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A CONVOLUTION RELATED TO GOLOMB’S
ROOT FUNCTION

E. E. GUERIN

The root function y(n) is defined by Golomb for n>1 as
the number of distinct representations n=a® with positive
integers a and b. In this paper we define a convolution J
such that 7 is the V-analog of the (Dirichlet) divisor function
7. The structure of the ring of arithmetic functions under
addition and / is discussed. We compute and interpret /-
analogs of the Moebius function and Euler’s O-function.
Formulas and an algorithm for computing the number of

distinct representations of an integer #=2 in the form
L%k

n=aqd’ , with @, a positive integer, 1=1, ---, k, are given.

1. Introduction. Let Z denote the set of positive integers,
let A denote the set of arithmetic functions (complex-valued funec-
tions with domain Z), and let F' denote the set of elements of Z
which are not kth powers of any positive integer for k > 1(ke Z).
Note that 1¢ F. The divisor function 7 can be defined as v = y*y,,
where y, € 4, y(n) =1 for all ne Z, and = is the Dirichlet convolu-
tion defined for a, B A by (axB)(n) = D, a(d)B(n/d).

Any integer # = 2 having canonical form =n = pi.-.pir is
uniquely expressible as n = m? where g =g.c.d. (e, ---,¢,) and
meF. Golomb [1] defines the root function Y(n) for ne Z, n > 1,
as the number of distinet representations n = a® with a,be Z; and
he notes that v(n) = z(g) for n = m’, meF, ge Z. We let v(1)=1.

For a,Rec A, n=m? with meF,geZ, we define the G-con-
volution (“Golomb” convolution), /7, by

(1.1 (aF g)(n) = dZm‘a(md)B(mg/d) .

We define (aFB)(1) = 1. This G-convolution is not of the Narkiewicz
type [2, 4].

In §2, we show that {4, +, I’} (where (¢ + B)(n) = a(n) + B(n),
neZ) is a commutative ring with unity and we characterize the
units and the divisors of zero. We define a G-multiplicative func-
tion and note that the set of G-multiplicative units in {4, +, 7}
forms an Abelian group under the operation /.

We choose to define 7 as in (1.1) because then (v/fy,)(n) equals
Y(n), the number of distinct representations of » as o’ a,be Z;
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this is an analog of 7(n) = (y,*y,)(») which is the number of distinct
representations of n as a-b,a,becZ. In §3, F-analogs of the
Moebius function g, the sum of divisors function o, and Euler’s
é-function are computed and interpreted.

In §4, we state formulas and an algorithm for computing the
number of distinct representations of an integer » = 2 in the form

L%

(1.2) n=a?
with a,e Z, i =1, «++, k.

2. The ring {4, +,V}. First we state some properties related
to the G-convolution.

THEOREM 2.1. (i) The system {4, +,V} is a commutative ring
with unity &, (where gy(n) =1 if n=1 or neF, ¢;(n)=0 otherwise).

(ii) a is a unit in {4, +,V} if and only if a(l) =0 and
a(m) #= 0 for all mekF.

(iii) A momzero arithmetic function « is a nonzerodivisor in
{4, +, 7} if and only if a(l) =0 and for each meF there is a
positive integer g such that a(m?) = 0.

Proof. (i) The associativity of / follows from (1.1) and the
associativity of the Dirichlet convolution *. The commutativity of
V and the distributivity of 7 over + follow directly from the
definition of the G-convolution. If n=m?* ge Z, m € F, then (¢,/ a)(n)=
S Er(mHa(m’?) = a(m®) = a(n); (e,Fa)(l) = a(l). Therefore, ¢, is
the unity element in {4, +, F/}.

(ii) An element @ in A such that alB = ¢, is defined if and
only if a(1)B(1)=1, a(m)B(m)=1 for me F, and >, a(m?)B(m**)=0
for meF,ge Z,9g > 1. Thus, a(l) # 0, a(m) # 0 for me F, if and
only if a is a unit in {4, +, F}.

