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SUBSPACES OF POSITIVE DEFINITE INNER PRODUCT
SPACES OF COUNTABLE DIMENSION

WERNER BANI

We deal with the following problem, proposed by I.
Kaplansky in 1950: If V, V are subspaces of an inner product
space (E, φ) of countable dimension over any field k, when
does there exist a metric automorphism of (E, φ) mapping
V onto Vt The present paper treats the case of positive
definite symmetric spaces over k = R. We shall characterize
the orbits (under the orthogonal group of (E, φ)) of a large
class of subspaces V by two sequences of cardinals attached
to V in a natural way (if e.g., VL = 0 or V — V1L only a
few of them are φ 0; the case V1 = 0 is covered by work
of H. Gross). However, classifying the subspaces not in this
class is equivalent to classifying vector spaces F endowed
with a sequence i20, Ωί9 Ω2, of positive definite forms.

1* Introduction*

1.1. Let E be a real vector space of countable dimension,
equipped with a positive definite symmetric bilinear form Φ: E x E—>
R. We are concerned with the problem of classifying subspaces V
of E with respect to metric automorphisms of (E, Φ) or, in other
words, of describing the orbits of subspaces of E under the action
of the orthogonal group of (E, Φ).

1.2. This problem of course originates from the wish to know
how Witt's theorem generalizes to spaces of infinite dimension (the
celebrated theorem says that every isometry between subspaces of
a finite dimensional inner product space can be extended to the whole
space). In fact, Kaplansky ([6], question 3, p. 16) stated the problem
explicitly for arbitrary inner product spaces of countable dimension
over any field k (in the case of uncountable dimensions the problem
seems too nasty). Confirming a conjecture of Kaplansky, Gross [2]
showed that in the presence of "sufficiently many" isotropic vectors
(e.g., if Φ is alternate or if k is quadratically closed with char (k) Φ 2
and Φ is symmetric) the orbit of a subspace V may be characterized
by seven cardinal numbers, namely the codimensions of neighboring
spaces in the sublattice Qf of 2(E) (the lattice of all linear subspaces
of E) generated j_-stably by V (i.e., I Θ S - P G S ) .

1.3. For positive definite forms over ordered fields a case at
the other extreme — the problem seems to be considerably harder.
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For nice enough subfields k of R Gross [3], [5] and Schneider [8] have
characterized the orbit of V by (at most) four matrices of (possibly)
infinite size over R, subject to a complicated equivalence relation.
It will follow from our interpretation that in fact, in the case of a
completely general V, they do not simplify the classification problem,
even if k = R (see 2.8 below). For l-dense subspaces V(i.e., V1 = 0),
however, their result permits a satisfactory insight. In the dense
case the problem amounts to the task of classifying positive semi-
definite symmetric fc-bilinear maps Ψ: F x F —> R on ^-spaces F of
countable dimension. If k = R, Ψ is an inner product on F, charac-
terized by the dimension of its radical rΨ = F1 and of F/rΨ. But
if e.g., k = Q the problem is roughly the same as that of classifying
sequences Ψo, Wl9 Ψ2J of symmetric forms on F (since R = Q*° as
a vector space over Q). This suggests that a reasonable classification
for arbitrary subspaces V can be expected at most in the case k = R,
whence the assumptions put down in 1.1 (which will be in force
from now on). Indeed, it will be possible to describe the orbits of
a large class of subspaces, but even here we shall be left with an
"unsolvable" problem (2.6).

\
\

FIGURE 1
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1.4. In this paper we shall associate to (E, Φ, V), in a certain
natural way, a lattice Ό consisting of subspaces of E, as depicted
above (Fig. 1; the definitions are given in 2.3). If V^ = E (which
is always the case if b is finite) the codimensions dif st in Fig. 1
form a complete set of invariants of the orbit of V. If e.g., V is ±-
dβnse or JL-closed (V11 =V) the lattices are finite and look as in
Fig. 2. If, however, V^ Φ E an additional invariant of a different
kind appears: A vector space F(= S / F J , endowed with a sequence
(Ωi)ieN of positive definite forms Ω{ such that for each nonzero xeF
one has Ω0(x, x) > Ω^x, x) > Ωt(x, x) > . Two such objects (F, (Ωt))f

(F',W)) are equivalent if there is an isomorphism S:F->F' such
that for all x9 y e F we have Ω't(Sx, Sy) = Ωt(x, y) for almost all ieN.
In 2.6 we shall give some indications why a classification of such
objects is out of reach.

