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SPECTRAL SYNTHESIS IN SEGAL ALGEBRAS
ON HYPERGROUPS

AJIT KAUR CHILANA AND AJAY KUMAR

Warner (1966), Hewitt and Ross (1970), Yap (1970), and
Yap (1971) extended the so-called Ditkin’s condition for the
group algebra L!(G) of a locally compact abelian group G
to the algebras L(G) N L*G), dense subalgebras of L(G)
which are essential Banach L‘(G)-modules, L{(G)N L*(G)1 =
p» < o) and Segal algebras respectively. Chilana and Ross
(1978) proved that the algebra L'(K) satisfies a stronger form
of Ditkin’s condition at points of the center Z(K) of K, where
K is a commutative locally compact hypergroup such that
its dual K is also a hypergroup under pointwise operations.
Topological hypergroups have been defined and studied by
Dunkl (1973), Spector (1973), and Jewett (1975) to begin with.
In this paper we define Segal algebras on K and prove that
they satisfy a stronger form of Ditkin’s condition at the
points of Z(K). Examples include the analogues of some
Segal algebras on groups and their intersections.

1. Introduction. In this paper we define and study Segal
algebras on hypergroups with emphasis on spectral synthesis. A
good deal of Harmonic Analysis has recently been developed on locally
compact hypergroups by Dunkl [5], Spector [21], Jewett [9], and Ross
([17],[18]). Our basic reference will be Jewett [9]. Throughout
this paper K will denote a commutative locally compact hypergroup
(‘Convos’ in [9]) such that its dual K is a hypergroup under pointwise
operations and notation and terminology for Harmonie Analysis on
K will be as in [4]. As proved in ([23], Appendix) K is first countable
if and only if it is metrizable. Being commutative, K admits a
Haar measure m, as shown by Spector [22]. The convolution algebra
L*m) = LK) can be identified with the pointwise algebra A(K) of
Fourier transforms on K. Chilana and Ross [4] proved that A(K)
is a regular algebra of functions on K with a bounded approximate
unit and it satisfies a stronger form of Ditkin’s condition at points in
the center Z(K) of K. They also gave examples to show that not
all points in K need be spectral sets. This is partially in contrast
with the situation in locally compact abelian groups where Ditkin’s
condition is satisfied for LYG) at each point of G. Warner [24]
proved it for the algebra L'(G)N L*G), Hewitt and Ross ([7], 39.32)
showed that it is true for dense Banach modules % in LYG) such
that Z/«L}G) is dense in Z. Also Yap [26] proved the same for
the algebra L'(G) N LP(G)(L < p < ) and then extended it to Segal

59



60 AJIT KAUR CHILANA AND AJAY KUMAR

algebras in LY(G) ([27],[28]), which turn out to be Banach L(G)-
modules of ([7], 39.82). In §2 we define a Segal algebra S(K) on
K and prove that the algebra AS(K) of Fourier transforms of
functions in S(K) is a regular algebra of functions on K with an
approximate unit which is bounded in A(K). We then show that a
Banach algebra (77, || -||,) satisfying

{f e L(K), f e Cu(K)) © % < L{(K)

is a Segal algebra if and only if it is a Banach L'(K)-module with
LMK)«7Zz dense in (%, ||-]|.) and most of the results in ([7], 39.32)
have their analogues for K. We then define locally convex Segal
algebras on K and extend the above results to them.

Various stronger forms of Ditkin’s condition have been given
by Wik [25], Rosenthal [16] and Saeki [19] for the algebra L'(G) of
a locally compact abelian group G and they all coincide when G is
g-compact and metrizable. In §3 we give analogues of their definitions
for S(K) which coincide when K is o-compact and first countable and
S(K) is a Banach algebra. We prove that the analogous conditions
for S(K) on special hypergroups K are satisfied at the points of the
center Z(K). We note that this is new even in the case of locally
compact abelian groups (compare ([7], 39.32) and [28]). We further
apply our results to study spectral synthesis in S(K). In the end
we Indicate that some of the results can be proved for abstract Segal
algebras (also compare Burnham [2], [3]).

In §4 we give examples of Segal algebras on hypergroups; they
include analogues of some Segal algebras on groups such as B?(G),
A?(@), and A, (@) given by Yap [27], Larsen, Liu and Wang [11],
(see also Larsen [10]) and Yap [29] respectively.

2. Segal algebras on hypergroups. In this section we will
introduce the concept of Segal algebras on K. As stated in §1 we
assume throughout that K is a commutative hypergroup under point-
wise operations. The Plancherel measure on K will be denoted by
7 and the Haar measure on K by m.

DEFINITION 2.1. Let S(K) be a subalgebra of L'(K) which is a
Banach algebra under a norm || -||s such that

S(i) feLXK) and feC,(K) imply that f e S(K),

S(ii) S(K) is translation invariant and for some %>0||f.|ls=7%!|f]/s
for each fe S(K) and z< K, and

S(iii) for each f ¢ S(K), the mapping = — f, of K into S(K) is
continuous.

