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ASYMPTOTICALLY STABLE DYNAMICAL SYSTEMS
ARE LINEAR

ROGER C. MCCANN

If π is a dynamical system on a locally compact metric
space X which has a globally asymptotically stable critical
point, then π can be embedded into a dynamical system on l2

which is derived from a linear differential equation. If X is
^-dimensional, then l2 may be replaced by R2n.

Throughout this paper R and R+ will denote the reals and non-
negative reals respectively. A dynamical system on a topological
space X is a continuous mapping: π: X x R —> X such that (where
π(x, t) — xπt)

( i ) xπO — x for all xe X,
(ii) (xπt)πs — xπ(t + s) for all xe X and s,teR.

A point p e X is called a critical point of π if pπί = p for every £ e R.
A subset S of X is called a section with respect to π if (Sπt) Π S = φ
for every t Φ 0. A subset S of X is said to be a section for YaX
if S is a section and {xπt: xe S, teR} = Y. A compact subset M of
X is said to be stable with respect to π if for any neighborhood U
of M there is a neighborhood F of M such that {xπt: x e V, t e R+} c U.
The compact subset Λf of X is said to be a global attractor if for
any neighborhood U of M and a e l , there is a c 6 iϋ such that xπt e U
whenever c <; ί. If M is a stable global attractor, then ikf is said to
be globally asymptotically stable.

Let X and Y be topological spaces on which are defined dynamical
systems π and p respectively. We say that π can be embedded into
p if there is a homeomorphism h of X onto a subset of Y such that
h(xπt) — h(x)pt for every xeXand £ei2. In the special case h(X) — Y
we will say that π is isomorphic to p.

The set of all sequences x = {α̂ , a?2, , xn, } of real numbers
such that Σ?=i #» converges is denoted by i2. If addition and scalar
multiplication are defined coordinatewise and if a norm is defined by
II #11 = (Σ?=i#yi/2> then l2 is a real Banach space.

Throughout the remainder of this paper X will denote a locally
compact metric space.

Let peX be a globally asymptotically stable critical point with
respect to the dynamical system π and let U be a compact neighbor-
hood of p. It is known ([1, Theorem 2.7.14]) that there is a continuous
(Liapunov) function v:X->R+ such that

( i ) v(χ) = 0 if and only if x = p,
(ii) v(x7rt) = e~*v(x) for α?6X — {p} and £ > 0.
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Let a > 0 be so small that v~\a) c U and set S = v~\a). The follow-
ing lemma is also well known and is easily verified.

LEMMA 1. S is a compact section for X — {p}. Moreover, the
mapping T: X — {p} —> R defined by xπT(x) eS is continuous.

Since S is compact it is separable. Let d denote a metric on X
and let {xn} be a countable dense subset of S. We define a countable
number of continuous functions fn: S —> R+ by

fn(x) = d(x, xn) .

LEMMA 2. 1/ /„(&) ̂ fn(y) for every n, then x — y.

Proof. Suppose that x Φ y. Let r = d(sc, ?/) and B = {z: d(β, y) ^
r/4} Since {x%} is dense in S there is a & such that xkeB. Then

Λ(2/) = d(y, xk) ̂  — r < —d(x, xk) = /*(&) .
4 4

A similar argument shows that there is a j such that fά{x) <fj(y).
The desired result follows directly.

LEMMA 3. The mapping h: S^l2 defined by

h(χ) = (fM, ^-Mx), , -fn(χ), •)
\ 2 ^ /

iβ a homeomorphism of S onto h(S).

Proof. Since S is compact the mapping d restricted to S x S is
uniformly continuous and bounded. Hence, the set of mappings {fn}
is equicontinuous and equibounded. For each x e S, h{x) 612 since {/J
is equibounded. Since {fn} is equicontinuous, h is continuous. It
follows immediately from Lemma 2 that h is one-to-one. A continuous
one-to-one mapping of a compact space onto a Hausdorff space is a
homeomorphism.

Let c 6 (0,1) and define a dynamical system p on l2 by xpt = c*a?.
This dynamical system can be interpreted as being derived from the
linear differential equation dy/dt — ky, y(0) = x, where k = Inc.

LEMMA 4. If x, y eS are such that h(x) = h(y)pt for some teR,
then x = y and t = 0.

Proof. Suppose that h(x) = h(y)ρt = c*Λ(i/) for some ί e iϋ. With-
out loss of generality we may assume that t ^ 0. Then fn{x) —
fn(y) for every w. By Lemma 2, a? = #. If x = #, clearly t = 0.
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LEMMA 5. The mapping H:X-^l2 defined by

0 if x = p ,

if xeX- {p}

where Y is the mapping defined in Lemma 1, is a homeomorphism
of X onto h(X).

Proof. If H(x) = H(y), x ΦO Φ y, then

c-rwh(yπT(y)) = c-γ{x)h(xπY{x))

so that

h(yπY(y)) = h(xπY(x))p(Y(x) - Y(y)) .

