™ from an open set UCB onto an open
neighborhood of (0,0) in X*/G x R™. Let .o be a collection of
I(G)-charts which cover B. Suppose that if 4 and +' are charts in
7 of type a and a’, respectively, then the following two condi-
tions hold:

(1) UNU is empty unless a £ a’ or ' < a (where U and U’
are the domains of + and ', respectively).

(2) WPy (UNU) -4 (UNU’) is a stratified isomorphism of

orbit spaces.
Such an .o is called an I(G)-atlas for B. A local G-orbit space is
a Hausdorff space B together with a maximal I(G)-atlas. We shall
usually also require that m + dim X* is constant for each chart (this
is automatic if B is connected). Local G-orbit spaces are similar to
G. Schwarz’s “Q-manifolds.”

REMARK 5.1. Suppose that we replace condition (2) in the above
definition by condition

(2) P UNU) - (UNT’) is a weakly stratified isomor-
phism.

Then we obtain the notion of a weak I(G)-atlas and the corresponding
notion of a weak local G-orbit space. Clearly, any local G-orbit
space is a weak local G-orbit space.

Since each X*/G has a “smooth” structure (see §1), a weak
I(G)-atlas defines a smooth structure on a weak local G-orbit space
B. Also there is a natural stratification on B defined as follows.
If : U— X*/G x R™ is a chart of type @, then let U,=+"'({0} x R™).
The a-stratum of B consists of all those points which lie in some
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U, (for a fixed a). Clearly the strata are disjoint smooth manifolds
and B = U B..

It should be clear how to define a stratified map of local G-
orbit spaces. Explicitly, f: B— B’ is stratified if for each chart
on B and ' on B’, the map «'ofo4 " is stratified (where the com-
position is defined). Similarly, one can define a weakly stratified
map of weak local G-orbit spaces.

Let <Z be the category with objects local G-orbit spaces and
with morphisms stratified maps. <& is, indeed, a category; for, the
only axiom which is not obviously satisfied is that the composition
of two stratified maps is stratified, but this is immediate from (4.8).
Similarly, there is a category <z, of weak local G-orbit spaces and
weakly stratified maps.

THEOREM 5.2. Suppose that G acts smoothly on M. Then M/G
naturally has the structure of a local G-orbit space.

Proof. The point is that we can choose a collection of equi-
variant charts on M of the form @: W — X* X R™, where {W} is an
open cover for M and where the transition maps are equivariant
diffeomorphisms. It then follows from (4.5) that the induced charts
¥ WG — X*/G x R™ will be an I(G)-atlas for M/G.

If B is actually the orbit space of a smooth G-action on M,
then there is a fiber bundle over B, which is isomorphic to a neigh-
borhood of B, in B; namely, C,(B) = v,(M)/G. We want to show
how to define C,(B) without mentioning M, that is, how to define
C.B) for an arbitrary local G-orbit space B.

Consider a smooth curve :[0, 1] - X/G such that ®(0) = 0.
We say that @ is a good curve at 0 if t7'ow(¢) converges to a point
in X/G as t — 0, in which case this point is denoted by w,(0) € X/G.
Notice that if f: X/G — X/G is stratified at 0, then fow is also a
good curve at 0 and (fo®),(0) = fu(w,(0)). Also, notice that if
0:[0, 1] - X is a smooth curve and if 7: X — X/G is the orbit map,
then wof# is a good curve at 0 and (7w6),(0) can be identified with
the image of 6,(d/dt) in X/G. (Here we are identifying X with the
normal bundle of G/H in X, as usual.)

This definition can be promoted to an arbitrary local orbit space
B, as follows. Let be B,. Suppose that w:[0,1]] > B is a smooth
curve with w(0) = b. Let «: U— X*/G X R™ be a chart of type «
defined on some neighborhood of b. Let p: X*/G X R™— X*/G be
projection on the first factor. Finally, let @ = po+row: [0, e] — X/G,
where [0, e]Cc ™ (U). We say that w is a good curve at b if @ is
a good curve at 0. If w, is another good curve at b, then  is
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equivalent to w, if @,(0) = @,(0). Clearly, the notions of good
curve and of equivalence of good curves are independent of the
choice of chart. Thus, let (C,), be the set of equivalence classes of
good curves at b, and let

Ca(B) :beLg (Ca)b .

The chart +» provides us with a bijection +r,: C,(U) — C(X*/G X R™) =
X*/G x R™. 1If for each chart + we require that -, be a homeo-
morphism, then this defines a topology on C,(B) and gives C,(B) the
structure of a (locally trivial) fiber bundle over B, with fiber X%/G.
Since the transition functions are stratified, it follows that the struc-
ture group of this bundle is T,. As usual, we shall often write
simply C, instead of C/B).

REMARK 5.3. If B= M/G, then C,(B) = v,(M)/G.

REMARK 5.4. If f: B— B’ is a stratified map of local G-orbit
spaces, then for each a € I(G), f induces a bundle map f,: C(B)—
C.(B’) defined by w — fow.

We shall need the following “Tubular Neighborhood Theorem”
in Chapter IV.

THEOREM 5.5 (Twbular Neighborhood Theorem). Let B be a local
G-orbit space and let @ be a mormal orbit type.

(Existence). There 1s a stratified map T:C,-> B which maps C,
1somorphically onto some neighborhood of B, in B that T |z, ts the
inelusion and such that T,:C,— C, 1s the identity.

(Uniqueness). If T':C,— B is another such stratified map then
there is a stratified isotopy @:C, X [0, 1] — B such that @, = T and
o, =1T.

If B is actually an orbit space, then this theorem follows im-
mediately from the Equivariant Tubular Neighborhood Theorem (and
this is really the only case in which we need the above theorem).
The proof of existence in the general case will be omitted, since it
would take us too far afield. As we shall show below, the proof
of uniqueness is virtually identical to the proof of the uniqueness
part of the ordinary Tubular Neighborhood Theorem. By altering
T by an isotopy we may assume that T(C,) < T'(C,). Consider 4 =
T*eT:C,— C, The real numbers act by fiberwise scalar multi-
plication on C, as in (4.1). For t€(0, 1], define A,(x) =t ™o A(tox)
and set 4, = A4, = id. Define @(x, t) = T(4,(x)). Then &@(z, 0) = T(x)
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and @(x, 1) = To T "o T"(x) = T'(x), as claimed.
6. The category of smooth G-manifolds.

DEFINITION 6.1. A smooth G-manifold is a triple (M, B, p) where
M is a manifold on which G acts smoothly, B is a local G-orbit
space, and p: M — B is a smooth map which is constant on orbits
and which induces a stratified isomorphism 7: M/G — B. M is called
the total space, B is the base space, and p is the projection map.

In the usual fashion, we will sometimes blur the distinction be-
tween a G-manifold and its total space and write simply “M is a
G-manifold.” When we wish to emphasize the base space, we shall
say that M is a G-manifold over B.

Let < be the category, the objects of which are smooth G-
manifolds and the morphisms of which are stratified maps of the
total spaces (see 1.1.8). If F: M — M’ is stratified, then there is an
induced map =n(F): B— B’ which makes the following diagram
commute

M-

b
B——»z( 7 B .
It follows from (4.5), that =n(F') is a stratified map of local orbit
spaces. We state this as the following proposition.

PROPOSITION 6.2. There s a functor w: Z — & which assigns
to each G-manifold its base space and to each stratified map F the
induced map w(F).

REMARK 6.3. There is also a functor W:.cZ — <%, which as-
sociates to each local G-orbit space the underlying weak local G-orbit
space and therefore, a functor 7, = Worm: & — .

III. Pullbacks

1. The pullback construction. Let M be a smooth G-manifold
over B with projection map p: M — B. Suppose that 4 is a weak
local orbit space and that f: A — B is weakly stratified (see §II.3).
Define f*(M), the pullback of M wvia f, as

fHM) = {(x, a)e M x Alp(x) = f(a)} .

There is a commutative square
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P~ M
q V4
DLk

where f and ¢ are the maps induced by projection on the first and
second factor, respectively.

THEOREM 1.1. With the above hypotheses, A naturally has the
structure of a local G-orbit space, and (f*(M), 4, q) is a smooth
G-manifold over A. Moreover, f s stratified.