(iii) If a(l) =0, define e A by Bl) =1, Bn) =0 if n>1.
Then (aVB)(n) =0 for every ne Z and a is a divisor of zero. If
there exists an m e F such that a(m?) =0 for every ge Z, define
BeA by pim) =1, Bn) =0 for neZ,n+*m. Then (aVB)(n) =0
for all ne Z and « is a divisor of zero.

Assume that a is a zero divisor in {4, +,/7}. Then there is
some Be A, B # O (where O(n)=0 for all ne Z), such that a#/g=0.
(1) If B(1)# 0 then aVg = O implies that a(1)8(1) =0 and that
a(l) =0. (2) If B(l) =0, let n be the smallest positive integer such
that B(n) = 0; if n =m*, me F,ve Z, we show that a(m”) =0 for
all weZ. First, (aFR)(m®) = S, a(m®)B(m™?) =0 implies that
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a(m)B(m”) = 0 and that a(m) =0. And (aFg)(m*) = 0 implies that
a(m)B(m®) + a(m*)B(m’) = 0 and so a(m?) = 0. Assume that a(m’)=
0, 1 <t <r. Then (@FR)(m™) = S, &(m*)B(m™?*) = 0 implies that
a(m”B(m’) =0 and a(m”) = 0. Therefore, a(m”) =0 for all weZ
by induction. This completes the proof of the theorem.

We define @ e A to be G-multiplicative if a(l) = 1, and whenever
(a,b) =1 and me F, a(m*™) = a(m*)a(m?).

THEOREM 2.2. The set of G-multiplicative functions which are
units im {A, +,V} form an abelian group under V.

Proof. If a and B are G-multiplicative, then aFg is also; the
proof is similar to that of the multiplicativity of ax8 given that a
and @ are multiplicative [3, p. 93]. It is then easy to verify the
required group properties.

3. The functions oy, t4;, ¢,. As noted earlier, v = y/y, is the
F-analog of 7 = y;xy,. For example, v(64) = 7(2°) = 7(6) = 4, and 64
can be represented in the form a’ for a,be Z in four ways: (2!)°=
20 (20 = 43, (2 = &, and (2°) = 64'.

If we define o, by o, =y/y, then for w =m*, mekF,ge Z,
g (n) = S, m* So og,(m) is the sum of the a’s such that a® = n,
whereas o(n) = (Vxy,)(n) is the sum of the a’s such that a-b =
n(a, be Z).

An analog #, of the Moebius function g (where p satisfies
yorpt = ¢ with e(1) =1, e(n) = 0 otherwise) is defined by v/, = ¢p.
Then g,(n) =1 if n =1, y,(n) = p(g) if n = m?, meF, g Z.

Euler’s ¢-function, which satisfies ¢ = p+y, (where y,(n) = n for
all me Z), has an analog ¢, with ¢,1) =1, ¢,(n) = (UFv)(n) =
St pdym? for n =m?, meF,ge Z. Thus, ¢,(m) =m for me¢F
and ¢.(m?) =m? —m for mekF,p prime. If n =m? mekF,geZ,
then ¢,(n) is #» minus the number of positive integers less than or
equal to n which are expressible as %, +¢ Z,d|g,d > 1. Here, n
and 7¢ have a common power d > 1 (since n = a? with a = m%?);
this corresponds, in the computation of #(n), to nonrelativity-prime
n and m having a common divisor d > 1. To illustrate, ¢,(64) =
20 —2° — 28 4+ 2! =64 — 10 = 54. The ten integers of the form 79,
reZ,d|6,d>1,r" <64, are

1,23, 4,56, 7,8 =4°=2° 2 3,

And, for example, 3* and » = 8 have common power 2, while 2° and
n = 4°* have common power 3.

It can be verified that v,e, v, and g, are G-multiplicative
functions whereas v, o,, and ¢, are not.