Chapter 3 contains our main result: The codimensions dtf s4 in
the lattice t> together with (F, (42*)) characterize the orbit of V. In
Chapter 4 we investigate how the different invariants can be combined,
and as an application we show in Chapter 5 how (E, Φ, V) can be de-
composed orthogonally into components of simpler structure.

1.5. Occasionally we make use of the possibility of embedding
the space (E, Φ) into a Hubert space. Nevertheless our problem is a
purely algebraic one; ther is no overlapping withHilbert space theory.

One final remark: All the results of this paper are expressed
for symmetric forms over R, but it should be clear that they hold
mutatis mutandis also for hermitean forms over C or H (endowed
with their usual involutions).

2* Definition of the invariants*

2.1. A triple K = (E, Φ, V), where (E, Φ) is a symmetric, positive
definite inner product space of countable dimension over R, V a
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subspace of E, will be called an embedding. Two embeddings are
congruent, (£ ~ (£', if there is an isometry Γ: (J?, Φ) —> (Er, Φ') with
TV= V. Countable orthogonal direct sums of embeddings are formed
in the obvious way.

2.2. We may embed (E, Φ) canonically into a Hubert space (E, Φ):
Let E be the completion of E with respect to the norm induced on
E by Φ, and Φ the natural extension of Φ to E x E. For an arbitrary
subspace WaE we have a decomposition E = W®LW1 where W is
the norm closure of W in E. Define a new positive form Ψ on E
by ?/(x? y): = Φ(x'9 y

f) with x', yf the projections of x, y in W -̂. We
are interested in its restriction Ψ — Ψ \EXE which may be described
as follows. Take any orthonormal basis1 (wL) of W; then for x, yeE
we have

( l ) Ψ(χ, y) = Φ(χ, y) - Σ Φ(χ9 wx)Φ(wtf y) .

We shall use the suggestive notation Ψ = φ — ΦWΦ. The radical
r f = {xe E\Ψ(x, y) = OV?/ 6 £7} = #" Π E coincides with the norm closure
of W in E. If Φ is merely positive instead of positive definite
we consider the Hubert space belonging to E/rΦ in order to get
our Ψ. Again (1) is valid if {wt) is an orthonormal basis of a com-
plement of rΦ Π W — rΦ\WxW in W. As a direct consequence of the
definitions (but not of (1)!) we get

LEMMA. Let W.cz W2aE and Ψ - Φ ~ ΦW,Φ. Then¥-ΨW2Ψ =
Φ - ΦW2Φ.

2.3. We shall now construct the lattice to = b((£) pictured in Fig.
1. For any embedding (£ = (E, Φ, V) we define by recursion a
sequence (F t) i Y of subspaces of E and a sequence (F\)lΎ of positive
forms on E, as follows.

( 2 ) l°::!Ψ

Vo:=

Ψ

v

V¥

Here, for any subspace XaE, let X l 1 = {y e E\Vxe X: Ψt(x, y) — 0}.
Note that Ψί+1 = Φ - ΦVβ by Lemma 2.2. In the proof of the
congruence Theorem 3.1, however, we shall need the recursive de-
scription (2). Now let to be the smallest complete sublattice of the
lattice 2(E) of all subspaces of E which contains 0, E, V and which
is _U-stable for all ίeiV(i.e., Xe to => XL ι e to). It is readily verified
that indeed to is given by the diagram in Fig. 1, with FTO = \JieχVi

1 A basis in the algebraic sense, i.e., a so called Hamel basis. The word "basis"
will always be used in this sense.
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(as to i^-stability, use the lemma below). We shall see in Chapter
4 that in the most general case all the spaces in Fig. 1 are different
from each other. For later reference we note

L E M M A . For xe Vt\ yeE one has Ψui(x9 y) = Ψτ(x9 y). Hence

Proof. Follows from (1) and (2).

2.4. The indices (codimensions of neighboring spaces) in the
lattice Ό are the following ones

dt: = άimVJr¥x j

(3) 8t: = dimr¥1+1/Vi i ^ 0 .

d: = dim E\Ύ*. J

We also have di+ι = dimVi

li'/rWι. The question of independence will
be settled in Chapter 4, but we already note the following

LEMMA. // dt < Ko for some i then E = Vt + Vi\ i»e«, d5 = 0 for
j ^ i + 2 and d = 0. Such an ί exists if and only if Ό is finite.