Then S(K) will be called a Segal algebra.
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REMARKS 2.2. (i) The Fourier transforms of the functions in
S(K) form a subalgebra AS(K) of A(K) with the norm carried over
from S(K).

Because of ([4], 2.6) S(i) gives that S(K) is || - |;-dense in L K).

For the group case this is the condition that is imposed on S(K)
rather than our S(i) and then S(i) is proved to be true (for instance,
cf. [14] VI, 2.2(iii)) (see Remark 3.1 also).

(ii) In view of ([4], 2.5) for each compact set K of K and
symmetric set V with compact closure such that #(V) > 0 there is
a function ¢ in Ay(K) and thus in AS(K) such that 0=sp=1,
@=1 on E and ¢ =0 outside ExV=+V. In particular, for each
compact set B in K there exists ¢ in AS(K) such that ¢ =1 on E.

(iii) In view of (ii) above AS(K) satisfies ([14], II, 1.1 (iii)) i.e.,
for any vye K and any neighborhood U of < there is a funection 7,
in A,(K) and thus in AS(K) such that 7, is 1 in a neighborhood of
v and zero outside U. So by ([14], 1I, 1.3) localization lemma is
true for AS(K). This is the property which is used in proving some
results on closed ideals in S(K) which we shall discuss later.

The proofs of other results viz. (i), (ii), and (iv) in VI, 2.2 and
VI, 2.3 in [14] can be modified to give:
(iv) there exists a constant C such that

|1, =CJ|flls for each feS(K);

(v) S(K) is an ideal in L"K) and ||A=f||s < 7|/ k]|,|| f||s for each
heLMK) and f e S(K);

(vi) for any compact subset F of K there is a constant C, such
that for each f e S(K) with f vanishing outside F' we have

I lls = Cell £l

(vil) given ¢ > 0, f € S(K) there exists a neighborhood U of the
identity e in K such that || fxu — f||s < e for uw € L'(K) with suppu C
U,4 =0 and

gKu(avc)dm(x) =1

(where ¢’ signifies involution in K);
(viii) it follows from (ii) and (v) that

AS(K) D AS(K)-A(K) D Ay(K)-AR) > Ay(K) .

THEOREM 2.3. AS(K') 18 a regular, semi-simple Banach algebra
in C(K) which has an approximate unit {p,}..pr such that @, belongs
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to Cy(K) and lpalls =1 for all e D. If K 1is first countable then
{p.} can be chosen as a sequence.

Proof. Regularity follows from Remark 2.2 (iii) and we shall
give the proof for existence of approximate unit for a more general
class of algebras in Theorem 2.8.

REMARKS 2.4. (i) It follows from the above theorem and Remark
2.2(ii), (v), and (viii) that S(K) is a dense subalgebra of L'(K) such
that it is a Banach L}(K)-module and L'(K)«S(K) is dense in
(S(K), ||+ 1ls). As proved in ([7], 39.32) such modules are Segal algebras
when K is a group. Proofs can be modified to give that a subalgebra
7z of LK) that is a Banach algebra with respect to its own norm
Il -1l such that {f e L'(K), feC,(K)} © % is a Banach L(K)-module
satisfying: LYK)xZ/ is dense in (%, ||-|l») if and only if it is a
Segal algebra.

(ii) The structure space of S(K) can be identified with 227(K).
The proof follows on the lines of ([7], 39.32) or alternatively of [28].

Burnham [3] has defined locally convex Segal algebras; we impose
somewhat different conditions in order to have some interesting results
which are satisfied by (Banach) Segal algebras defined above.

REMARK 2.5. We first note a result; let B be a subalgebra of
LYK) which is a normed algebra under a norm || -{|. The completion
A of B lies in L*(K) if and only if there exists a constant C such
that ||f|], = C||f]|] for all f in B and in that case ||f|, =< C||f]|

for all f in A. The proof is standard and for example can be
obtained by using ([14], II, 3.6).

DEFINITION 2.6. Let {(S,(K), ||+ |l.); 0 € 2} be a collection of Banach
algebras with S,(K)c L'(K) for each . Let Sy(K) = N{S,(K): 0¢e X}
and S(K) be a subalgebra of S,(K) equipped with the topology given
by norms {||-||,: 0 € X} restricted to S(K) which satisfies:

L(i) feLYK),feCyK) imply that feS(K),

L(ii) S(K) is a translation invariant ideal in L'(X) and for each
o€ X there exists an 7, > 0 such that ||f,|l, < »,||fll, for feS(K)
and x ¢ K, and :

L(iii) for each fe S(K) the mapping x — f, of K into S(K) is
continuous.

Then S(K) will be called a locally convex Segal algebra.

