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SUBSPACES OF POSITIVE DEFINITE INNER PRODUCT
SPACES OF COUNTABLE DIMENSION

WERNER BANI

We deal with the following problem, proposed by I.
Kaplansky in 1950: If V, V are subspaces of an inner product
space (E, @) of countable dimension over any field %, when
does there exist a metric automorphism of (Z, ) mapping
V onto V? The present paper treats the case of positive
definite symmetric spaces over k = R. We shall characterize
the orbits (under the orthogonal group of (E, ¢)) of a large
class of subspaces V by two sequences of cardinals attached
to V in a natural way (if e.g., V=0 or V= V1! only a
few of them are + 0; the case V1 =0 is covered by work
of H. Gross). However, classifying the subspaces not in this
class is equivalent to classifying vector spaces F' endowed
with a sequence 2,, 2., 2,, --- of positive definite forms.

1. Introduction.

1.1. Let E be a real vector space of countable dimension,
equipped with a positive definite symmetric bilinear form @: £ x E —
R. We are concerned with the problem of classifying subspaces V
of E with respect to metric automorphisms of (E, ®) or, in other
words, of describing the orbits of subspaces of E under the action
of the orthogonal group of (X, @).

1.2. This problem of course originates from the wish to know
how Witt’s theorem generalizes to spaces of infinite dimension (the
celebrated theorem says that every isometry between subspaces of
a finite dimensional inner product space can be extended to the whole
space). In fact, Kaplansky ([6], question 3, p. 16) stated the problem
explicitly for arbitrary inner product spaces of countable dimension
over any field & (in the case of uncountable dimensions the problem
seems too nasty). Confirming a conjecture of Kaplansky, Gross [2]
showed that in the presence of “sufficiently many” isotropic vectors
(e.g., if @ is alternate or if k& is quadratically closed with char (k) == 2
and @ is symmetric) the orbit of a subspace V may be characterized
by seven cardinal numbers, namely the codimensions of neighboring
spaces in the sublattice ¥ of ¥(#) (the lattice of all linear subspaces
of E) generated 1 -stably by V (ie., XeJ=X'eI).

1.38. For positive definite forms over ordered fields- a case at
the other extreme — the problem seems to be considerably harder.
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For nice enough subfields & of R Gross [3], [5] and Schneider [8] have
characterized the orbit of V by (at most) four matrices of (possibly)
infinite size over R, subject to a complicated equivalence relation.
It will follow from our interpretation that in fact, in the case of a
completely general V, they do not simplify the classification problem,
even if &t = R (see 2.8 below). For | -dense subspaces V(i.e., V* = 0),
however, their result permits a satisfactory insight. In the dense
case the problem amounts to the task of classifying positive semi-
definite symmetric k-bilinear maps ¥: F X FF— R on k-spaces F of
countable dimension. If k¥ = R, ¥ is an inner product on F, charac-
terized by the dimension of its radical »¥ = F* and of F/r¥. But
if e.g., k = @ the problem is roughly the same as that of classifying
sequences ¥, ¥, ¥, --- of symmetric forms on F' (since R = Q% as
a vector space over Q). This suggests that a reasonable classification
for arbitrary subspaces V can be expected at most in the case k = R,
whence the assumptions put down in 1.1 (which will be in force
from now on). Indeed, it will be possible to describe the orbits of
a large class of subspaces, but even here we shall be left with an
“unsclvable” problem (2.6).

FiGURE 1
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Vi=0

FIGURE 2

1.4. In this paper we shall associate fo (B, @, V), in a certain
natural way, a lattice p consisting of subspaces of E, as depicted
above (Fig. 1; the definitions are given in 2.3). If V_ = E (which
is always the case if v is finite) the codimensions d,, s; in Fig. 1
form a complete set of invariants of the orbit of V. Ife.g.,Vis L-
danse or L -closed (V*+ =V) the lattices are finite and look as in
Fig. 2. If, however, V. %= E an additional invariant of a different
kind appears: A vector space F(= E/V_.), endowed with a sequence
(2);e~ of positive definite forms 2, such that for each nonzero x ¢ F'
one has 2.z, x) > 2,(x, ) > 2,(x, ) > ---. Two such objects (F, (2,),
(F", () are eguivalent if there is an isomorphism S: F— F’ such
that for all z, y € F we have 2/(Sx, Sy) = 2,(z, y) for almost all 7€ N.
In 2.6 we shall give some indications why a classification of such
objects is out of reach.