REMARK 1.2. The subspace f*(M)<Z M x A could have been de-
fined for any map f; however, in this generality, it definitely would
not be a manifold. The main point of Theorem 1.1 is that f*(M)
will be a smooth manifold whenever f is weakly stratified. The
proof given below was suggested by the proof of a special case in
[3]. For a stratified map f, a different proof could be given by
using the results of Chapter IV.

Proof of (1.1). Since M is a smooth manifold and since A is a
weak local orbit space, M x A has a natural “smooth” structure
(i.e., a functional structure). Let G act trivially on 4 and via the
product action on M x A. Then this action on M x A is through
smooth isomorphisms. The subspace f*(M) is clearly G-invariant.
Moreover, it inherits a smooth structure induced by the inclusion.

We shall show that with this induced smooth structure gives
f*(M) the structure of a smooth manifold. Since the problem is
local, by choosing charts, we may assume that M = X x R", that
B = X/GxR™ and that A = X/G x R", where X (=X*) is a G-vector
bundle representing a normal orbit type a«. As usual, we regard
X/G as a subset of R°. Since f: A— B is smooth, it extends to a
smooth map g: R*x R™— R° X R*. For each z € R™, define g,: R* — R*
by ¢9.(%) = pr (¢9(y, 2)), where pr: R®* X R"— R*® is the projection on
the first factor. Let f,:X/G — X/G be the restriction of g,. Since
f is weakly stratified, so is f,. So, it follows from the proof of
Proposition 8.3 in Chapter II, that there is an open neighborhood
U of the origin in R® such that g¢,|; is an embedding and such that
folx/eney 18 an isomorphism onto some neighborhood of 0 in X/G.
It is then easy to see that we can choose a neighborhood Y x WcC
R* x R™ so that for each ze W, f, maps Y N X/G isomorphically
onto a neighborhood of 0 in X/G. Consider the map @: M X (Y X W) —
R* x R" defined by

O(x, ¥, 2) = p(x) — 9(¥, ?) .
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We assert that @ is a submersion. Suppose that z = (r, s)e X X R”
(recall that M = X x R"). Clearly, the differential Dg, ,, maps T, (Y)
isomorphically onto the subspace T, ,(R°) and Dp, maps the sub-
space T,(R™)cC T, M) isomorphically onto T,,,(R"). Thus, D® =
Dp — Dg is everywhere surjective, i.e., @ is a submersion. So, by
the Implicit Function Theorem, @7%(0, 0) is a smooth submanifold of
M x (Y x W). Clearly, f*(M)NM x (Y x W)c @70, 0). On the
other hand, if (z, v, 2) € @7'(0, 0), then ¢(¥, z) = p(x) and therefore,
9.(y) e X/G. But by the proof of Proposition II1.3.3, Image (f,) =
Image (g9,) N X/G; so it follows that f;Yg.%)) = ye€X/G. Thus,
(x, 9, 2) e f*(M) and so f*(M)NM x (Y x W)= @&%0,0), that is,
f*(M) is a smooth manifold.

Next, consider the smooth map q: f*(M)— A. It induces a
smooth map g: f*(M)/G — A which clearly preserves the stratifica-
tion. We can identify f*(M)/G with the graph of f and g with
the map (f(a),a) »a. Since a — (f(a), @) is obviously a smooth
inverse for g, it follows that ¢ is a (weakly stratified) isomorphism.
Since f*(M)/G is an orbit space, it is a local orbit space. Thus,
the isomorphism g defines a local orbit space structure on A.

It remains to check that f: f *(M) — M is stratified, i.e., that it
is smooth and equivariant and that it preserves normal representa-
tions (see I.1.8). 7 is clearly smooth and equivariant. Moreover,
Guo = G, = G7,0)- Let us compute the normal representation at
(x, a) e f*(M). We have that

Toof*(M) = {(v, w)e T,M <X T,A|Dp,(v) = Df,(w)} .

In particular, ker dp, C T(,.o,.f*(M). Let V, and V., be the respec-
tive normal representations at xeM and (, a)e fX(M). Since
ker dp, =V, + T.(G(x)), it follows that T, ., *(M)=V, + T.(G(x)) + F,
where F' is a trivial G,-module. Hence, V., = V,. Since the pro-
jeetion T,M X T, A— T,M maps V, onto itself, the same is true for
its restriction to Df: Tof*(M)— T,M. Thus, f is stratified.

The hypothesis of the above theorem is that A is a weak local
orbit space and that f is weakly stratified. If we had assumed at
the outset that A was a local orbit space and that f was stratified,
then one might well ask if the isomorphism g:f*(M)/G— A is
stratified. This is indeed the case. For, foq: f*(M)/G — B is cer-
tainly stratified, since it is covered by the stratified map f. Since
f is also assumed to be stratified, it follows easily that so is q.
Therefore, Theorem 1.1 has the following corollary.

THEOREM 1.3. Let M be a smooth G-manifold over B and let
f:A— B be a stratified map (of local orbit spaces). Then f*(M)
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1s a smooth G-manifold over A.

To justify the terminology “pullback,” we should show that
Sf*(M) satisfies the universal property of pullbacks. First let us
briefly recall the relevant definitions from category theory. Let
6:C— D be a functor. For any object Y in D, we can define a
category ¢ (YY) called the fiber at Y. The objects of ¢7%(Y) consist
of those X eob C such that ¢(X) = Y, and Hom;-1,, (X, X’) consists
of those morphisms u: X — X’ such that ¢(u) = idy. An arbitrary
morphism u: X — X’ in C is cartesian if for any X" c€ob ¢ (¢(X)),
the natural map Homg,-i,) (X", X) — {t e Hom, (X", X")|4(t) = ¢(u)}
is a bijection.

X/!

4X) A CONS O}

The functor ¢ is prefibered if for every morphism s: Y — Y’ in D
with Y’ = ¢(X’), there is a cartesian arrow u: X — X’ lying over it
(i.e., with ¢(u) = s). ¢ is fibered if, in addition, the composition of
cartesian arrows is cartesian (the terminology “C is a fibered category
over D” is perhaps more common).

Recall that <7 and <#, are the categories of local G-orbit spaces
and weak local G-orbit spaces, respectively, and that z: <= — &
and 7,: <7 — <&, are the canonical functors (see II.8).

THEOREM 1.4. The functors w: < — & and T, T — &, are
fibered. In fact, every morphism in < is cartestan (with respect
to either @ or =,).

Proof. We prove the theorem for w,, the proof for z= being
identical. Let M be a smooth G-manifold over B (i.e., 7, (M) = B)
and let f: A— B be weakly stratified. First we show that f;
f*(M)— M is cartesian. Suppose that M’ is another smooth G-
manifold over A with projection map »: M’ — A and that ¢: M’ - M
is a stratified map covering f. Define h: M' — f*(M) by h(x) =
(t(x), r()).
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! B

Since 7 and ¢t are smooth so is h; furthermore, h is stratified since
t is. Thus, =, is prefibered. Since 7,(h) is the identity, it follows
from Proposition I11.3.4 that % is an isomorphism (i.e., that h is an
equivariant diffeomorphism). Thus, ¢t is also cartesian. But we
could have started with an arbitrary stratified map ¢: M’ — M, set
f = =m,(t) and reached the same conclusion. Thus, every Z-morphism
is cartesian and therefore, 7, is a fibered functor.

REMARK 1.5. The fiber #~%(B) is called the category of G-
manifolds over B. As we pointed out in the above proof, it follows
from II.3.4 that the morphisms of 7~ %B) are equivariant diffeomor-
phisms which cover the identity on B.

2. The Covering Homotopy Theorem.

THE COVERING IsOoTOPY THEOREM 2.1. Let M be a smooth G-
manifold over B. Suppose that @: B X I— B is a smooth one pa-
rameter family of (weakly stratified) isomorphisms with @, = id,
(@ is an “isotopy”). Then there is an equivariant isotopy «r: M X
I— M with w,(4) = @ and with 4, = id,.

This was conjectured by G. Bredon. It was proved for finite
groups by E. Bierstone [1], for regular O(n), U(n) and Sp(n) actions
in the author’s thesis, and in full generality by G. Schwarz [10].