REMARK 2.7. (i) The set AS(K) of Fourier transforms of func-
tions in S(K) is a subalgebra of A(K) with topology carried over
from that of S(K).
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(ii) Because of Remark 2.5, for every o ¢ X there exists C, such
that |||, < C,||f|l, for all f in S,(K).
(iii) For feS(K), he LK), o0 € X, the Bochner integral

[| - Ha-gKh(y)fym(dy) exists in S,(K). As in ([14], VI, 2.2(3ii))

Il lL-SKh(y)f,,m(dy) also exists in LY(K) and it can be proved in

a similar manner that the integral is equal to A*f.
Because of (ii) the two integrals are equal and thus

111, Bsymi@y) = hef .
So

hxf I, =

ey

Kll h(y)fy |lem(dy)

=\ @) 1Sy llom(dy)

K

A @I lm(dz) = 7,1 BILIIF 1,

iy

=

3

Since S(K) is an ideal hxf e S(K).

(iv) To any compact subset F of K and o€, there exists a
constant C,,, such that for each feS(K) with f vanishing outside
F we have || f||, £ Cr,l|fll.. In fact, Cp, can be chosen to be |||,
where 7 is a function as in Remark 2.2 (ii) which equals 1 on F.

(v) For a finite subset 3’ of 3 the set N {S,(K):0¢€23'} with
[|+]ls = max {|[-]l,, 0 €2’} is a Banch algebra and ||f.|lz < % ]| f |5
for feS(K) where s, = max{n,:0€3’}. So we can assume that X
is saturated with respect to suprema of finite subsets of 3.

(vi) Given ¢ > 0, f € S(K), 0 €3 there exists a neighborhood U
of the identity ¢ in K such that ||f+u— f||, <e&/2 for u e L'(K) with
suppu CU, uw = 0 and

SKu(ovc)dm(m) =1.

THEOREM 2.8. AS(K) 18 a regular, semi-simple locally multipli-
catively comvex algebra in C’O(I?) which has an approximate unit
{p.: @€ D} such that o, belongs to Coo(K) and |Pell, = 1 for all a.
If K is first countable then {p,} can be chosen as a sequence.

Proof. Regularity follows from Remark 2.2 (iii). Let % be a
basis of compact symmetric neighborhoods of identity e in K. We
direct the net by

D ={(U, n):Ue%,neN)
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where
o =U0U,n)y=U,n) =«

if and only if U' CcU, n’ = n.
For Ue Z let f, = (m(U)) &, for ne N use ([4], 2.6) to select
v, in S(K) with ¥, in C,(K) such that

1y — vall < 2.
n

Define u, = ||v.||7"v, and @, = @,; then routine estimates using
Remark 2.7 (iii) give

Hm#—fm<%mWW+Hﬁ#—fm

for each oe¢l, feSK).

Let ¢ >0, feS(K), 02 be arbitrary.
Let n e N be such that 7,{| f|l, < ne/4 and Ue %7. Using Remark
2.7 (vi), we have for ' = a = (U, n),

Hmﬁ—f&é%%ﬁh+ﬁﬁﬁ—fm

é%ﬁﬂﬂh+wwf—fm
<g2+¢e2=c¢.

Thus {u,: @€ D} is an approximate unit for S(K) so that {p.: a<c D}
is an approximate unit for AS(K).

REMARK 2.9. If {S,(K):0eZ} is a collection of Segal algebras
then S,(K) = N {S,(K):0eX} with the topology given by norms
{Il-1l;: 0 €2} is a sequentially complete locally convex Segal algebra.
Also if {f e L(K), fe Cy(R)}cS(K)cS,(K) and S(K) is a translation
invariant ideal then S(K) is a Segal algebra. In fact, all locally
convex Segal algebras are essentially of this type as we show below.

THEOREM 2.10. Let S(K) be as in Definition 2.6. Then there
exists a collection {T,(K): 02X} of Segal algebras such that S(K) is
a dense subset of TyW(K) = N{T,(K):0¢€2}.

Proof. Let T,(K) be the completion of S(K) in S,(K). Then
T,(K) is a Banach L'(K)-module. Also in view of Theorem 2.3 and
Remark 2.2 (ii), (v), and (viii) T,(K)=L}(K) is dense in (T,(K), || - ||s)e
So by Remark 2.4 (i) T,(K) is a Segal algebra. Since S(K) is dense
in each (T,(K), || -ll,), we have that S(K) is dense in T,(K).
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REMARK 2.11. It follows from the above theorem and Remark
2.4 (ii) that the structure space of S(K) is 2Z5(K).

The following result shows that the ideal theory of S(K) is same
as that of L'(K).

THEOREM 2.12. There exists a bijective correspondence between
the family of all closed ideals of S(K) and the family of all closed
ideals of LK) in the sense that every closed ideal Is of S(K) is of
the form IN S(K) where I is a (unique) closed ideal in LY K). In
fact I is the closure of Iy in LNK). In particular I and I have
the same zero sets.

The proof for the Banach algebra case follows from Burnham
[2] and also from obvious modification of ([7], 39.32 (u)) which can
further be adapted to locally convex case in view of Theorem 2.10
above. For the locally convex Fréchet algebra case the result has

also been noted in ([3], p. 49).

COROLLARY 2.13. A subset I of S(K) is a closed ideal if and
only if it is a closed translation-invariant subspace.