Chapter 3 contains our main result: The codimensions d, s; in
the lattice v together with (F, (2,)) characterize the orbit of V. In
Chapter 4 we investigate how the different invariants can be combined,
and as an application we show in Chapter 5 how (H, @, V) can be de-
composed orthogonally into components of simpler structure.

1.5. Occasionally we make use of the possibility of embedding
the space (F, @) into a Hilbert space. Nevertheless our problem is a
purely algebraic one; ther is no overlapping withHilbert space theory.

One final remark: All the results of this paper are expressed
for symmetric forms over R, but it should be clear that they hold
mutatis mutandis also for hermitean forms over C or H (endowed
with their usual involutions).

2. Definition of the invariants.

2.1. A triple € = (E, @, V), where (K, @) is a symmetric, positive
definite inner product space of countable dimension over R, V a
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subspace of E, will be called an embedding. Two embeddings are
congruent, € = €, if there is an isometry T:(HE, @) — (E', ?') with
TV =V'. Countable orthogonal direct sums of embeddings are formed
in the obvious way.

2.2. We may embed (E, @) canonically into a Hilbert space (&, @):
Let F be the completion of E with respect to the norm induced on
E by @, and @ the natural extension of @ to £ x E. For an arbitrary
subspace W E we have a decomposition £ =W @' W' where W is
the norm closure of W in E. Define a new positive form ¥ on E
by ¥(z, y): = ¢, ¥') with ', ¥ the projections of z, ¥ in W*. We
are interested in its restriction ¥ = ¥'|,., which may be described
as follows. Take any orthonormal basis' (w;) of W; then forz, ye K
we have

(1) V(x,y) = O, y) — Z D(x, w)0(wy, Y) -

We shall use the suggestive notation ¥ = @ — @ W@. The radical
W ={xe E|¥U(x, y)=0vyc E} =W N E coincides with the norm closure
of W in E. If & is merely positive instead of positive definite
we consider the Hilbert space belonging to E/»® in order to get
our ¥. Again (1) is valid if (w,) is an orthonormal basis of a com-
plement of »@ N W = #®@ |, in W. As a direct consequence of the
definitions (but not of (1)!) we get

LEMMA. Let W.cW,CcEand¥¥ =0 —0W,O. Then ¥ -V WT =
O — OW,0.

2.3. We shall now construct the lattice b = v(€) pictured in Fig.
1. For any embedding € = (K, @, V) we define by recursion a
sequence (V,)y of subspaces of E and a sequence (¥,)y of positive
forms on FE, as follows.

Ui=0,Vy:=V

2
(2) U=V, U VI, V= ¥ Vi

Here, for any subspace XC E, let X+ ={ye E|vee X: ¥ (x, y) = 0}.
Note that ¥,,, = ® — @V, 0 by Lemma 2.2. In the proof of the
congruence Theorem 3.1, however, we shall need the recursive de-
seription (2). Now let b be the smallest complete sublattice of the
lattice 2(E) of all subspaces of E which contains 0, E, V and which
is 1 ,-stable for all 7¢ N(i.e., Xeco= X—eb). It is readily verified
that indeed b is given by the diagram in Fig. 1, with V_ = U..\V,

1 A basis in the algebraic sense, i.e., a so called Hamel basis. The word “basis”
will always be used in this sense.
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(as to L ,-stability, use the lemma below). We shall see in Chapter
4 that in the most general case all the spaces in Fig. 1 are different
from each other. For later reference we note

LEMMA. For ze V)i, ye E one has ¥, (z,y) = ¥ (x, y). Hence
V= Vit

Proof. Follows from (1) and (2).

2.4. The indices (codimensions of neighboring spaces) in the
lattice v are the following ones

d,: = dimV,/»V, I
(3) s =dim+¥, ., /V, > 1=0.
d: =dim BV J

We also have d,., = dimV}*/»¥,. The question of independence will
be settled in Chapter 4, but we already note the following

LeMmA. If d;, < ¥, for some i then =V, +V/, i.e., d; = 0 for
=1+ 2and d=0. Such an © exists if and only if v is finite.

Proof. Clearly, since the finite dimensional image of V, in E/+V,
must be an orthogonal summand in the positive definite space
(B, T)r¥,.