The Covering Isotopy Theorem is implied by the statement that
a vector field on B which is tangent to each stratum can be lifted
to an invariant vector field on M. The proofs of both Bierstone
and Schwarz involve first proving this “Vector Field Lifting Theo-
rem.” Using the pullback construction, we shall show how this
implies the following smooth version of Palais’ Covering Homotopy
Theorem (see [2], [8]).

THEOREM 2.2 (The Covering Homotopy Theorem). Let M and
M’ be smooth G-manifolds over B and B’ and let F: M — M be
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stratified. Suppose that h: B X I— B’ is a weakly stratified homotopy
with hy=m,(F). Then, there is a stratified homotopy H: M x I — M’
extending F and covering h (i.e., with w,(H) = h).

Proof. Since h,: h*(M') — M’ is cartesian, there is an equivariant
diffeomorphism F': M — h¥(M’') covering the identity on B (see 1.4).
The theorem now follows from the assertion that there is an equi-
variant diffeomorphism +: he(M') X I — h*(M’) covering the identity
on B x I. For, assuming this, the homotopy H can be defined to
be the composition H = hoqro(F’ xid): Mx I—h*(M')x I—h*(M')— M'.

So, it remains to produce the equivalence 4. Consider the vector
field d/dt on B x I. By the Covering Isotopy Theorem, d/d¢ lifts
to an invariant vector field X on A*(M’). Let » be the map
h*(M')—> B x I— 1. Let A, be an integral curve for X through
zeh*(M'). Then, r.(d4,/dt) = 1. Hence, r(4,(t)) = t + constant. So,
by reparameterizing, we may assume that r(4,(t)) = ¢t. Let ¢ denote
the composition A*(M') — B x I — B. Since 4, stays inside the com-
pact set ¢ 7(¢(z)), it extends to a maximal integral curve parame-
terized by [0, 1]. So, define r: h¢(M') X I— h*(M') by (2, t) = 4,(¢).
This is the required equivalence.

Let M and M’ be smooth G-manifolds over B and B’. Put the
coarse C>-topology on Hom. (M, M’) and on Hom (B, B’). Let
Dift? (M) = Hom,-15 (M, M) be the group of equivariant diffeomor-
phisms of M which cover the identity on B. The following con-
jecture would be a strengthened version of 2.2.

Conjecture 2.38. w:Hom, (M, M')— Hom_, (B, B') is a principal
fibration with fiber Diff? (M), (by “fibration” we only mean that =
has the Covering Homotopy Property).

IV. Normal Systems

In this chapter we show how a smooth G-manifold can naturally
be regarded as a collection of principal fiber bundles over certain
manifolds with corners. These collections of bundles are called
“normal systems.” The main ideas of this construction are explained
in §1, where we describe a functorial association of normal systems
to G-manifolds. The principal results are stated in §4. One of
them, Theorem 4.3, states that this functor from Z to the category
of normal systems defines a bijection on isomorphism classes. This
result was essentially proved by Janich in [7]. From a certain point
of view, this is just the Equivariant Tubular Neighborhood Theorem.
This idea can be pushed further. Indeed, the next result (Theorem
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4.4) is the analogous theorem for local G-orbit spaces. Then, using
the Covering Homotopy Theorem, we are able to prove another
similar result (Theorem 4.5) for the category 7 '(B) of G-manifolds
over B. This last result is the one which, perhaps, best isolates
the bundle theoretic aspects of smooth G-manifolds.

1. Removing a tubular neighborhood. In this section, we
shall describe a certain functorial process of “removing” a tubular
neighborhood of a stratum. Actually, rather than removing a
tubular neighborhood, this process involves attaching a boundary to
the complement of a stratum—essentially, by passing to “fiberwise
polar coordinates” on a tubular neighborhood of the stratum. The
discussion follows Janich [7].

In order to focus our ideas, we shall, for the moment, forget
about G-manifolds and local orbit spaces and concentrate simply on
“removing” a tubular neighborhood of a submanifold. First, we
need some preliminary material.

Suppose that F is a smooth vector bundle over a manifold A.
Let E, denote the complement of the zero-section. The positive real
numbers R, act on E and on E, by fiberwise scalar multiplication.
There is an associated bundle C_E, called the nonnegative cylinder
bundle, which is defined by ’

C.E = E, Xn+ [0, =),

where a positive real number s acts on (, t) € B, X [0, ) by s-(x, t) =
(xs™, st). Denote the image of (x, t) in C_.E by [x, t]. The boundary
of C.E is called the sphere bundle, S E; it is the subset

JE = E, XR+ {0} = EO/R+ .

There is a canonical map c¢: C.E — E defined by ¢([x, t]) = tx, which
takes C.E — 3 FE diffeomorphically onto E, and YE onto A via the
projection mapping.

REMARK 1.1. If we pick a metric for E, then the map [z, 0] —
x/|x| identifies SE with the set of vectors of unit length in E.
Notice that C.E can also be regarded as a bundle over JE with
fiber [0, <) and with projection map [z, t]— [z, 0]. Furthermore,
given a metric, there is a bundle trivialization s: C.E— SE X [0, «)
defined by s([z, t]) = («/|zl, t]x]).

The following lemma is the key to our construction.

LEMMA 1.2. Let E and E' be smooth vector bundles over A and
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A', respectively. Let . E— E' be a smooth map such that (A=A
and such that the restriction of +r.: E— E' to any fiber is an iso-
morphism (i.e., 4 s transverse to A).. Then there is a unique
smoaoth map: ¥: C,E — C.E making the following diagram commute

C.E-.Cc.E

| Je

E -2 E.

In fact, 4 is defined by the formula

[t (tw), t]; ¢ # 0

In particular, this formula shows that |y, is a bundle map.

(0 1) = {

Proof. Since clg, z—yp is a diffeomorphism, it follows that there
is exactly one way to define v on C,E — 3FE so that the diagram
will commute; namely, by ¥([x, t]) = [v(tx), 1] = [t7¢(t(x)), t]. Since
lim, , [ty (tx), t] = [v4(2), 0] and since + must be continuous, we see
that ¥ must be defined by the given formula. Moreover, this
formula clearly defines a smooth map.

Now, suppose that M is a smooth manifold and that A is a
submanifold and a closed subset. Let N be the normal bundle of A
in M. Pick a “tubular map” T: N— M. By a tubular map, we
mean an embedding T: N — M such that

(i) T], is the inclusion and

(ii) T4: N— N is the identity.

(Here T, denotes the map from the normal bundle of 4 in N to
the normal bundle of A in M induced by the differential.) A smooth
manifold with boundary M (9) A can be defined as follows. As a
set, M (®» A is the disjoint union of M — A and YN. The tubular
map T induces a map 7: C.N— M — AU XN defined by

Titx); t=+20

7([=, t]) = [w 0; t=0.

As Janich points out, M — A U 2N has exactly one smooth structure
as a manifold with boundary which agrees with the original smooth
structure on M — A and with respect to which 7 is a diffeomorphism
onto a neighborhood of YN in M — AU XN. This manifold with
boundary is denoted by M & A. The map 7: C.N— M (& A may be
regarded as a collared neighborhood of the boundary.

In everything that follows, we shall only be concerned with the
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“germ” of a tubular map or of a collared neighborhood. So let us
adopt the following conventions. If E is a smooth vector bundle,
then the symbols “f: E — X” will mean only that the domain of f
is some neighborhood of the zero-section. Similarly, the domain of
9: C,E — X will only be required to be some neighborhood of YFE.
The phrase “f: E— X (respectively, g: C_.E — X) is a diffeomorphism”
will only mean that f (respectively, g) is a diffeomorphism from
some neighborhood on the zero-section (respectively, YE) onto its
image.