Proof. It is enough to show that a closed translation-invariant
subspace I of S(K) is an ideal in S(K). Let fel and he L}K).
Then as in Remark 2.7 (iii) for each 6 €Y hxf is in the closure of
I'in S,(K). Also hxf is in S(K). So hxf is in the closure I of I
in S(K) and hence in I.

3. Spectral synthesis in Segal algebras. We assume in this
section that K = .25(K) so that K is the structure space of S(K)
where S(K) is as in Definition 2.6. This assumption is not needed
in some of the results proved below.

For a closed subset E of K let

IE)={feSKK):f=0 on E},
Jo(E) = {f eS(K):f is zero on an open neighborhoood of
E in K and has compact support} ,

and
J(B) = Ju(E) .

1 Tor instance, the Wiener Tauberian Theorem is true if the extra condition that
S(K) is regular on Z2(K) is imposed. We take this opportunity to note that this con-
dition for L/(K) in ([4], Theorem 2.12) has been omitted by mistake.
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E will be called spectral for S(K) if J(E) = I(E) and Ditkin or
Calderon for S(K) if each f in I(E) is in the closure of fxJ,(E) in
S(K).

REMARK 3.1. (i) The proof for the group case can be modified
to give that if pe A(K) and @(v) # 0 at a point v of K then there
is a 9 in A,(K) such that +4(y) = 1/p(x) for each ¥ in some neigh-
borhood of v. In view of Theorem 2.8, AS(K) is a standard function
algebra ([14], II, 1.1) and in particular A(K) is a standard function
algebra. Further if % is a dense ideal in A(K) then by ([14], 1I,
1.4 (iii)) Ay(K) <=7 and thus L(i) can be replaced by denseness of
S(K) in LMK) just as in the group case.

(ii) Theorem 2.8 gives that K is Calderon if and only if each
S in I(E) is in the closure of fxJ(H). It also gives that the empty
set is Calderon; this fact is usually expressed by saying that Ditkin’s
condition is satisfied at co.

(iii) In view of (ii) above and Corollary 2.13 we have Wiener-
Tauberian theorem: If f belongs to S(K) and if f vanishes nowhere
on K; then the closed translation invariant subspace of S(K ) generated
by f is S(K) itself.

(iv) K is spectral for S(X) if and only if it is so for L*(K).

(v) If E is a Calderon set for L'(K) then it is so for S(K). In
particular, points in Z(K) are Calderon for S(K) by (4], 3.9).

REMARK 3.2. Because of Remark 2.2 (ii) a careful reading of
(39.24), (39.39), and (39.42) in [7] gives the following results.

(i) Let 4 denote the set of v in K such that S(K) satisfies
Ditkin’s condition.

(a) If E is a closed subset of K such that the boundary oK c .
and E contains no nonvoid perfect sets then FE is a Calderon set for
S(K).

(b) If E is a closed nonspectral subset of 4 then there exists
a continuum of closed ideals in S(K) with zero set E.

(ii) If E is a closed subset of K such that Ec Z(K) and oE
contains no nonvoid perfect sets then E is a Calderon set for AS(K).

(iii) Suppose that K is discrete at points of K\Z(IZ'). If K is
a closed set in K and E N Z(K) contains no nonvoid perfect sets then
E is a Calderon set for AS(K). In particular if K’\Z(K’) is discrete
and Z(K) is countable then every closed subset of K is Calderon for
AS(K).

(iv) If E is a closed nonspectral set in Z(K) then there exists
a continuum of closed ideals in AS(K) with zero set E.

DEFINITION 3.3. Let E be a closed subset of K.
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(a) E will be called strong Ditkin for S(K) if there exists a
net {f,: @ e D} in S(K) such that

(i) for each «, F. =0 in a neighborhood of E and has compact
support,

(ii) for each geZ, sup{||f.lls. @D} < o where ||f.llz., =
sup {|[fuxf ;2 [ e J(E), || fll, =1} and

(iii) for feI(E), f«f.— f in S(K).

(b) E will be called wltra-strong Ditkin for S(K) if it satisfies
(i) and (iii) of (a) above and

(ii)" sup{||felli @e D} < oo

(¢) FE will be called sequentially strong Ditkin for S(K) if there
exists a sequence {f,} in S(K) such that

(i) for each =, f,, =0 in a neighborhood of FE and has compact
support and

(ii) for each feI(R), f«f, — f in S(K).

REMARKS 3.4. (i) If E is strong Ditkin or sequentially strong
Ditkin then it is clearly Calderon. Also by Remark 2.7 (iii) E is
ultra-strong Ditkin implies that it is strong Ditkin.

(ii) Wik [25] defined a closed subset E of G with G = Z to be
strong Ditkin for L'(G) if there exists a sequence {v,} in I(E) such
that v,xf — f in LY(G) for each f in J(&).