Proof. Clearly, since the finite dimensional image of Vi in EjrΨi
must be an orthogonal summand in the positive definite space
(E9

2.5. Suppose that d Φ 0 and set E ^V^® F. Let Ω% be the
restriction of Ψ% to F x F. For every nonzero x e F and for all
ίe N we have

( 4 ) Ω%(x, x) > Ωi+ι(x, x)>0

since by (1), Ω^x, x) — Ω^x, x) would mean that xe Viι (zVι+1<zVoo

If Ff is another complement of V^ in E or, more generally, (£' is
an embedding congruent to K by T: E ~> Ef = VL 0 Ff then, since
TVao = VL, T induces an isomorphism S: F — > Fr with

( 5 ) to x, y e F there exists i e N such that Ωj(Sx, Sy) = Ωά(x, y) for
all j ^ %.

Of course, if d = dim F < co we may replace (5) by (5') for almost
all ίeN, S is an isometry (F, Ωt)—>{F\ Ω[). Let us call the object
(F, (Ωi)) (determined by K up to an isomorphism with (5)) the top
of the embedding ©. Two tops (F, (Ωt)), (F', {Ω[)) are said to be
isomorphic if there is an isomorphism S: F —> Ff which satisfies (5).
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We shall see in 4.2 that the only restrictions on the top are
άimF^ No and (4).

2.6 We are going to make some comment on the "wildness" of
the classification problem of tops as defined in 2.5. Since we do not
want to go into the details they have to remain somewhat vague.
Let n be a fixed natural number and consider finite dimensional
vector spaces F together with n symmetric forms Γιt , Γn on F,
to be classified with respect to simultaneous isometry. We start
from the "well known" fact that this is a "wild" problem2 for
n^Z. It is plausible that it will make no essential difference if
we require the Γt to be positive definite. But then we can make
(F; Γlf , Γn) into a top in the following way: Let λ be the largest
positive real number with λ(Γx + + Γn)(x, x) <; Γn(x, x) (all x e F)
and put ί20 = Λ + • - + Γw, Λx = Γ8 + + Γn, •, Ωn_x - Γn9 Ωn =
(X/2)Ω0, Ωi = {XJ2)Q^ for i ^ n. Since (4) is now satisfied (F, (Ωz)) is
a top. Using (5') it is easy to see that the assignment (F; Γu , ΓJi->
(F, (Ωi)) induces an injection from the set of isomorphism classes of
objects (F; Γl9 ••-, Γn) into the set of isomorphism classes of tops.

2.7. Let <£ be any embedding and put (E, Φ): = (E, Ψι)IrΨι. Let
V be the image of F1(or of Vt) in E and consider the embedding €: =
(E, Φ, V)Λϊ Vit Ψt are the objects associated to it by (2) we see that
(E, Ψτ) = (E, Ψi+dlrΨ, and that Vt coincides with the image of Vi+ι

in E. Hence dt = di+ί and st = si+1. The top of K is derived from
the top of K by dropping Ωo, i.e., Ωt = β,+1.

2.8. It will follow from our congruence Theorem 3.1 that (£ = 67
if and only if K — K' and d0 = do, s0 = ό̂ If OΪ1^ introduces stand-
ard bases in the sense of [8] in order to express this result in matrix
terms one gets exactly the congruence theorem of Schneider's [8]
(Satz IV. 3). By 2.7 this result is virtually useless in the general

case. On the other hand, for embeddings with finite lattice £> the con-
gruence Theorem 3.1 can be recovered from it by iterated application.

3* The congruence theorem*

3.1. With the notations of 2.4 and 2.5 we have:
2 The term "wild" or "unclassifyable" is to be interpreted in the spirit of [1], p.

444-06/07. Indeed, from Example 4.3 in [7] it follows that the problem of classifying
the objects (F; Γu , Γn) is equivalent to the problem of classifying the representations

of the quiver : (n arrows) .
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THEOREM. TWO embeddings (E, Φ, V), (Er, Φf, V) are congruent if
and only if di = d'if Si = 8i for all ieN, and their tops are isomorphic.