2.5. Suppose that d =0 and set E=V_ P F. Let 2, be the
restriction of ¥, to F' x F. For every nonzero zc F and for all
1€ N we have

(4) 2@, x) > 2@, 2) >0

since by 1), Q,(x, 2) = 2,,.(x, ) would mean that xe ViV, ,CV..
If F’ is another complement of V_ in £ or, more generally, & is
an embedding congruent to € by T:E ~ E =V, & F’ then, since
TV, =V., T induces an isomorphism S: F'— K’ with

(5) to x, ye F there exists 7¢ N such that 2}(Sz, Sy) = 2;(», ) for
all j = 1.

Of course, if d = dim F' < <= we may replace (5) by (5') for almost
all 7e N, S is an isometry (F, 2,) — (F”, 2;). Let us call the object
(F, (2)) (determined by € up to an isomorphism with (5)) the top
of the embedding €. Two tops (F, (2,), (F', (2)) are said to be
isomorphic if there is an isomorphism S: F'— F” which satisfies (5).
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We shall see in 4.2 that the only restrictions on the top are
dim FF < W, and (4).

2.6 We are going to make some comment on the “wildness” of
the classification problem of tops as defined in 2.5. Since we do not
want to go into the details they have to remain somewhat vague.
Let n be a fixed natural number and consider finite dimensional
vector spaces F' together with % symmetric forms I}, ---, ", on F,
to be classified with respect to simultaneous isometry. We start
from the “well known” fact that this is a “wild” problem? for
n = 3. It is plausible that it will make no essential difference if
we require the I'; to be positive definite. But then we can make
(F; I, ---,I,) into a top in the following way: Let \ be the largest
positive real number with M/, + -+ + '), ) < [,(x, x) (all xe F)
and put Q=0+ -+ 1, 2=+ -+, -, 2,, =1, 2,=
N2)82,, 2, = (\2)2,_, for ¢ = n. Since (4) is now satisfied (F, (2,)) is
a top. Using (5') it is easy to see that the assignment (F; I, ---, [',)—
(F, (2)) induces an injection from the set of isomorphism classes of
objects (F; Iy, ---, I',) into the set of isomorphism classes of tops.

2.7. Let € be any embedding and put (¥, @): = (K, ¥)[r¥,. Let
V be the image of V*(or of V,) in E and consider the embedding €: =
(E, @, V).If V,, 7, are the objects associated to it by (2) we see that
(E,¥) =(E ¥,)/r¥, and that V, coincides with the image of V.,
in E. Hence d, = d,,, and §, = s,,,. The top of € is derived from
the top of € by dropping 2, i.e., 2, = Q,.,.

2.8. It will follow from our congruence Theorem 3.1 that € = &’
if and only if € =€ and d, = d}, s, = s). If one introduces stand-
ard bases in the sense of [8] in order to express this result in matrix
terms one gets exactly the congruence theorem of Schneider’s [8]
(Satz IV. 8). By 2.7 this result is virtually useless in the general

case. On the other hand, for embeddings with finite lattice b the con-
gruence Theorem 3.1 can be recovered from it by iterated application.

3., The congruence theorem.

3.1. With the notations of 2.4 and 2.5 we have:

2 The term “wild” or “unclassifyable” is to be interpreted in the spirit of [1], p.
444-06/07. Indeed, from Example 4.3 in [7] it follows that the problem of classifying
the objects (F; I'y, ---, I'y) is equivalent to the problem of classifying the representations

—_—

r—_——>
of the quiver : (n arrows) .

—
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THEOREM. Two embeddings (E,®,V), (E',d', V') are congruent if
and only if d;=d;, s;=s; for all i€ N, and their tops are isomorphic.

The rest of this chapter is devoted to the proof of the nontrivial
half of this theorem. We shall construct an isomorphism T: E— E'
which is an isometry (B, ¥, — (E', ¥;) for all 1€ N, and with TA =
A’ for every Acv. Here A’ is the lattice element of v’ corresponding
to A; we shall use this notation throughout. For the construction
of T we use a method developed by Gross in [4] combined with a
kind of induction which is made possible by 2.7. Those verifications
which can be taken over from [4] will be suppressed.

38.2. The induction just mentioned will be based on the case of
1 -dense embeddings of finite codimension, which is already done in
[3]. We shall not repeat the proof of this but state as a lemma
what we need.