Let us consider the effect on our construction of altering the
choice of tubular maps. We claim that the smooth structure on
M () A is independent of the choice of T. For, let T: N— M be
another tubular map and let ¢’: C,N — M (*) A be the induced collared
neighborhood. Since the smooth structure on M (» A was defined
by requiring 7 to be a diffeomorphism, our claim amounts to the
assertion that t7'o7’: C,N — C_N is a diffeomorphism. But, clearly
77l 7' = 4, where + = T 'oT': N— N; so this assertion follows
from Lemma 1.2. This argument also suggests how to define an
equivalence relation on collared neighborhoods so as to make the
equivalence class of 7 independent of the choice of tubular maps.
To be specific, two collared neighborhoods 7z:C,N— M (s A and
t':C,LN— M () A are equivalent if 77'ot’ = 4, where +: N— N is
the germ of some diffeomorphism with 7(4) = A and with -, = id,.

So, given a manifold M and a submanifold 4, we have con-
structed a 4-tuple (M (® A, N, 6, [7]) consisting of

(1) a manifold with boundary, M (® A,

(2) a vector bundle N over a manifold 4

(8) a diffeomorphism 6: XN — o(M (» A), and

(4) an equivalence class [z] of a collared neighborhood z: C.N —
M (» A, where 7|5y = 6.

Conversely, given any such 4-tuple (Y, E, 6, [t]), one can recover
a manifold M together with a submanifold A (the base space of E).
For, let 7: C,LE—Y be a collared neighborhood in the given equi-
valence class. As a set, M will then be defined as the disjoint union
(Y —0Y)U A. There is an obvious map T: EF — (Y —0Y) U A de-
fined by

([z, 1]); ze€ K,

(@) = x ; xeA.

M can be given the structure of a smooth manifold by requiring
that 7 be a diffeomorphism from E onto some neighborhood of A
in M. This structure is well-defined, since our definition of the
equivalence relation on collared neighborhoods is obviously rigged
so that the smooth structure on M will be independent of the choice
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of 7 within the given equivalence class.

These constructions are clearly inverse to one another. Moreover,
they are functorial in a sense which we shall explain below. If
(Y, E, 0,[r]) and (Y, E', ¢, [7r']) are 4-tuples satisfying the above
conditions, then by a morphism (Y, E, 6, []) — (Y, &', ¢, [¢']), we
mean

(i) a smooth map h:(Y,0Y)— (Y’,0Y"), together with

(ii) a bundle map M E — E’ which is a fiberwise isomorphism,
such that the following diagram commutes

SE— SE

(iii) oJ’ lar
Furthermore, if = and 7z’ are choices of collared neighborhoods in
the given equivalence classes, then we require that

(iv) There exists a smooth map (germ) +: E — E’ transverse
to A’, such that v '(A") = A, ¥, =N\, and =7 'ohot: C,LE— C_E.
Notice that if + exists it is uniquely determined by 7, ¢’ and h.

Given two pairs (M, A) and (M’', A’), we consider as morphisms
smooth maps F: M — M’ which are transverse to A’ and which
satisfy F'(4’) = A. Such an F induces a morphism of 4-tuples
(M®A, N, 6, [z]) > (M (@A, N', ¢, [7']) defined, in the obvious fash-
ion, by N = F,, k| wo-smen = Fly_s and hlywen = Fylzy. It is
immediate from Lemma 1.2 that % is smooth and that condition (iv)
holds. It is just as easy to see that, conversely, a morphism of
4-tuples induces a morphism of the associated manifold pairs.

The above construction clearly works equivariantly. For, sup-
pose that M is a smooth G-manifold and that A is an invariant sub-
manifold. Then we can choose an equivariant tubular map T: N— M
and define M (») A as before (actually, it is not necessary for T to
be equivariant). Since G acts smoothly on M and since the construe-
tion is functorial, it acts smoothly on M (o A.

We are particularly interested in the case where A = M, is a
minimal stratum of M, i.e., where M; = ¢ whenever 8 < «. In this
case M, is closed (by I1.1.6). So we obtain a G-manifold with bound-
ary M (&) M,, which has one less stratum. Notice that a stratified
map M — M’ is a morphism of manifold pairs (M, M,) — (M’, M,) in
the sense we discussed above. We can continue this process of
“removing” tubular neighborhoods of the strata, all the while keeping
track of the relevant information (normal bundles, identifications on
the boundaries, and collared neighborhoods). Just as we associated
a 4-tuple to a manifold pair, we are led to associate an “augmented
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normal system” to a smooth G-manifold. As one might suspect,
this association is an equivalence of the appropriate categories (see
4.9).

For many purposes an “augmented normal system” contains too
much information. To see this, let us again consider 4-tuples
(Y, E, 0, [t]), as defined above. If we forget about the equivalence
class [z] (condition (4) in the definition), and consider only the triple
(Y, E, §), then we have not lost anything crucial; for, by the Col-
lared Neighborhood Theorem, 0Y always has a collared neighborhood
and any two such collared neighborhoods are isotopic. Morphisms
of such triples can be defined as before, except that now we must
forget about condition (iv), which no longer makes sense. Forgetting
the collared neighborhoods leads to the notion of a “normal system”
associated to a G-manifold. The category of normal systems is
conceptually much simpler than the category of augmented normal
systems (just as the triples are simpler than the 4-tuples). The as-
sociation of a normal system to a G-manifold is still a functor, but
there is no adjoint. However, a normal system still determines a
smooth G-manifold, well-defined up to equivariant diffeomorphism
(see 4.3).

REMARK 1.3. There is a similar procedure for local G-orbit
spaces. Suppose that B, is a minimal stratum of a local orbit space
B. Recall that in § II.5 we showed that there was a bundle C,— B,
with fiber X*/G. The positive real numbers act by fiberwise scalar
multiplication on C, and on C, — B, (see 1I.4.1). So we can define
a nonnegative cylinder dbundle

C+Ca = (sz - Ba) XR+ [0’ OO)
and a sphere bundle
GCa = (Ca - BIY) XR_I_ {0} = (Ca - Ba)/R+

as before. Also, if 4:C, — C, is a stratified map, then there is a
smooth stratified map +:¢,C,— ¢,C, defined by the formula given
in Lemma 1.2. (Also, notice that an equivariant version of this
lemma is clearly true.) Finally, by Theorem II.4, there is a “tubular
map” T:C,— B. So we can construct B (e B, in the same manner
as we constructed M (& M,. Moreover, it is clear that if M/G = B,
then (M ® M,)/G = B (» B,.

We should point out, however, that there is no such construec-
tion for weak local orbit spaces, for two reasons. First of all, for
weak local orbit spaces, we do not know that the bundles C, exist.
Secondly, if +: C,— C, is only weakly stratified, thet there is no



SMOOTH G-MANIFOLDS 349

guarantee that +:¢,C,—c,.C, exists (essentially because as t-->0
the limit of ¢™'ovr(fox) may not exist). Thus, there is no analogue
of Lemma 1.2 for weakly stratified maps.

2. The closure of a stratum. In this section we attach bound-
aries to the strata and to the normal orbit bundles.

Recall that a smooth n-dimensional manifold with corners M is
differentiably modeled on open subsets of {x e R*|2, =0, ---, z, = 0}.
If xeM is represented by local coordinates (x, ---, x,), then we
denote by c(x) the number of zeros in this n-tuple. Following [7],
we say that M is a manifold with faces if every x e M belongs to
exactly c(x) different connected components of {y € M|c(y) = 1}. Any
disjoint union of the closures of such components is called a fact of
M. Notice that any face is an (n — 1)-dimensional manifold with
faces (see [7]).

DEFINITION 2.1. Let S be a partially ordered set. A manifold
with S-faces is a manifold with faces M together with an S-tuple
of faces (0,M),.s such that

(1) oM = U,cs0,M.

(ii) o,M and 0,M are disjoint unless s <t or ¢t < s.

(iii) If s < t, then o,M N o.M is a fact of 0,M and of 0,M.
Similarly, one has the notion of G-manifold with S-faces.

Next we define a function d: I(G)— Z,.. If « is a normal G-
orbit type, then d(a), the length of «, is the maximum length of
any chain beginning at «, i.e., d(a) = max{nja=a, <a, < --- < @,}.
Suppose that @ and A are represented by (H®% V%) and (H? V?),
respectively. If B> a, then dim V* < dim V* Consequently, d(a) <
dim V= + 1.