The rest of this chapter is devoted to the proof of the nontrivial
half of this theorem. We shall construct an isomorphism T:E-+Ef

which is an isometry (E, Ψt) -> (E'f Ψ't) for all i e N, and with TA =
A' for every A e ϊ>. Here A! is the lattice element of b' corresponding
to A; we shall use this notation throughout. For the construction
of T we use a method developed by Gross in [4] combined with a
kind of induction which is made possible by 2.7. Those verifications
which can be taken over from [4] will be suppressed.

3.2. The induction just mentioned will be based on the case of
1 -dense embeddings of finite codimension, which is already done in
[3]. We shall not repeat the proof of this but state as a lemma
what we need.

LEMMA. Let (£, (£' be ±-dense embeddings with άimE/V =
dim E'jV < co. Suppose we are given an isomorphism T\X—>X'
between finite dimensional subspaces X, Xr of E, Ef such that E —
V + X, Ef = V + X', T(XΠV) = X'Π V, and such that T is an
isometry for each of the restrictions of Φ, Φf and Ψlf Ψ[. If ve V,
viX there exists vr e V, v' ί Xf with Φ\v\ Tx) = Φ(v, x) {all xeX)
and Φ'(v', v') = Φ(v, v).

Proof. This can be extracted from [3], 1.2 and III.l or from [8],
III.9.

3.3. The construction of an isomorphism T as indicated in 3.1
is accomplished by a simple recursion (as e.g., in [4]) if we are able
to show that the following construction problem (6) can always be
solved. Suppose that (£, (£' satisfy the assumptions of the theorem,
and let the isomorphism S:F->F' satisfy (5), where E ^V^ζ&F,
Ef = VL Θ F'.

( 6) Let T: X-> X' be an isomorphism between finite dimensional
subspaces X, Xr of E, Έf such that the following hold

(a) (X + A) ΓΊ (X + B) = X + (A f) B) for every Aeb;
(a)' the corresponding property for Xf with respect to *>';
OS) T(Xni) = Γ Π i ' for every AeΌ;
(7) for each ieN, T is an isometry for the restrictions of Ψif Ψ[\
(δ) if Z, Z' are the projections of X, X' in F, Ff respectively

the isomorphism Z' —> Zf induced by T (in view of (β)) coincides with
the restriction of S.
If yeE,y$X there exist finite dimensional subspaces Xί9 X[ of E\ E'
such that X + Rya X19 Xf c X[ and an isomorphism Tx\ Xγ -> X[
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extending T such that (a) through (δ) hold for Xly X[, Tx in lieu of
X, X', T.

3.4. In view of (a) the set {Ae Ό\y e X + A} is a sublattice of
b, and since Ό satisfies the minimum condition it has a smallest
element D = D(y, X). We may assume that y e D. The minimum
condition also allows to assume (by induction) that the construction
problem can be solved in all situations with a D properly smaller
than the present one. In particular, we may assume that D is not
the sum of two smaller elements of t> (i.e., D is sup-irreducible),
otherwise, by applying the induction assumption twice, we are done.
So D has an immediate predecessor Do £= D in t>. The same reasoning
shows that we may allow ourselves to replace y by a vector yλ =
y + v with v G JD0, if necessary. We still have

(7) VleD,yi$X+ D

We shall set X1 = X@Ryu X[ = Xf 0 ityί, ϊ\ Fx = y[ for some τ/ί 6 Ef

with

(70 ^ e D ; , ι/;α' + ΰ;.

Recall that for Aeb, A' denotes the corresponding lattice element
of tf. By (7') we have D' = D(y[, X'). The conditions (α), (α'), (/3)
are then verified exactly in the same way as in [4]; hence we shall
concentrate upon (7) and (S). We shall distinguish the following
cases: (a) D - V, (b) Z> = F \ (c) D = r¥19 (d) r ϊ Ί ξ f l c F . , (e)
Ό = Έ Φ FTO. Notice that condition (δ) needs attention only in case (e).