LEMMA. Let €, € be 1-dense embeddings with dim E/V =
dim E'/V’ < . Suppose we are given an isomorphism T: X — X'
between finite dimensional subspaces X, X' of K, E' such that E =
V4+ X, E=V+X,TXNV)=X"NV', and such that T is an
isometry for each of the restrictions of @, " and ¥, ¥;. If veV,
ve¢ X there exists v'e V', v ¢ X' with @'(', Tx) = (v, z) (all ze X)
and O (v, V') = O(v, v).

Proof. This can be extracted from [3], I.2 and III.1 or from [8],
I11.9.

3.3. The construction of an isomorphism 7 as indicated in 3.1
is accomplished by a simple recursion (as e.g., in [4]) if we are able
to show that the following construction problem (6) can always be
solved. Suppose that €, €' satisfy the assumptions of the theorem,
and let the isomorphism S: F— F’ satisfy (5), where E=V_@ F,
E =V, F'.

(6) Let T: X— X’ be an isomorphism between finite dimensional
subspaces X, X’ of E, E' such that the following hold

(@) X+ANX+B) =X+ (AN B) for every Aev;

()’ the corresponding property for X’ with respect to v';

B T(XNA) =X NA for every Acy;

(v) for each i€ N, T is an isometry for the restrictions of ¥, ¥;;

(0) if Z, Z' are the projections of X, X’ in F, F’ respectively
the isomorphism Z — Z’ induced by T (in view of (B)) coincides with
the restriction of S.

If ye E, y¢ X there exist finite dimensional subspaces X,, X; of E, E
such that X+ Ryc X,, X’ X/ and an isomorphism T,: X, — X/
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extending 7T such that (a) through (§) hold for X,, X;, T, in lieu of
X, X, T.

3.4. In view of (a) the set {Aebjye X + A} is a sublattice of
b, and since b satisfies the minimum condition it has a smallest
element D = D(y, X). We may assume that ye D. The minimum
condition also allows to assume (by induction) that the construction
problem can be solved in all situations with a D properly smaller
than the present one. In particular, we may assume that D is not
the sum of two smaller elements of v (i.e., D is sup-irreducible),
otherwise, by applying the induction assumption twice, we are done.
So D has an immediate predecessor D, & D in v. The same reasoning
shows that we may allow ourselves to replace ¥y by a vector y, =
Yy + v with ve D,, if necessary. We still have

(7) veDyeX+ D, .

We shall set X, = X®@ Ry, X/ = X’ P Ry, T\Y, = y, for some y, ¢ E
with

(7 vieD, wyeX +D.

Recall that for Aev, A’ denotes the corresponding lattice element
of v'. By (7)) we have D’ = D(y;, X’). The conditions (a), ('), (8)
are then verified exactly in the same way as in [4]; hence we shall
concentrate upon (v) and (). We shall distinguish the following
cases: (a) D=V, (b) D=V*, (¢) D=+¥, d) » . <« DCV,, (e
D= FE +V,_. Notice that condition (6) needs attention only in case (e).

3.5. The case D=V. In order to save (v) we only have to
find ¥ e V', ¥y’ ¢ X' such that

(8) @', Te) =0y, Te) all xe X),  O'(¥,¥y") = O(y, v)

since Vc+?, for 1 =1. Set X=X, @'U with X, =XNV* and
similarly for X’. By (8) and (v) we have TX, = X, TU =U’'. Now
it suffices to require (8) for xe U. Consider the embeddings VCE, =
V+UV CE =V +U'. SinceV:NE,=V'N(V+U)c(X+VHN
(X+V)=X by (o), we have V* N E, =V* N XN E, = 0 and similarly
V't N E,=0. Thus we may cite Lemma 3.2 to get what we want.

3.6. The case D =V*. Here we shall use 2.7, i.e., we consider
our problem modulo 77, +¥,. It is easy to verify that (a) through
(6) remain valid in €, €. Since y¢ X + »¥, (otherwise ¥y ¢ X by (a))
we may apply 3.5 to €, € in order to find %' ¢ V%, ¥’ ¢ X’ such that
for ¢ =1 one has
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(9) Uiy, Te) =¥y, )ce X), ¥, v) =Y.

But, by the lemma in 2.3, (9) is valid for ¢« = 0 as well, whence (7)
holds for X, X/, T..