466 E. E. GUERIN

If n=m’meF,geZ, then o,(n) = 2n has no solutions. But
if we define a G-perfect number n = m?, me F, ge Z, as one such
that [T,,m? = n? then » is G-perfect if and only if g is perfect if
and only if (y,*v)(g) = 2¢.

4. Power representations of n. If n =m? meF, ge Z, define
peA by p(n) = g; define p(1) =1. Then v(n) = z(o(n)) =®FY)(n) =
((Wevy)o0)(n) (Where (aoB)(n)=a(B(n))). We note that ,(n) = p(o(n))
and ¢ (n) = e(o(n)).

Let R,(n) denote the number of distinct representations of n=
m*, mekF,ge Z, in the form given in (1.2). (Assume that R,(1) =1
for all ke Z.) We have the following formulas.

R,(n) = 1.
By(n) = v(n) = z(o(n)) = @Fv)(n) .
Ryn) = 2,7(d) = 3, 7(0(d)) = (wo(ro0))(0(n))
= ((Wx(@fvy)o0)(n)
Rn) =23 > v(r) = 3 3, 7(o(r) = @x((vx(z00))o0))(0(n))

dlg rie(d) dje(n) rip(d)

= ((Vex((Vo*x (¥ vy))o0))o0) (1) .

Similar formulas can be written for R,(n) for any ke Z.

If n > 1, then R,(n) can be computed as follows. List d, such
that d,|g, list o(d), list d, such that d,|o(d,), list o(d,), -+, list d,_,
such that d,_,|o(d._;), list o(d,_,); and R,(n) is the sum of the
number of divisors of the entries in the final list.

For example, if n = 20*°, g = p(n) = 2*-5°. For d,|g, d,|p(d,),
d,| o(d,), we have these lists.

d, =1,2 4,8, 16,1-5, 2.5, 4-5, 85, 16-5, 1.5°, 2.5, 4.5, 8.5, 16-5°
od) =1,1,2,3,4, 1,1,1,1,1,2, 1, 2 1,2
d,=1,1,1,2,1,8,1,2,4, 1,1,1,1,1,1,2,1,1,2,1,1, 2
od)=1,1,1,1,1,1,1,1,2, 1,1,1,1,1,1,1,1,1,1,1,1,1
dy=1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,1, 1, 1
o@d)=1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1,1

Then R,(20*°) = 2t(1) + 7(2) + (8) + 7(4) + bz(1) + 7(2) + (1) + 7(2) +
(1) + 7(2) = 22. And R,(20*) = 28, R;(20*") = 23; in fact, R,(20*)=
23 for k= 4. There are four representations of n = 20* in the
form given in (1.2) for &k =4 which correspond to d, = 16 (since
7(1) +~ (1) + 7(2) = 4). They are
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where o = 335, 544, 320, 000, 000, 000, 000, 000, 000, 000, 000 (which is
20* in expanded form). In only one of these representations is
a,#1,7=1, ---,4. In general, the number of distinct representa-
tions of n =m*, meF,ge Z, in the form given in (1.2) with the
additional requirement that a, =+ 1,7 =1, ---, k, is the sum of the
number of divisors less one of the entries in the final list (for

0(d—s))-

REFERENCES

1. S. W. Golomb, A new arithmetic function of combinatorial significance, J. Number
Theory, 5 (1973), 218-223.

2. W. Narkiewicz, On a class of arithmetical convolutions, Colloq. Math., 10 (1963),
81-94.

3. I. Niven and H. Zuckerman, An Introduction to the Theory of Numbers, 3rd ed.,
New York, John Wiley Sons, 1972.

4. M. V. Subbarao, On Some Arithmetic Convolutions in The Theory of Arithmetic
Fumnctions, Lecture Notes #251, New York, Springer-Verlag, 1972.

Received October 3, 1977

SETON HALL UNIVERSITY
SoutH ORANGE, NJ 07079