(iii) ([16], 2.2 (a)) can be rewritten as;

E is strong Ditkin for L}G) if and only if it is sequentially
strong Ditkin for L*@) if G is separable and metrizable. In fact as
argued in ([16], Theorem 1.3) we can apply the Banach Steinhaus
theorem and obtain that for a Banach Segal algebra S(K), a sequen-
tially strong Ditkin set for S(K) is strong Ditkin for S(K).

(iv) Because of Remark 2.2 (ii) Rosenthal’s proof of Theorem
2.4(b) [16] can be modified to give that if E is a closed subset of
K such that the boundary of E is sequentially strong Ditkin for
S(K) then E is sequentially strong Ditkin for S(K).?

(v) Theorem 2.8 gives that ¢ is ultra-strong Ditkin and it is
sequentially strong Ditkin in case K is first countable.

(vi) A finite union of strong Ditkin (ultra-strong Ditkin, sequen-
tially strong Ditkin) sets is strong Ditkin (respectively ultra-strong
Ditkin, sequentially strong Ditkin).

REMARK 3.5. As already noted in Remark 3.1 (iv) the points
in the center Z(K) of K are Calderon for S(K). Since ve Z(K) and
f eS(K) need not imply vf is in S(K), we cannot have an analogue
of Corollary 3.7 [4] straightaway. However points in Z(K) are

2 For related results on ultrastrong Ditkin sets see our forthcoming paper in Proc.
Amer. Math. Soc.
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ultra-strong Ditkin for S(K) and they are sequentially strong Ditkin
in case K is first countable and o-compact as we show in Theorem
3.6 below. In fact we show in Remark 3.9 that if £ is ultra-strong
Ditkin (respectively sequentially strong Ditkin) for L'(K) then it is
so for S(K).

THEOREM 3.6. Let ve Z(K). Then there is a net {f.:acd) in
S(K) such that

(1) (el <3 for all c.

(i1) If feS(K) and f(v) = 0 then for each e

Hm [[f — f«full, = 0.

(iii) Fach F. vanishes in a meighborhood of v in K and has
compact support.

If K is first countable and g-compact then {f.} can be chosen as
a sequence.

Proof. By Theorem 2.8 there exists an approximate unit {u;}sc»
for S(K) such that ||u;|l, =1 and ;e A,(K) for all 5. The net {f.}
will be directed by the set A = {(F, n, 8): F < K compact symmetric,
neN, BeD} where &' = (F',n',8") = (F, n, 8) = a signifies F' D F,
w' =mn,B8 =B. Given a = (F, n, B8) select g,; as in Lemma 3.2 [4]
so that g,, = 1 in a neighborhood I" of 1 where 0 = (1/n) and then
define

he = Y(Us — Upsg,,) and  fo = ugihy, .

Tren h,e L'(K) and |[|h.|l, = [jus; — eyl <3 and therefore, f,e
ILMK) and ||f.]. <38. Also f,=1#;. h, has compact support and
hence f,€S(K). Now by ([4], 2.2)

ﬁa(%) = (uﬁ - uﬁ*gp,&)/\(x*'?) = 12/;(1 - glﬂ,ﬁ)(%”‘i) .

Thus h, =0 in the neighborhood v+«I' of 7. So (i) and (iii) are
satisfied.

Now to check (ii) let f e S(K) be such that f(v) =0. LetoelX
and ¢ > 0 be arbitrary; then there exists g, (depending upon f, ¢, and
o) such that

D — Frusll, < § for all 8 =8, .

Then

0| Frws — frus |, <% for all A= 4,.
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Now (f¥)"(1) = 0, so from the proof of Theorem 3.3 [4] there exists
o = (F',n, £ (depending upon 8, f, ¢, and ¢ and, therefore, on f, ¢,
and o) such that

W7 = ()=(Thll <

¢ for az=za .
8lws, !l

By Theorem 3.6 [4], (7f)=(TYh.) = ¥(f=h,) and
!1’7]4‘ - A7f*’7ha[il = H?(f — f*hzx)Hl
== el
Let B,eD be such that 8, =5, B = B and put «, = (F', n', B,).
Then for o = (F, n, 8) = «,,
Hf - f;kfa”a
= || — Frws, + Frus, — Frwgshe + Frug che — fFugeh,l],
W — Fruslle + Husx(f — Frha)|le + 1 xus, — frug)eheall,
=W = Frus o+ 06 lws | f = Forha |l 2,11 Frus, — Frus ] Rl
< e/8 +¢/8+¢/4:83=¢.

IA A

REMARK 3.7. A direct proof of the above theorem can also be
given along the following lines by first generalizing Lemma 3.2 [4].

(a) If ve Z(IZ’), F is a compact symmetric subset of K, [, is a
compact neighborhood of 1 in K and é > 0 then there exists g € LY(K)
such that

(i) § =1 on a neighborhood of 7,

(ii) § has compact support contained in I" = ['yxf =7,

(iii) for each oe X, llgll, = 2C,, whereas |l¢gll, < 2 (where C,,
is as in Remark 2.7 (iv))
and

iv) gy — v(@)gll, <o for all xe F.