3.7. The case D=+¥,2V. Here D, =V and dimV = R,. We
have to find y,e+¥;, y,¢ X’ +V’' and ve V such that for y, =y + v
we have

(10) 'y, Tw) = Oy, 2)we U), @', y) = Py, ¥)

where U is defined as in 3.5. To this end, start with any ¥ €»¥;,
¥y ¢ X' +7V’'. Such a choice is possible since dim 7%, /¥, N (X +V) =
dim ¥ /¥ N (X’ + V') (this follows from (8) and from the equation
dim 7 »rT, N (X +V)=dim+?,/¢¥, N X) +V =dim»?,/]V —dim X N
r¥ /X NV). Since V: N U = 0 there is v,&€ V such that @y + v, x) =
@'(y’, Tx) for all xe U (this follows since V + U* = E; see also Lemma
5 in [6]). Supsose that » =0 (¥, y') — Oy + v, ¥ + v,) > 0. Then
we may choose v, € VN (X + R(y + v,))* (a space of infinite dimension!)
with @(v, v,) =N and set ¥y, =y + v, + v, ¥ = y'. If X <0 we may
apply a similar correction to 7’ in order to adjust its length.

3.8. The case v¥, < DCV,. Again we reduce modulo »¥,, +¥,.
The position of D(7, ) = D (the image of D in E = E/#¥,) in v =
v(€) being lower than that of D in v we are able to apply in induction
argument similar to that in 3.4 (the induetion starts from 3.5, 3.6
and 3.7). This provides us with a vector ¥’ e D', ¥’ ¢ X' + D, which
fulfills (9) for + = 1. If we modify ¥ to ¥, and ¥ to %, by adding
vectors from V < D,, V' < D, we do not affect the validity of (9) for
¢ =1. But the arguments in 3.7 show that such modifications also
suffice to arrange for the validity of (9) for ¢ = 0.

3.9. The case D= FE +V_.. We have D,=V_,y¢ X +V.. Let
%z be the projection of y in Flhence z¢ Z) and let ¥y = Sz. By (d)
we have y' ¢ V. + X', hence (7). From (5) and the choice of %' we
infer that there exists n e N such that (9) is fulfilled for ¢ = n. It
is now easy to modify ¥y and ¥ modulo »¥, and 2%, in such a way
that (9) becomes valid for all i€ N. Indeed, an induction argument
reduces the problem to the case n = 1, where again we proceed as
in 8.7. This settles condition (v) for X, Xi, T\, and (0) is clear by
the choice of ¥'.

The proof of the congruence theorem is thus complete.

4. Independence of the invariants.
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4.1. For the purpose of constructing embeddings with given
top and given cardinal invariants d,, s; the Hilbert space setting of
2.2 is an appropriate tool. We begin with a result concerning 2.7.

PROPOSITION. If € is any embedding and s < W, there is an
embedding € such that €' = € (notation of 2.7) and s = dim +¥/V.
If V' = E and s = 0 then dimV may be chosen arbitrarily, otherwise
dimV = W,.

Proof. Let H, = E’ be the Hilbert space associated to (&', @)
and let H, be any (infinite dimensional separable) Hilbert space.
Choose subspaces Vc R c H, with dimV = W, dim R/V = s, V dense
in H,. Let & be the form on H = H,@" H, and p: H— H, the or-
thogonal projection. We have to specify an R,dimensional dense
subspace E < H such that

(11) EnH,=R, pE)=FE,V =V:NE=ENH,

holds. To this end, set E' =V’ @ X,, choose a subspace X, C H, with
RN X,=0 together with an isometry S: X, — X,, and put E: =
R+ {x + Sx|re X} +V’'. Now the verification of (11) and of the
density of E is easy. With @: = &|E x E the embedding € =
(E, @, V) certainly has the required property (with +¥, = R). If
V' = E’ and s = 0 we do not need the above construction. In this
case we may set K=V @' E’' with arbitrary dimV < W,. But if
V' + E' Lemma 2.4 implies dimV =¥, and if s==0 the same
conclusion holds since #»¥, cV‘* by Lemma 2.3.

COROLLARY 1. For embeddings € with finite lattice o the only
restrictions on the numbers d,, s; < W, are the following. Let n be
the smallest natural number with d, < . Then

@ d, =% for i <m and d, =0 for i1 >mn + 1.

(b) s, =0 for i1 = n.