By Lemma 4, yπY(y) = xπY{x) and Γ(aO — Y(y) = 0. Hence, α? = #
and ί ί is one-to-one. Since π, Γ, and h are cotinuous on X — {p}f H
is continuous on X — {p}. We will now show that H is continuous
at p. Let {Zi} be a sequence in X — {p} which converges to p. We
will first show that T(zt) -^ — oo. Since z{izY(x>) e S and F(«) = α for
each « 6 S, we have

0 < a -

We must have T(zt) —> — oo since v^) -> 0. Now

> 0

because ce(0,1), Γfe)—>—oo, and /&(£) is compact with 0&h(S).
This proves that H is continuous at p so that i ϊ is continuous. Note
that H(x) — h(xπY(x))p( — Y(x)). A short calculation shows that
H~\H(x)) - h~\H(x)pY{x)}π(-Y{x)) whenever x Φ p. Since hr\ H, p,
Y, and π are continuous on their respective domains, H~x is continuous
on H{X) — {0}. Let {xt) be any sequence such that H(xt) —> 0. Since
H(xt) = e"V{9i)h(XiπY(Xi)) and fe(S) is compact with Ogh(S) we must
have Y(Xi) ->-oo. Then

0 < α = vfeπrfe)) = e-r{Xi)v(xt)

so that we must have v(x%) —> 0. Thus, xt -> p. This proves that i ϊ " 1

is continuous at 0. H is a homeomorphism.

THEOREM 6. Let π be a dynamical system on a locally compact
metric space X and let ρc, 0 < c < 1, be the dynamical system on l2

defined by xpct — cιx. Ifπ has a globally asymptotically stable critical
point, then π can be embedded into pc.

Proof. In light of Lemma 5 it remains to show that H(xπt) —
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h(x)pt. It is easy to show that T(xπt) = T(x) — t. Hence,

H(xπt) = c-r{x)+th((xπt)π(T(x) - ί))

- c*c-r{x)h(xπr(x))

= c*h(x)

= h(x)ρt .

If X is of finite dimension n, then l2 can be replaced by R2n in
Theorem 6. This may be proved as follows. Let S be a compact
section for π. It is known that if A is compact and B is one dimen-
sional, then dim (A x B) = dim A + dim B. This is cited in [2, page
34] and [5, page 302], and referenced as [3] in [5]. Since SπR is
homeomorphic with S x R, we have dim S + 1 = dim S + dim R =
dim (S x R) = dim (&ri2) ^ w. Hence dim S <; w — 1. It is known
that a fc-dimensional space can be embedded in R2k+1, [2, page 60].
Hence, S can be embedded into R2n~ι. The one point compactification
of R2n~ι is S2%~\ the unit sphere in R2n. Thus, there is an imbedding
g: S-^ S2n~ι c R2n. Consider the dynamical system ac defined by the
linear differential equation

4jL = ky, 7/(0) = x
at

where y: R -> R2n and k < 0. Then xαcί = c*a for ί e R, xe R2n, and
c = e\ Define G: X-^ i22u by

I 0 if x = p ,
w (c-r(a;^(OTr(^)) if x e x - {p}.

The proof that G is a homeomorphism is essentially the same as
the proof of Lemma 5. With this result the proof of the following
theorem is identical with that of Theorem 6.

THEOREM 7. Let π be a dynamical system on an n-dimensional
locally compact space X and ac, 0 < c < 1, be the dynamical system
on R2n defined by xaet = cιx. If % has a globally asymptotically stable
critical point, then π can be embedded into ac.

If S can be embedded into Sfc~\ then obvious modifications of the
proof of Theorem 7 show that π can be embedded into the dynamical
system on Rk defined by xact — cιx, 0 < c < 1. If X has dimension
n, what is the smallest integer k such that S can be embedded into
g*-i? The author does not know, but conjectures that if X = Rn then
S can be embedded into S""1. If this conjecture were true then S
would be homeomorphic to Sn~K The proof of this, or the construe-
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tion of a counterexample, appears to be difficult. However, in the
case n = 2, the conjecture is true.

THEOREM 8. Let π be a dynamical system on R2 which has a
globally asymptotically stable point p. If S is any section for
X — {p}> then S is homeomorphic to S1.

Proof. Evidently S is compact and connected. Let x and y be
any two points of S. Since p is asymptotically stable L~~(x) =
L~(y) = φ. It is easy to show that D = {p} U {xπR} U {yπR} is a
curve which separates the plane into exactly two components. More-
over, S Π D = {x, y}. Hence, S — {x, y) has exactly two components.
A continuum whose connection is destroyed by the removal of two
arbitrary points is a simple closed curve, [5, page 99].

COROLLARY 9. Let π be a dynamical system on R2 and let ac,
0 < c < 1, be the dynamical system on R2 defined by xact = e*x. If
π has a globally asymptotically stable critical point, then π is iso-
morphic to ac.
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