Suppose that M is a smooth G-manifold. Let J be the set of
normal orbit types of G on M, i.e., let J={acG)| M, + ¢}. By
the remark in the above paragraph, every element of J has length
bounded by dim M + 1; hence, the integer m = max {d(a)|aeJ} is
defined. Set

J() = {@ e J|d(a) > 1}
and
Jy={aed|la < B}.

Obviously, J; C J(¢) if d(B) = 1.

For each ¢ =< m, we shall now define a G-manifold M(s) with
J(1)-faces. First, set M(m) = M. If d(8) = m, then M, is a minimal
stratum of M, and hence, a closed subset (by I1.1.6). So, we can
apply the construction of the previous section to define
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Mm —1)=M®U M,

where the union is taken over all 8 with d(B) = m. M(m — 1) is a
G-manifold with boundary. Let d;M(m — 1) denote those boundary
components determined by M, that is, let d0,M(m — 1) = Sv,(M).
This gives M(m — 1) the structure of a manifold with J(m — 1)-
faces. The general definition is made by induction (downwards).
Suppose that we have defined a G-manifold M(7 + 1) with J(@ + 1)-
faces. Further suppose, by induction, that

(a) Mt + 1), # ¢ if and only if d(7) = ¢ + 1, and that

(b) if d(B) = ¢ + 1, then (0,M(% + 1)); # ¢ if and only if a < B.
Then for all 8 with d(8) =14+ 1, M(% + 1); is a minimal stratum
of M(1 + 1). For each such B, we can choose an equivariant tubular
map V(M7 + 1)) — M(¢ + 1), which is compatible with the manifold
with corner structure on M(7 + 1) (see [7]). Therefore, we can
define

M@E)=M@:E+1)@©U M@z + 1),

where, as before, the union is taken over all 8 with d(B) = 7 + 1.
One can easily check that M(7) is again a manifold with faces. If
d(a) > 1+ 1, then set 0,M(7) = 0. M1 + 1) ® U (0. M(% + 1));. This
is clearly a face of M(7). If d(a)=1-+1, then set 0,M(2)=2y,(M(1+1)),
which is clearly also a face of M(z). With these definitions, it fol-
lows from the inductive hypothesis (b), that M(%) is a manifold with
J(i)-faces. It is also easy to check that the inductive hypothesis
(a) and (b) hold for M(%).

If B is a local G-orbit space with strata indexed by J, then, in
a similar fashion, we can define B(4), a “local G-orbit space with
J(i)-faces.” -In particular, suppose that M is a smooth G-manifold
over B with projection map p: M — B. Then the interior of M(7)
can be identified with the complement in M of the strata of M
length greater than 4, and Pl €xtends to a map p(z): M(¢) — B(3)
in an obvious fashion. For simplicity, we shall use the notation
M(a) = M(1), B(a) = B(1) and p(a) = p(i), where © = d(a).

DEFINITION 2.2. Suppose that M is a smooth G-manifold over
B. Let

M, = M(a),
B, = Ba). .
V,=Y,(M), the normal bundle of M, in M(«x).

P,= P,(M), the principal S,-bundle over B, associated to D,.
C,= CB), the budle over B, with fiber X*/G(C, = v,/G).
Q.= Q M), the principal T,-bundle over B, associated to C,

Q.= P,/Z,, where Z, is the kernel of the natural
map S, — T,).
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M, is called the closed a-stratum of M, B, is the closed a-stratum
of B and P, is the closed a-normal orbit bundle.

Next, consider 3,M(8)N M,, where d(c) > d(8). This intersection
is empty unless a < B, in which case we define

3. My = 0.M(8) N M .

This gives M, the structure of a manifold with J,-faces (recall that
J; = {eeJ|a < B}). Similarly, for each a < 8, we can define 3,B; =
30:3(@) N Eﬁ:_aa_ﬁﬂ = _ﬁﬁiaaizﬂ, aapﬂ = Pﬁlaaﬁﬂ, and 0,Q; = Qﬁ|aa35- So, Eﬁ;
Us, P; and Q; are also manifolds with Js;-faces.

Let F: M — M be a stratified map of G-manifolds and let
f=nF):B— B'. It follows from the discussion in the previous
section that for each @, F'|iiyw €Xtends to a stratified map F(a):
M(@) — M'(a) covering f(a): B(ae) — B'(a). The differential of F(«)
induces an equivariant linear bundle map F(),: V(M) — Y, (M’') and
therefore, a map of the associated principal bundles F,: P (M) —
P (M. Similarly, f(a),: C.(B) — C,(B’) induces f.: Q(B) — QB’).

3. The linear data. The purpose of this section is to set up
some notation. First of all, for the remainder of this chapter, we
shall only be interested in the closed strata. For simplicity we shall
change our notation as follows.

NotATIiON 38.1. From now on, M, (respectively, B,) will denote
the closed a-stratum of M (respectively B). Similarly, v,, P, and
Q. will denote the appropriate bundles over the closed a-stratum.

As before, for each normal orbit type a € I(G), choose a repre-
sentative (H® V%) and let X*= G X V*. We regard X* as a left
G-space and as a right S,-space, where S, is defined as in §I.2.
Let J* be the set of normal orbit types of G on X%, i.e., let J*=
{BeIlG)|B = a}. For each B with B8 = «a, we shall denote by Xj
the closed B-stratum of X* Similarly, we shall denote the closed
B-stratum of X*/G by Bj. Also, we can define the bundles vj, Pj
and Q5 as in the previous section. . All of these spaces are manifolds
with Jé-faces, where J§ = (v e I(G)|B > 7 = a}.

The action of S, on X* preserves the stratification by normal
G-orbit types. Hence, the normal bundle of each stratum is a
(G x S,)-vector bundle, and consequently, S, also acts on the normal
sphere bundle of each stratum. It follows by the naturality of the
construction, that for each 8> a, X%(«a), X§ and v; are all S,-spaces.
Since S, acts on yi through bundle maps, it also acts on Pj, the
total space of the associated principal bundle. In a similar fashion,
B«B), Bj and Q% become right T“-spaces.
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For any smooth G-manifold M, we have (by definition) that
0. Mz = 3(v,)s, Where v, = X* X5, P,. If YX* denotes the sphere
bundle of X*— G/H", then

(3Ve)s = (X" X, Po)s
= (JX%); xsa P,
= 0,X§ X,sa Py .

Hence, for each a < 8,

(3.1) 0. M, = 3.X% X, P, .
Similarly,

(3.2) 0.Ps = 0,P§ X5, P,

(3.3) 9,85 = 3,B% Xr, Qu

(3.4) 0.Qs = 0,45 Xr, Qu -

4. Normal systems. A subset JC I(G) is closed if for every
aeJ and every B with 8 > a, we have that SeJ. If J is any such
subset and if @€ J, then let J, = {veJ|7 < a}.

DEFINITION 4.1. An n-dimensitonal &-normal system is the fol-
lowing data:

(i) .A closed set J of normal G-orbit types. _

(ii) For each aeJ, a principal S,-bundle P, over a manifold
B, with J,-faces (where dim B, + dim X* = n).

(iii) For each pair (@, B)eJ X J with 8 > a, an isomorphism
of S;-bundles

Ous: 0.PF X5, Pu— 0,P; ,

where by definition 0,P; = Pgls,5,» Moreover, there is the following
compatibility condition.

(iv) For each triple (@, 8,7) with ¥ > 8 > «a, the following
diagram of isomorphisms commutes

aﬁP)i? XS,g aaPlc; xSa Pa
X 0&,/9/ \aﬂaa,T
/ N\

0P} Xy 0Py 55— 0P N 0,P, .

Here 9,0,,, denotes the restriction of 6, to (3;P. N d,P%) Xs, P, and
0.05,; denotes the restriction of 0;, to 0,P] Xs,0.P5. If &is a &~
normal system, then we shall sometimes use the notation J(&), B,(%),
P,¢&) and 6, (&) for the above data.
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If £ and & are “-normal systems with J(&) C J(&"), then by a
morphism ¢:&— & we mean a collection of smooth bundle maps
bo: Py(&) — P&, aeJ(€), such that the following obvious diagram
commutes ‘ ‘

0.P% X Pu(®) 225 5,P% X, Pu(&)

100,,9(5) loa,ﬂ(é’)
WP == PO

for each a, BeJ with 8 > @. For technical reasons, we shall also
require that the differential of ¢, maps the normal bundle of 9,P,(&)
in P,(&) transversely to the normal bundle of 9,Ps(&).