The functiozl ¢ 1s constructed as follows:

Let H, ={yeK:|xy) — ()| < (6/12) for yekF}
and H, = {yeK:|yy) —1| < (6/12) for yekF}.

Then H, is a neighborhood of v and H, is a neighborhood of 1
in K. So there exists an open symmetric neighborhood H of 1 with
Hc ', such that H«xvy c H, and HcC H, (|9], 3.2D).

Since w is a regular measure on K there exists a compact sym-
metric neighborhood @ of 1 such that @ c H and =(®) > (1/4)x(H).

By ([9], 3.2D) there exists a neighborhood ¥ of v such that

O C Hxv .

Since ve Z(K), n(@xHxv) = n(0+H) and w(H+v) = x(H). There
exists ¢,, 9. € LK) such that
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g1 = So and 62 = SII*T .
Let

1
9= G0

then the rest of the proof involves computations similar to those in
Lemma 3.2 [4].

(b) Let {us}scp and 4 be as in Theorem 3.6 above.

Let f, = us — up*gr,; Where g, , is selected as in (a) above with
0 =1/,. Then f,eS(K) and ||f.|l, <38, 7. bas compact support and
vanishes in a neighborhgod of 7.

Let feS(K) with f(v) =0,0e¢ 3 and ¢ > 0 be arbitrary; select
B, such that B = B, implies

1 — Frusll, < /2.

There exists a compact symmetric set F, in K such that

dm < —5 .
SK\FOV i < Te6 7

Let n, be such that 4C, 7,||fll, < nme.
Let «, = (F,, n,, 8,). Then for a = (F, n, B) = a,,

Nf = felle =11 — f*('uﬁ - u:;gF,&)”a
= I = Fruslle + (| /5 %505l
S = FFuplle + 00 |uall ]| S 951l
< &/2 + 7,Cr ol F*gr,slls -

Since f('Y) =0, for a = a,
15grall = | [ 17@11000s8) — 700,00 | dmi@dmiy)

= SKIf‘(x)l SKIgF,a(y*ovc) — 7(®)gr,,(¥) | dm(y)dm(x)

A

| f@1Lam@ + | 1f@] i@zl + llgsslDdmiz)

= N Fll+ 2lgealh |17 dm@)
", K\Fy

< 472;3,0(% %) N 2mSCp,,, '
So

llf—f*fall.,<%+—;—=s for a=a,.
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REMARKS 3.8. (i) The hypergroup K defined (cf. [4], 4.6) and
studied by Dunkl and Ramirez [6] is first countable and o-compact.
Also K is discrete at points of K\Z(K) and Z(K) = {1}. Thus by
the above theorem and Remarks 3.5 (iv) and (v) every closed subset
of K is sequentially strong Ditkin and hence is also strong Ditkin
in case S(K) is a Banach algebra, we note that this result is new
even when S(K) = LK) and is partially in contrast with the cor-
responding result for the group case where every nondiscrete locally
compact abelian group G contains nonspectral closed sets.

(ii) On the other hand, points in K need not even be spectral
sets Afor A(K) by ([4], §4) and therefore, by Remark 8.1 (iv) for
AS(K).

REMARK 3.9. Theorem 3.6 can also be deduced from the following
discussion:

Let X be a locally compact Hausdorff space and A a regular
Banach algebra in C,(X) with structure space X. Let B be a sub-
algebra of A which is either a dense ideal or contains C(X)N A
equipped with a locally convex topology given by seminorms
{ll +1l,: 0 € 2} satisfying:
for some 7, > 0,

lovlle = 2 ll@llallvll, for peA,4eB

such that ¢y e B.

Then B has separately continuous multiplication so that B is a
locally convex algebra. We further suppose that B has an approximate
unit {ps: B € D} such that

o = sup {||@s|li: B D} < oo .

Let E be a closed subset of X. FE will be said to be ultra-strong
Ditkin for A if there exists a net {y,: @ e 4} in C(X) N A such that
(i) each 4, vanishes in a neighborhood of E,
(ii) » =sup{|[y.|ls@ed} < o
and (iii) for each ¢ in A that vanishes on FE,

H@"/fa - ¢HA_——)0 .

We shall say that E is ultra-strong Ditkin for B if there exists
a net {w,:te T} in Cy(X) N B satisfying (i) and (ii) with ¢, replaced
by w, and 4 by T and (iii) with +, replaced by w,, A by Band || -]/,
by ||-|l, for each o.

We shall now show that if E is ultra-strong Ditkin for A then
it is so for B.

Let T ={(a, B): @e 4, Be D} and
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t, = (“1’ /6’1)/(“2, Bz) =1,
if and only if
a=Za,, B,=p.