3.5. The case D = V. In order to save (7) we only have to
find y' 6 V, yf <ί X' such that

(8) Φ\y\ Tx) = Φ(y, Tx) (all xeX), Φ\y\ y') = Φ(y, y)

since F c r ϊ ί , for i ^ 1. Set X = X o φ L [ 7 with X, = XC\VL and
similarly for X'. By (β) and (7) we have TX, = Xόf TU - U'. Now
it suffices to require (8) for xe U. Consider the embeddings VaE0 =
V + U, V c E[ = V + C/;. Since V1 Π EQ =Vλ Π (V + U)a(X + Vλ)f)
(X + 7) = X by (α), we have F 1 ΓΊ £Ό = V'1 Π X Π ̂ Ό = 0 and similarly
V'1 ίΊ E'o = 0. Thus we may cite Lemma 3.2 to get what we want.

3.6. The case D — VL. Here we shall use 2.7, i.e., we consider

our problem modulo rΨu rΨ[. It is easy to verify that (a) through

(δ) remain valid in K, K'. Since y g X + τΨx (otherwise y e X by (α))

we may apply 3.5 to K, K' in order to find y' eV'1, y' gX' such that

for i ^ 1 one has
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( 9 ) Ψ'ly\ Tx) = Ψ^y, x)(x 6 X) , Ψ't(y', y') = Wt(y, y) .

But, by the lemma in 2.3, (9) is valid for i = 0 as well, whence (7)
holds for Xlf X/, ϊ\.

3.7. The case D = rΨx J F . Here D0=V and dimF - « 0 . We
have to find y[ e rΨ[, y[$ X' + V and ve V such that for y1 = y + v
we have

(10) Φ'(y[, Tx) = Φ{yu x){x 6 U) , Φ'(2/ί, 3/ί) - Φ(ylf yd

where U is defined as in 3.5. To this end, start with any yf e rΨ[,
yf £ Xf + F'. Such a choice is possible since dim rΨJrW1 n (X + F) =
dim rΨ'JrΨl Π (X' + F') (this follows from (β) and from the equation
dim rΨJrΨ1 0(X + V) = dim rΨJ{rΨ1 Π X) + F = dim rΨJV- dim X Π
r^./X n F). Since F 1 n J7 = 0 there is v0 e V such that Φ(y + v0, x) =
Φ\y', Tx) for all x e U (this follows since V + U1 = E; see also Lemma
5 in [6]). Supsose that λ = Φ'(y', yr) — Φ(y + v0, y + v0) > 0. Then
we may choose vι e V Π (X + R(y + ^o))1 (a space of infinite dimension!)
with φ(vu Vj) = λ and set y1 = y + v0 + vlf y[ — y'. If λ < 0 we may
apply a similar correction to yr in order to adjust its length.

3.8. The case r(F1 £ f l c F^. Again we reduce modulo rΨl9 rΨ[.
The position of D(y, x) = D (the image of D in E - ^/rFJ in b" =
t>(K) being lower than that of D in b we are able to apply in induction
argument similar to that in 3.4 (the induction starts from 3.5, 3.6
and 3.7). This provides us with a vector yf eD', y1 ί X' + D'Q which
fulfills (9) for i ^ 1. If we modify y to y1 and y' to y[ by adding
vectors from V c Do, V c D[ we do not affect the validity of (9) for
i ^ 1. But the arguments in 3.7 show that such modifications also
suffice to arrange for the validity of (9) for i = 0.

3.9. The case D = E ΦVW. We have D0=Voo,y$X + V^. Let
z be the projection of y in i^(hence z £ Z) and let yf = Sz. By (δ)
we have yf ί VL + Xr, hence (7') From (5) and the choice of yf we
infer that there exists ne N such that (9) is fulfilled for i Ξ> n. It
is now easy to modify y and yr modulo rΨn and τΨ'n in such a way
that (9) becomes valid for all ieN. Indeed, an induction argument
reduces the problem to the case n — 1, where again we proceed as
in 3.7. This settles condition (7) for X19 X[, T19 and (8) is clear by
the choice of yf.

The proof of the congruence theorem is thus complete.