The definition of .<#-normal systems and their morphisms is
completely similar—in condition (ii) of 4.1, we merely replace the
phrase “a principal S,-bundle P,” by “a principal T,-bundle Q,.”

Let _#~ be the category of “-normal systems and let .47 be
the category of .<Z-normal systems. As we indicated in Sections
1 and 2, there is a faithful functor D: & — _#~ which associates
to a G-manifold M the normal system with bundles {P.(M)}, the set
of closed normal orbit bundles. The maps 6, are the identity maps,
as indicated in (8.2). Condition (iv) of the definition, which asserts
that the identifications agree on the intersection of two faces, is
clearly satisfied. In a similar fashion, there is a faithful functor
D': &% — 4 which associates to each local G-orbit space B the .27-
normal system with bundles {Q.(B)}.

Also, there is a functor Z:._4"— _#" which associates to each
“-normal system a .<Z-normal system. To be specific, if &=
{J, B,y P,y 0,5} is a Z-normal system, then set 7(&) = {J, Bay Qu Nars}s
where Q, = P,/Z, and where \,,; is the bundle map covered by 6,,.
We summarize the above remarks in the following proposition.

PROPOSITION 4.2. There is a commutative diagram of functors

In the next theorem we assert that the normal system is a com-
plete invariant of a smooth G-manifold.

THEOREM 4.3. The functor D: < — 4 defines a bijection be-
tween equivariant diffeomorphism classes of smooth G-manifolds
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and isomorphism classes of Z-normal systems.

For the special case of compact regular O(n)-manifolds, this
theorem is the main result of Jaénich’s paper [7]. We shall also
prove the following two results. Theorem 4.5 is perhaps the most
interesting of the three.

THEOREM 4.4. The functor D': & — 4 defines a bijection be-
tween isomorphism classes of local G-orbit spaces and isomorphism
classes of Z-normal system.

THEOREM 4.5. Let B be a local G-orbit space. Then the functor
D defines a bijection between isomorphism classes in n~(B) and
isomorphism classes in T Y(D'(B)), (where w'(B) is the category of
G-manifolds over B defined in (II1.1.5)).

Before proving these three theorems, we will introduce the no-
tion of an “augmented normal system,” which takes into account
the equivalence class of the appropriate collared neighborhoods.
Recall that in order to define the normal system of M, we had to
choose equivariant tubular maps T,: v, (M) — M(e). Let us consider
what information such a tubular map gives us in terms of normal
systems, that is, let us apply the functor D to 7T,. The closed
B-normal orbit bundle of v, is P§ X, P.. So, D(T,) is essentially
a collection of bundle maps D(T.); = 7o P§ X5, P. — P;, indexed by
J*. Also, consider the fact that T, and T, differ by an equivariant
diffeomorphism where they overlap. Another way to express this
fact is that for each pair (a, 8) with 8 > a, T, and T, define the
germ of an equivariant diffeomorphism g, ,: X* X, (P Xs, Po) = va(B),
which should be thought of as a tubular map from the closed 8-
stratum of vy, into v,(8). The map p,; is defined by the following
diagram of (germs of) equivariant embeddings.

X 7q,
X? XS,B (Pg Xsa PL\') —___ﬁ_) Vs
Eﬂa.ﬁ (6) lTB
v(8) — P M)

We should also point out that p,, is completely determined by
{Twr Tor|Y = B}, For if ¥ = B, then the restriction of g, to the
closed 7-stratum is determined by the diagram

X zq,
XI Xy, (P§ Xs, P) —=5 Xt X, P,
(4.6) l(/‘a.ﬁ)r l%ﬁ.r
X?" XSa Pa

— M,
a7

L4
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where 7,, and 7,, are the maps covered by 7, , and 7z, ,, respectively.
These considerations motivate the following definition.

DEFINITION 4.7. A collaring 7 for a Z-normal system is a
collection of smooth bundle maps 7, P§ X;, P.— P; indexed by
{{a, By edJ x J|B > e} and satisfying the following two conditions:

(a) The restriction of 7, to 0.P§ Xs, P, is 0,,.

by If pe,0 XP Xs, (P§ Xs, Pa) — X%(B) X5, P, is the map defined

(on each stratum) by diagram (4.6), then g, , is the germ of a G-
equivariant diffeomorphism on some neighborhood of 3,X5 X, P,.
If 7’ is another collaring for the same normal system, then 7’ is
equivalent to 7 if for each a € J, there is an equivariant diffeomor-
phism . X* X, P, — X* X5, P, (defined on some neighborhood of
the zero-section) with (v,), = id and such that the following diagram
commutes for each 8 = a.

P; X, P,
l Ntws
D(¢a)p >P,a
1 L I
P; X, P,

DEFINITION 4.8. An augmented Z-normal system is a Z-normal
system together with an equivalence class of collarings.

Suppose that & and & are normal systems with collarings = and
7'. A morphism ¢:&— & is said to be a morphism of augmented
normal systems if for each acJ(&), there is a stratified map
G X* X, P(§) » X* X5, Pu(§') so that the following diagram com-
mutes.

Ps X, P& —=5 Py(o)
lD(Gan lw
P§ Xs, P&) = Pi(E) -

As usual, the map G, is only required to be defined on some neigh-
borhood of the zero-section. The notion of a morphism of augmented
“-normal systems clearly depends only on the equivalence class of
the collarings. For, if we alter z or ¢ by an equivalence, the
effect is to alter G, by composition with an equivariant diffeomor-
phism.

Augmented .<#-normal systems ecan be defined in a similar
fashion.
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Let _#; and _#", be the categories of augmented Z-normal
systems and of augmented <Z-normal systems, respectively. As we'
indicated in the remarks following (4.5), choosing tubular neigh-
borhoods for the strata of a G-manifold amounts to choosing a
collaring for the associated normal system. The definition of equi-
valence of collarings mirrors the fact that any two tubular maps
differ by an equivariant diffeomorphism. Hence, we can associate
an augmented Z-normal system to each smooth G-manifold and this
correspondence is independent of the choices of tubular maps. In
other words, we have a functor D,: & — _#;. Similarly, there is
a functor D.: <# — _#",. Also, there is a canonical functor w,: 7+, —
A", such that the following diagram commutes

D .
xZ? ‘_L’ </4/a

1 -

D, ,
B — N
THEOREM 4.9. The functors D,: € — .4, and D;: & — 47, are
equivalences of categories.

The theorem asserts that there are functors A:. 4, — <% and
A': 4, — & (called assembling fumctors) and natural isomorphisms
AeD, =1, D,coA=1,, AeD;=1, and D;oA"=1,,. The fune-
tors A and A’ are defined by reversing the process by which we
defined D, and D.,. In the case of two strata, this process of
building a G-manifold was described in §1. The details in the
general case are sketched below.

Proof of 4.9. Suppose that & = {J, B,, P, 0.5 [t]} is an aug-
mented < -normal system. We wish to reconstruct a smooth G-
manifold M = A(§). Let v, = X* X, P, and let M, = G/H* Xs_P..
Define : '

M) :d(ulMa .
Suppose, by induction, that we have defined M(:7). For each acJ
with d(a) =1 + 1, we wish to define an equivariant collared neigh-
borhood ¢,: C.v, — M(z). The point is that we can define a map by
defining its restriction to each stratum. If ¢ is a collaring in the
given equivalence class, then 7, ; is a bundle map . from the B-normal
orbit bundle of C,y, to the S-normal orbit bundle of M(i). Thus,
T, induces a map (£.);: (Cov.)s — M(t);. We define ¢, by requiring
that its restriction to the B-stratum be (¢,),. It follows easily from
our definition of a collaring that ¢, is a diffeomorphism. As a set,
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M(i + 1) will now be defined to be the disjoint union
M@+ 1) = (M(3) — M%) U u U M,.

a)=1i+1

Define T,:v,— M(i + 1) by

ta([xf 1]); rTeEY, — Ma

To@) = x ; xzeM,.