For ¢t = (a, B), let w, = +r.ps; then w, e Cy(X) N B and vanishes in a
neighborhood of K.
Also

Hwlly = ellall@slls = Mo < oo

Let ¢ > 0,0e 2 and ¢ e B vanishing on E be arbitrary; then there
exists B, in D (depending upon «, ¢, and @) such that

P — & > 8,
/A (p(pﬁHa<4(>\l+1) or B=R
and
15
— - f =B, -
0, lpPs — PPslls < 5o D) or =R

Since || — @y, |, — 0 there exists «, (depending upon ¢, ¢, 0, and 3,
and therefore on ¢, ¢, g) such that

Nl — pvallallpsll. <e/d  for az=a.
Now for t = («a, B) = (@, By) = 1,

o — pwll, = ll¢ — @Ps, + PPs, — PPs Ve + PPsVa — PPsVallo
=S lle — p@slls + l@s(@ — P¥a)lls + [[(@Ps, — PP)Valls
= lle — epslls + Dollps ol — P¥ralls + o llpPs,

- @@ﬁ”o”g)«HA
<eld+e/d+e/2=c¢.

The analogue for sequentially strong Ditkin sets in 4 and B is clear.
4. Examples.

4.1. In this section we shall give examples of Segal algebras.
We shall first recall Lorentz spaces introduced by Lorentz [12] and
further studied by Hunt [8], Blozinski [1], O’Neil [13] and Yap [26].

Let 1< p<eo,1<qg< . Let p be the conjugate of p i.e.,
" = p/(p — 1.

Let f be a (complex valued) measurable function defined on a
measure space (X, ). For y = 0, we define

m(f,y) = plee X: | f(x)] > v} .
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For 2 = 0, let

S¥@) =inf{y:y >0 and m(f,y) =)
=sup{y:y >0 and m(f,y) > 2}.

For > 0, let

@ = | e

8|

and let
15 o = (|, @r @)™,

then L, (X) = {f:{|flpo < =} equipped with |||, is called a
Lorentz space.

By [13], |/ 1L, =1 llom=0"l| f ], so that L, =L*. The following
fact is a special case of ([13], 2.6).

If p,r, s are real numbers such that 1 < 7,8 < oo,1/r +1/s>1
and 1/p = 1/r + 1/s — 1 then

LN(K)« LK) C Ly, (K)

EXAMPLE 4.2. (a) Let 1 < p < oo,

S(K) = B*(K) = L'(K) N L"(K)
WA lls = (1A 1 + [l f e S(K) .

Then S(K) is a Segal algebra;

S(i) Let feLXK) with feCyK).

Then feCy(K) by ([9], 12.2,7.8) so f e L“(K) N LK) and there-
fore, feL*(K).

S(ii) follows from ([9], 3.3B).

S(iii) follows from ([9], 5.4H, 2.2B).

We note that we can modify ([27], 2.4) to prove that B?(K)
has factorization property if and only if p = 1 (K is arbitrary) or K
is discrete (1 < p < <o).

(b) Let 4|1, «); by Remark 2.9 S(K) = N,., B(K) is a locally
convex Segal algebra with a generating family of norms given by
{s,: p € A} where

s;(f) = IF 1l + [1F1l, for feS(K).

ExampPLE 4.3. (@) Let 1<p< oo and Ig be nondiscrete.
Let S(K) = A?(K) = {f: fe LK), f e L*(K)},

1 lls = 111, + 171, for feS(K).
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Then S(K) is a Segal algebra;
S(i) Let feLXK) with feCyK).
Then fe L’(K), so feS(K).
S(ii) Let feS(K), xe K; then ||f.lls £ || flls using ([4], 2.2).

S(ii) Let f(#0)eS(K),xze K and ¢ > 0. Then ([4], 2.3) implies
that there is a neighborhood V of & such that

ny ”—fxlll < 5/2 fOI‘ VRS V.
Choose ¢7eCO<,(K' ) such that
lp — Fll, <e/8.

Let F' = supp @; then
| e Pamen < @9y

Now N(F, z, €) = {ye K: |7(y) — v(®)| < ¢/4]|f|l, for all yeF} is a
neighborhood of x using ([9], 7.3, §12).
So W =VNN(F,z,¢) is a neighborhood of x and ¥y € W, we have

by ([4], 2.3)
17, = Foliz = {170 = Pz
- g; Y(y) — 7(@) [P |F ) Pda(v)
—~ SF'”(?” — 7@ PP

+ g;{\FW(y) — ’Y(x)]?]f(fy)pdﬂ(,y)
< (/47 + 27(e/8)" < (e/2)”
SO
17, = Flls < ef2.

Thus ||fy — fulls <e.

Hence the mapping y — f, is continuous from K into S(K).

(b) Let 41, «); by Remark 2.9 S(K) = N,.s A?(K) is a locally
convex Segal algebra with a generating family of norms given by
{s,: p € A} where,

$,(f) = | f1l. + [IFll, for feS(K).

As in [11], A?(K)C AY(K) if p < q so if the infimum p, of 4 is in 4
then N,.A?(K) = A(K) but still the topologies are different unless
A is finite.
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EXAMPLE 4.5. (a) Let 1<p<co and 1=q<co; S(K)=Ag,,(K)=

{f: f e L(K) and [ € Ly, o(R)} and for £ & S(K), || £lls = I1f i+ 117 llpuor
Then S(K) is a Segal algebra; ~ .