4* Independence of the invariants*
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4.1. For the purpose of constructing embeddings with given
top and given cardinal invariants du β< the Hubert space setting of
2.2 is an appropriate tool. We begin with a result concerning 2.7

PROPOSITION. // &' is any embedding and s <* No there is an
embedding (£ such that (£' ̂  (£ (notation of 2.7) and s = dim rίPΊ/F.
// F' = Er and s — 0 ίfcew dimF mα?/ δ# chosen arbitrarily, otherwise
dimV - No-

Proof. Let fZΊ = £7' be the Hubert space associated to (E\ Φf)
and let HQ be any (infinite dimensional separable) Hubert space.
Choose subspaces VaR(zH0 with dimF = No, dim J?/F — s,V dense
in HQ. Let Φ be the form on H = i ϊ o θ L -HΊ and p:H~^Hy the or-
thogonal projection. We have to specify an No-dimensional dense
subspace EcH such that

(11) EΓ\HQ = R , p(E) = E\Vf ^V1f]E= Ef]H,

holds. To this end, set Er = V 0 X1? choose a subspace Xo c iί0 with
R Π Xo = 0 together with an isometry S: Xo —> Xx, and put i?: =
J? + {α; + Ste|xeX0} + F ' . Now the verification of (11) and of the
density of E is easy. With Φ: = Φ\E x E the embedding K =
(£> Φ, F) certainly has the required property (with rΨ1 — R). If
V = £" and s = 0 we do not need the above construction. In this
case we may set E = VφL E' with arbitrary dimF ^ No- But if
V Φ Er Lemma 2.4 implies dimF = No> and if s Φ 0 the same
conclusion holds since rΨγ<z.VLL by Lemma 2.3.

COROLLARY 1. For embeddings (£ m£Λ finite lattice Ό the only
restrictions on the numbers du st ^ No &^ the following. Let n be
the smallest natural number with d% < co. Then

(a) di — No for i < n and dt = 0 /or i > w + 1.
(b) Si — 0 / o r i^n.
This follows from the proposition and from Lemma 2.4. By

taking orthogonal sums of countable families of such embeddings we
get

COROLLARY 2. For embeddings © with infinite lattice Ό but zero
top the only restrictions on dif st are: dt = No for all ie N.

4.2. If (£ is an embedding with nonzero top (2.5) then all di = No-
We now want to show that there is no connection between the top
and the 8t.

PROPOSITION. Let F be a vector space of countable dimension
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endowed with a strictly decreasing sequence of positive definite
symmetric forms Ωt(i.e., (4) holds). Then there is an embedding (£' =
(23", Φ\ V) with top (F, (Ωt)) and prescribed values of the 8<.

Proof. Start with an embedding (£ which has infinite lattice i>,
E = Foo, and where the numbers st take prescribed values. Using
the notations of 2.2 and 2.3 we set HQ=V, Vi+ί = F * ® 1 Hi+U so that

each Hi is an infinite dimensional Hubert space, and E = @teNHi.
On F let us define another form i2w by ΩJy, y) — lim*-*, Ωn(x9 y).
Let H^ be the Hubert space which is the completion of FjrΩ^ let
H = EφL H^ and let Ω be the form on H. For each i e N we may
choose a subspace jPf cfl"f together with an isometry yy. (F, β<—i2<+1) ->
(F,, ΰ) such that

(12) plE) n F, = 0

holds, where j
let F«, = F/rΩ

(13) Φ': =

F': =

Ht is tl
and ψa

Eφh

β|£" x

V.

is the orthogonal projection. Furthermore
: 2<7->JF7

0O the canonical map. We define

xeF

Notice that φ{x) = Σie/v 9>i(a?) + <Po>(x) 6 i ϊ exists and has Ω{φ{x), φ(x)) —
Ω0(x, x). More generally we shall have

(14) Ωi(x, x) = Ψ'i(φ(x\ φ{x)) (x 6 F)

if we can show that for i e N the following equations hold:

^ i — * if ψi\EXE — ψ it rΨ i — rΨ if V i-ι — V ί-l

(the last one if ί ^ 1). This, of course, will finish the proof of the
proposition for, by (15) the values of the s{ are not changed if we
pass from K to ©' = (23", Φ', F r), and by (14) the map φ is an iso-
morphism between (F, {Ω%)) and the top of (£'.