We give M(¢ + 1) the structure of a smooth manifold with J(¢ + 1)-
faces by requiring that each T, be an equivariant tubular map.
This completes the inductive step. Thus, on the objects of .¢;, 4
is given by

A@g) = M(m) =M

where m is the maximum length of any chain in J. If ¢:&£—¢& is
any morphism, then we must also show how to define a stratified
map A(g): A(E) — A(¢'). Essentially, this is done by the same pro-
cedure we used to construct ¢, from {z,,}, that is, the restriction
of A(¢) to the a-stratum is defined to be the equivariant map

X stu: G/Ha Xsa Pa(s) mand G/Ha XSa Pu(sl) .

This defines an equivariant function A(¢): A(E) — A(£'), which we
leave to the reader to check is a stratified map of G-manifolds. The
functor A’ is defined similarly.

To finish the proof, we must exhibit natural isomorphisms of
funetors A-.D, =1,, ete. Let M be a smooth G-manifold and let
&= D,(M). Then P& is the closed a-normal orbit bundle of M.

Therefore, there is a canonical isomorphism @, X* X, Puiva(M )
(and this is the main point). The restriction of @, to the zero-
section yields a canonical isomorphism +,: A(§),— M,. Hence, we
have defined a function +: A(¢) — M, which, again, is easily checked
to be an equivariant diffeomorphism. It follows that the natural
transformation which assigns to each Mecob% the morphism 4
A(D(M))— M is a natural isomorphism Ao-D, = 1.. The descrip-
tions of the other natural isomorphisms are similar.

In order to prove Theorems (4.3) and (4.4), we need two lemmas
(see (4.10) and (4.12), below). These lemmas essentially are the
existence and uniqueness parts of the Equivariant Collared Neigh-
borhood Theorem in somewhat disguised form. We shall also need
more delicate versions of these lemmas (see (4.10)" and (4.12Y, below)
in order to prove Theorem 4.5.

Let /1. — 4" and f': 4", — 4" be-the functors which associ-
ate to an augmented normal system the underlying normal system.
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LeMMA 4.10 (Existence of Collared Neighborhoods). Let A be a
Z-normal system. Then there is an augmented Z-normal system
& with f(&) = A. The analogous statement is true for <Z-normal
systems.

Proof. The lemma asserts that we can choose a collaring 7 for
4. As before, let M, = G/H* X5, P,(4) and let M(1) be the union of
those M, with d(a) = 1. By the Equivariant Collared Neighborhood
Theorem, for each a with d(a) = 2, we can choose a collared neigh-
borhood ¢,: C,v, — M(1) such that t,|s, is the natural identification.
Applying D to t,, we get a bundle map %, P; X5, P*— P; where
d(B) =1 (as in the remarks following 4.5). We can also use the
t,’s to construct M(2) (as in the proof of (4.9)). One continues in
this fashion, by inductively constructing M(¢) and then choosing
collared neighborhoods t,: C,v, — M(z) with d(a) = 7 + 1, in order to
define {z,;} and to construct M(z + 1). The maps (¢, defined by
diagram (4.6) are clearly equivariant diffeomorphisms. Hence, {z, s}
defines a collaring. The proof for <Z-normal systems is similar.

LEMMA 4.10’. Let 4 be a Z-normal systems and let 7 be an
augmented Z-normal system with f'()) = 7(A). Then there is an
augmented Z-normal system & with f(&) = A and with 7w (&) = 7.

Proof. Let T be a collaring for 7 in the given equivalence
class. The lemma asserts that we can find a collaring = for » which
“covers” 7. The collaring 7 defines collared neighborhoods of the
form ¢, ¢,C,— B(i) with %,|,, being the canonical identification.
(Here C, = X*/G X, Q.(7) and ¢,C, and oC, are as defined in 1.3.)
The lemma will follow, if we can modify the proof of Lemma 4.10
by choosing collared neighborhoods t,: C.y,— M(i) with 7(t,) = &,.
We know that C,,= Xy, X [0, =) and that ¢,C, = oC, X [0, ).
Also, the restriction of ¢, to Xv, must be the canonical identifica-
tion; hence, it must cover %,l,,,. Thus, it follows from the Covering
Homotopy Theorem (II1.2.2) that there is a stratified map ¢, cover-
ing %,.

Sy, % [0, ) -5 M)

l

oC, % [0, <) —> B()

Since t, maps c¢,C, isomorphically, it follows that ¢, maps C,y, iso-
morphically; hence ¢, C,v,— M(i) is a collared neighborhood. The
augmented Z-normal system ¢ so produced will then lie over 7.
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DerFiNtTION 4.11. Let 4 ={J, B, P,, 0, ,} be a normal system.
There is a normal system A X I with data {J, B, x I, P, X I, 8, , x id}.
If ¢: 41— A" is an isomorphism then as ¢sotopy of ¢ is a morphism
O: 4 x I— A which is an isomorphism on each level and which
satisfies @, = ¢.

LEMMA 4.12 (Uniqueness of Collared Neighborhoods). Suppose
that & and & are augmented <-normal systems and that ¢: f(&) —
f(&) is an isomorphism of the underlying normal systems. Then
there is an isomorphism 0:&— & and an isotopy of ¢ to f(6). The
analogous result is true for augmented <Z-normal systems.

Proof. The procedure will be to modify ¢ by a sequence of
isotopies. At the first stage, we shall only change those ¢, with
d(B) = 1. Associated to P;(&) and P,(¢) we have the G-manifolds
with J;-faces M, and M;. Let ¢,: M,— M; be the equivariant
diffeomorphism induced by ¢;. Let ¢ and ¢’ be collarings for ¢ and
g. Let (a,B) be a pair with d(8) =1, d(a) =2 and with a < 8.
The maps 7,; and 7, , induce collared neighborhoods ¢,: C,v, — M,
and t,: C,v,— M;. There is an equivariant diffeomorphism F: C v, —
C.,v, which is defined on some neighborhood of 2y, and which makes
the following diagram commute

F ,
Cy,«---Cv,

Also, since C.y, is a bundle associated to P,(&), there is an induced
bundle isomorphism (Xxg,): C,y,— C,v,. Consider the map G =
Fo(x¢,):Cy,— Cuy,. It follows from the definition of morphism,
that G is the identity on 3y, and on C,(0,v,), for any 7 <. We
claim that there is an equivariant isotopy +.: C.v,-> C,v, such that
= G, such that +, is the identity on some small collared neigh-
borhood ofXy, in C,v,, and such that +», = G on the complement of
a slightly larger neighborhood. Moreover, +, will be the identity
on C.(0y,). In order to construct «, first let »:C,v,—]0, 1] be a
smooth invariant function, which is 1 on a neighborhood of Sy, and
which vanishes outside a slightly larger neighborhood, and let
q:Cy, x I—1I be given by q(x,t) =1+ r(x)(t —1). Recall that
C.v, is a bundle over 3y, and that [0, ) acts on it by fiberwise
scalar multiplication. Consider the isotopy +r(x) = q(x, t)"'G(q(x, t)-x).
This is well-defined when 7(z) <1 or when ¢t > 0. For »(x) =1 it
converges smoothly to the bundle map () = lim,_, t"'G(tx) = G.(x).
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But a bundle map differs from the identity by a scalar multiple on
each fiber, so by a possible further isotopy we may assume that
is the identity near Xy,. Clearly ¢, = G and )0, 6, = id. Con-
sider the isotopy H: C.y, x I— C,y, defined by H(zx, t) = ¥r,o( X ¢,) ().
Since H(zx, t) = F(x) off of a neighborhood of Xy,, it extends to an
ambient isotopy on M,. That is to say, there is an equivariant
isotopy @4 M, x I— M; of 3, to 8, so that the following diagram
commutes,

M, x I -2 M

Itaxl Tt:,

H ,
Cy, x I— C,y, .