S(i) Let feILXK) with feCyK) then by [1] feL,,(K) so
feS(K).

S(ii) It is_easy to verify that [[(f.) llpo < [[Fllso using
m((f.)", ¥) = m(f, y) for y = 0.

S(@iii) The proof of Yap ([29], 2.3) can be modified to prove that
the mapping x — f, is continuous from K into S(K).

(b) Let 4cC(, ) X [1, o).

Then by Remark 2.9 S(K) = Nupaes Aipo(K) is a locally convex
Segal algebra with a generating family of norms given by

{8tp,00t (0, @) € 4}

where 84,,0(f) = lf l, + || Fllp.0 for feS(K).

The authors would like to thank Mr. Om Prakash for useful
discussions and Professor K. A. Ross for encouragement, useful
comments and suggestions.

REFERENCES

1. A. P. Blozinski, On a convolution theorem for L, spaces, Trans. Amer. Math.
Soc., 164 (1972), 255-265.

2. J. T. Burnham, Closed ideals in subalgebras of Bamach algebras, Proc. Amer. Math.
Soc., 32 (1972), 551-555.

3. , Segal Algebras and Dense Ideals inm Banach Algebras, Lecture notes in
Mathematics, 399 Springer-Verlag, 33-58.

4. A. K. Chilana and K. A. Ross, Spectral Synthesis in Hypergroups, (To appear in
Pacific J. Math., 76 (1978), 313-328.

5. C. F. Dunkl, The measure algebra of a locally compact hypergroup, Trans. Amer.
Math. Soc., 179 (1973), 331-348.

6. C. F. Dunkl and D. E. Ramirez, A4 family of countable compact Py-hypergroups,
Trans. Amer. Math. Soc., 202 (1975), 339-356.

7. E. Hewitt and K. A. Ross, Abstract Harmonic Analysis I and II, Springer-Verlag,
1963 and 1970.

8. R. A. Hunt, On L, p-spaces, 1’Enseigne Math., 12 (1966), 249-276.

9. R. L. Jewett, Spaces with an abstract convolution of measures, Advances in Mathe-
matics, 18 (1975), 1-101.

10. R. Larsen, The algebra of functions with Fourier transforms in L,, Nieuw Archief
Wiskunde XXII (1974), 195-240.

11. R. Larsen, T. S., Liu and J. Wang, On functions with Fourier transforms in L,,
Michigan J. Math., 11 (1964), 369-378.

12. G. G. Lorentz, Some new functional spaces, Annals of Math., 51 (1950), 37-55.
18. R. O’Neil, Convolution operator on Ly, spaces, Duke Math. J., 30 (1963), 129-142.
14. H. Reiter, Classical Harmonic Analysis and Locally Compact Groups, Oxford Mathe-
matical Monographs, (1968).

15. , L*-Algebras and Segal Algebras, Lecture notes in Mathematics, 231 (1971).
16. H. P. Rosenthal, On the existence of approximate identities in ideals of group
algebras, Ark. Mat., 7 (1967), 185-191.




76 AJIT KAUR CHILANA AND AJAY KUMAR

17. K. A. Ross, Hypergroups and centers of measure algebras, 9th Naz. Alta Mat.
(Symposia Math.) Vol. XXII (1977), 189-2083,

18. ————, Center of Hypergroups, (To appear in Trans. Amer. Math. Soc.).

19. S. Saeki, On strong Ditkin sets, Ark. Mat., 10 (1972), 1-7.

20. H. H. Schaefer, Topological Spaces, Springer-Verlag, 1970 also Macmillan, 1964.
21. H. Spector, Apercu de la theorie des Hypergroupes, Lecture notes in Mathematics,
497 (Analyse Harmonique sur les Groupes de Lie, Sem. Nancy-Strasbourg 1973-1975,
Springer-Verlag), 643-673.

22, —————, Mesures invariantes sur les hypergroupes, Trans. Amer. Math. Soc., 239
(1978), 147-165.

23. R. C. Vrem, Lacunarity on Compact Hypergroups, (To appear).

24. C. R. Warner, Closed ideals in the group algebra L* N L¥G), Trans. Amer. Math.
Soc., 121 (1966), 408-423.

25. 1. Wik, A strong form of spectral synthesis, Ark. Mat., 6 (1965), 55-64.

26. L. Y. H. Yap, Some Remarks on convolution operators and L, spaces, Duke
Math. J. 36 (1969), 647-658.

27. , Ideals im subalgebras of the group algebras, Studia Math., 35 (1970),
165-175.

28. ———, Every Segal algebra satisfies Ditkin’s condition, Studia Math., 40
(1971), 235~237

29. ————, On two classes of subalgebras of LYG)., Proc. Japan Acad., 48 (1972),
315-319.

Received February 16, 1978 and in revised form April 10, 1978.

UNIVERSITY OF DELHI
DeLHI1, 110-007
INDIA