The proof of (15) goes by induction. For i — 0 we may cite
(13). Assume then (15) for i ^ n. Since K = Vn we have ^ 1 ^ =
Ψn+ι and furthermore r C =Vnn E' =VnΠ(E + φ{F)) =:VnΠE =
r¥n+ί(φ(F) Π (E+ Vn) = 0). The first equation in (15) is a consequence
of the last two, by definition. As to the last equation, notice that
Vί = Gnf)E and similarly K 1 '- = G% Π ΐ?', where H=Hn@

L Gn.
Let z = y + φ(x) eGnf] E\y eE,xe F). We have 0 = pn («) = pn(y) +
P iΦfa))* But pn(φ(x)) = ?>»(»), so a; = 0 by (12), showing that ze
GΛ Π J& This concludes the proof of the proposition.
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5* Orthogonal decompositions*

5.1. In a direct orthogonal sum of a countable family of em-
beddings (S, the cardinals du sz obviously behave additively. Hence
it is a matter of course to derive information about the orthogonal
decompositions of a given embedding (£ from Theorem 3.1 and the
results of Chapter 4. For instance, we have

PROPOSITION. An embedding (£ with nonzero top admits a
decomposition (£ = &' 0 1 K" such that (£' has zero top and in (£" all
s" are zero.

That is, in the summand (£" the cardinal invariants have their
trivial values (dϊ — Ko, sϊ = 0 for all i); it is determined completely
(up to congruence) by its (nonzero) top, which is the same as that
of (£. If Si Φ 0 for infinitely many i then the summand &' is uniquely
determined, too (4.1, Corollary 1). Otherwise there is a "minimal"
choice for 67: If n is the largest number with ^ φ 0 set d\ = fc$0

for i <^ n, d'i = 0 for i > w, s = s< for all ieN.

5.2. Neglecting the summand (£" in 5.1 (compare the remarks
made in 2.6) we are left with the problem of describing the orthogonal
decompositions of embeddings with zero top. Such an embedding
is characterized by its cardinal invariants dif st; we say that (£ is of

By 3.1 and 4.1 we have

PROPOSITION. Any embedding with zero top can be decomposed
into a direct orthogonal sum of embeddings of the following types

« o « o « o 0 1 0 0 .

o o .. o o o o o

0 0 ••• 0 1 0 0 ••

(in both case the 1 stands in the ith column, i ^ 0).

The number of copies of type (6*) equals Si and is therefore
uniquely determined. If the lattice Ό is finite the decomposition can
be made unique by dropping "superfluous" summands of type (αj:

Let m (n) be the largest number for which dm Φ 0(sn Φ 0). If
m <J n no summands of type (a%) are needed. If m — n + 1 it suffices
to take dm copies of type (am) whereas, if m ^ n + 2, we admit dm

copies of type (am) and dm_γ copies of type (aw_0.
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5.3. Let us consider some simple cases of special interest.

EXAMPLE 1. An embedding & is JL -dense if and only if it is of

type ( ° n π

2

 π n " ). If s0 + d2 Φ 0, (£ is an orthogonal sum of s0

copies (δ0) and d2 copies (α2). If s0 = 0 = d2 we have V — E, a sum

of dQ copies (α0).

EXAMPLE 2. An embedding (£ is j_-closed if and only if it is of

type (dβ ^ o 1) o 0 '."-)• I f Si + d^0> e i s a n o rthogonal sum of s,o 0
copies (&0 and d3 copies (α3). If sL = 0 = dz we have F + V1 = E, a
sum of d0 copies (α0) and <ZX copies (αj .

Example 1 has already been settled in [5], [8], but Example 2
only in the case dim E/V + V1 < °o. Combining the two we get:
(£ is the orthogonal sum of a _L -dense and a ± -closed embedding
if and only if E = V2 + F 2

l 2, if and only if it is of type
0 d2 d3 0 0 . Λ

s0 s, 0 0 0 0 .-•/'
To round off the discussion of such embeddings we shall give

concrete representatives for (60), (α2), (6J, (α3)((α0) and (αx) being trivial).
(60): E = F φ Λ / , F with orthonormal basis (^)ieyv, Φ(/, /) = 1,

Φ(/f v j - 2-{τ+1)/\i ^ 0).
(αa): same as (60), but Φ(f, vt) - 2~(ί+2)/2.
(6J: J 5 = ( F φ 1 F 1 ) 0 Λ / , F and F 1 with orthonormal bases

(v2j)jeN and (v8i+1)ieiv respectively, Φ(/, /) = 1, Φ(f, v<) = 2~(i+1)/2.
(αs): same as (60, but Φ(/, v,) - 2-(ΐ+2)/2.

The verifications are left to the reader (the crucial thing is that in
(W, (60 we have Σ<€ΛΓΦ(/, ^O2 = 1> whilst in (α2), (α3) we must have
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