We see that 0, = @, hegx 18 @ bundle map on a small collared neigh-
borhood of Xv,. Moreover, @;(x, t) = $s(x) for xcoM, and for xec
M; — t(C,v,). The equivariant map tﬁﬁ induces an isotopy of the
associated normal orbit bundles, and we denote this map by @;:
Py(&) x I— Py(¢'). Since @, is constant on 0Ps(&) we can find an
isotopy @: f(&) X I— f(¢) which is equal to &; on the B-stratum
and which is ¢ X id; on every other stratum. This completes the
description of the first in our sequence of isotopies. It should be
clear that we can continue this process inductively. At the next
stage, for example, we consider collared neighborhoods of the form
t;: C.y, — M(2), where d(7) =3, and we alter ¢(2): M(2) — M'(2) by
an isotopy so that it will be a bundle map on C,y,. This will lead
to an isotopy of ¢ which will only change those ¢, with d(a) < 2.
This completes the proof. The argument for .<#-normal systems is
essentially identical.

LEMMA 4.12". Suppose that & and & are augmented Z-normal
systems lying over the same augmented <Z-normal system 7 (i.e.,
w,(8) = w(&") = 1). Suppose further that ¢: f(&) — f(&) is an iso-
morphism lying over the identity (i.e., #(¢) = idsy). Then the
isotopy @ constructed in the proof of (4.12) also lies over the identity
(i.e., &®,) = id).

Proof. Let us reconsider the proof of (4.12). There we con-
structed an equivariant diffeomorphism G:C,y,— C,y,. With the
hypotheses of the above lemma, it will follow that n(G) = id: ¢.C, —
¢.C,. We assert that this implies that the isotopy < (x)=
q(x, t)™ - Glg(x, t) - ) also satisfies n(4r,) = id. For indeed, 7(y,)(2) =
Gz, t) o (G)(q(2, t)o2) = q(2, t) 0 q(2, t) oz = 2z, where q: ¢, C., X I—>1T
is the map induced by ¢. (Also notice that no further correction
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of 4, is necessary; for, it follows from the fact that =n(G,) = id
that the bundle map G, is automatically the identity.) The above
observations imply that the sequence of isotopies constructed in
(4.12) will all cover the identity on 7.

Proof of 4.3 (and of 4.4). The proofs of (4.3) and (4.4) are
essentially identical. The functor D: & — 4~ clearly induces a
function from the set of equivariant diffeomorphism classes of smooth
G-manifolds to the set of isomorphism classes of Z-normal systems.
It follows from Lemma 4.10 that this function is a surjection. For,
if 4€o0b.y,, then, by (4.10), we can find an augmented normal sys-
tem & lying over it. Then A(¢) is a G-manifold and by (4.9),
D,(A(&)) is isomorphic to &. Hence, D(A(£)) is isomorphic to f(&) =
Similarly, it follows from Lemma 4.12 that this function is an injec-
tion. For, if D(M) = D(M’), then, by (4.12), D,(M) = D,(M’). But
then (4.9) implies that M = M’'. This completes the proof.

Proof of 4.5. Again, D clearly defines a function from isomor-
phism classes in n~%(B) to isomorphism classes in Z7Y(D’'(B)). First
we show that this function is surjective. Suppose that 4 is a Z-
normal system with #(4) = D'(B). By (4.10)', there is an augmented
Z-normal system ¢ with f(¢) =4 and with 7,(&) = D,(B). Then
A(&) e obr(B) and D(A(E)) € ob7T(B); so the function is surjective.
Similarly, it follows from (4.12)" that the function is injective.

REMARK 4.18. Since Hom. (M, M’) is a subset of the space of
all C* maps from M to M’ (with the coarse C~-topology), it has an
induced topology, also called the coarse C=-topology. Similarly it
makes sense to speak of the “coarse C~-topology” on Hom. (B, B’)
and on Diff’ (M) (=Hom, 5 (M, M)). The theory of normal systems
can be used to gain insight into the homotopy theory of these three
spaces of stratified maps. We sketch a few ideas below. -

Let & and & be Z-normal systems with bundles indexed by
J = JE) = J&). Let P,= P,&) and P, = P,£). Recall that a mor-
phism ¢:&— & is a J-tuple of bundle maps ¢, P, — P, satisfying
the compatibility condition expressed by the following commutative
diagram.

P X5, P25 5,P5 X5, P

- l

. 0.Pp —_ 0.P;
]

In other words, Hom_,. (¢, &) is a certain subset of [[.., Hom (P, P)),
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where Hom (P,, P.) denotes the space of smooth S,-bundle maps
from P, to P, with coarse C~-topology. The induced topology on
Hom , (¢ &) is again called the coarse C>-topology. In a similar
fashion, we can define the “coarse C>-topology” on Hom ,. (7, ') and
on Hom;-i,(& &). We assert that with these topologies, the maps

D: Homg, (M, M') — Hom_,- (D(M), D(M"))
D': Hom,, (B, B") — Hom _,.. (D'(B), D'(B"))
D: Dift} (M) — Hom3z—1p () (D(M), D(M))

are homotopy equivalences. (This assertion is a generalization of
Lemmas 4.12 and 4.12".) The map D: Hom. (M, M’') — Hom_,- (D(M),
D(M")) is an embedding and may be regarded as the inclusion. One
proves that D is a homotopy equivalence by showing that both
spaces are homotopy equivalent to a common subspace; namely, the
subspace consisting of those maps which are linear bundle maps on
some prescribed tubular neighborhoods of the strata. The argument,
which is a fairly standard application of some ideas of Cerf, is
omitted. Of course, the proof that the other two maps are also
homotopy equivalences is entirely analogous.

The homotopy of such space of morphisms of normal systems,
e.g., of Hom_, (§ &), can be analyzed via a “stratum by stratum”
approach. Set J' = {aeJ|d(a) < m — i} where m is the maximum
length of any chain of normal orbit types in J. Let A%, &) be the
space of Ji-tuples of bundle maps (4.)..si, Which satisfy the above
compatibility condition. It is easy to see that there is a sequence
of fibrations p;: A, &) — hi(¢, &) converging to A™(E, &)=Hom_, (¢, &)
(p; is the obvious map). The point is that the first space in this
sequence and each of the fibers are fairly well-understood spaces.
To be precise, h%&, &) = [[4esm Hom (P,, P,) and the fiber of p, over
a given path component is [[ Hom (P,, P.);, Where the product is
over all aeJ’ — J" ' and where Hom (P,, P,), denotes the subspace
of Hom (P,, P,) consisting of those maps which carry P, to 4P, and
which are equal to some fixed map on dP,.

This approach works best in the category #7'(y). If P is a
principal S-bundle, then it is well-known (and easy to see) that the
space of bundle automorphisms of P can be identified with the space
of sections of an associated bundle P* = S X P, where the action
of S on itself is via conjugation. If & is a Z-normal system lying
over 7, then we can form the associated bundles P;. Let Z, denote
the kernel of the natural projection S,— T, Define a subbundle
R, of P, by R, = Z, X5, P.. Then the sections of R, correspond
to those automorphisms of P, which cover the identity on @,
(=Q.M). If B< a, then a section of R; induces a section of 9,R,.
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Thus, an automorphism ¢¢€ Hom;-i,, (& £) can be identified with a
J-tuple of sections satisfying the compatibility condition that the
section of d,R, is induced by a section of B;. We can let I'? be the
space of Ji-tuples of sections satisfying this same compatibility con-
dition. Then, as in the above paragraph, we get a sequence of
fibrations q,: I'**' — I'¢ (this sequence of fibrations was suggested by
Bredon in [3]). The fiber of ¢, is II I'(R,), where a€J? — J** and
where I'(R,) denotes the space of sections of R, which are the
“identity section” on 6R,. Thus, both I and the fiber of ¢, are
spaces with homotopy groups which can be computed by standard
methods. In this way, the homotopy of Diff’ (M) can be studied by
methods which are completely bundle theoretic. When there are
relatively few strata and when B is a simple enough space, this
procedure can actually be to compute =, Diff? (M), e.g., see [3].

REMARK 4.14. The theory of normal systems clarifies the problem
of constructing classifying spaces for smooth G-manifolds. Theorem
4.3 shows that we must actually construct a classifying space for
Z-normal systems. But it is fairly clear how to do this. We hope
to give the details in a later paper. In [4], the theory of normal
systems is used to construct classifying spaces for the special case
of regular O(n), U(n) and Sp(n)-manifolds.
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