This follows from the proposition and from Lemma 2.4. By
taking orthogonal sums of countable families of such embeddings we
get

COROLLARY 2. For embeddings € with infinite lattice b but zero
top the only restrictions on d;, s; are: d; = ¥, for all i€ N.

4.2. If € is an embedding with nonzero top (2.5) then all d, = W,.
We now want to show that there is no connection between the top
and the s,.

PROPOSITION. Let F be a wvectorspace of countable dimension
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endowed with a strictly decreasing sequence of wositive definite
symmetric forms 2,(i.e., (4) holds). Then there is an embedding € =
(E', @', V') with top (F, (2,)) and prescribed values of the s;.

Proof. Start with an embedding € which has infinite lattice v,
E =V_, and where the numbers s, take prescribed values. Using
the notations of 2.2 and 2.3 we set H,=V, V,.,=V. ®* Hiﬂ,ﬁ/that
each H, is an infinite dimensional Hilbert space, and E = @iy H..
On F let us define another form 2. by 2.(z, ) = lim,_. 2.(z, ¥).
Let H_ be the Hilbert space which is the completion of F/rQ2,., let
H=E@* H. and let 2 be the form on H. For each i¢ N we may
choose a subspace F,C H, together with an isometry o,: (F, 2,—2,.,) —
(F,, £2) such that

(12) p(E)NF, =0

holds, where p,: H— H; is the orthogonal projection. Furthermore
let F, = F/rQ.,C H, and @.: F— F_ the canonical map. We define

E:=E® {%@i(x) Lo x)|xe F} cH

13) 0. =Q|E X E
V.=V.

Notice that @(x) = >;cv 2:i(x) + @..(x) € H exists and has 2(¢(x), px)) =
2,(x, ). More generally we shall have

(14) 2, 2) = Vi), ) (xeF)
if we can show that for 7¢ N the following equations hold:
(15) Vi=V,Ullpp =T, ¥ = 2T, Vitit =V

(the last one if ¢ = 1). This, of course, will finish the proof of the
proposition for, by (15) the values of the s, are not changed if we
pass from € to € = (&, @, V'), and by (14) the map ® is an iso-
morphism between (F, (2,)) and the top of €.

The proof of (15) goes by induction. For 7 =0 we may cite
(13). Assume then (15) for ¢ < n. Since V, =V, we have ¥, |, =
¥,,, and furthermore ¥, =V, NE =V.N(E+oF)=V,NE =
¥, (P(F)N(E+ V,)=0). The first equation in (15) is a consequence
of the last two, by definition. As to the last equation, notice that
Var =G, N E and similarly V,'» =G, N E, where H = H, ®"*G,.
Let 2=y +px)eG,NE'(yc E,xe F). We have 0 = 9,(2) = p.(¥) +
p.(P(x)). But p.(pk) = @.(x), so x =0 by (12), showing that z¢
G, N E. This concludes the proof of the proposition.
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5. Orthogonal decompositions.

5.1. In a direct orthogonal sum of a countable family of em-
beddings €, the cardinals d;, s, obviously behave additively. Hence
it is a matter of course to derive information about the orthogonal
decompositions of a given embedding € from Theorem 3.1 and the
results of Chapter 4. For instance, we have

PROPOSITION. An embedding € with monzero top admits a
decomposition € = & @*+ € such that € has zero top and in € all
s; are zero.

That is, in the summand €” the cardinal invariants have their
trivial values (d; = W, si/ = 0 for all ¢); it is determined completely
(up to congruence) by its (nonzero) top, which is the same as that
of €. If s, = 0 for infinitely many ¢ then the summand €’ is uniquely
determined, too (4.1, Corollary 1). Otherwise there is a “minimal”
choice for €': If m is the largest number with s, =0 set d; = W,
for ¢ <mn,d; =0 for 1 > n,s; =s, for all 1¢ N.

5.2. Neglecting the summand €” in 5.1 (compare the remarks
made in 2.6) we are left with the problem of describing the orthogonal
decompositions of embeddings with zero top. Such an embedding
is characterized by its cardinal invariants d,, s,; we say that € is of

type <d0dld2 et

8688, ¢ *
By 3.1 and 4.1 we have

PROPOSITION. Any embedding with zero top canm be decomposed
into a direct orthogonal sum of embeddings of the following types

,BO }{0...“00100...
(@) (0 0 - 00000---

e, N, 00
) (Ro Rooo- N N >
00 -+0 100---

(im both case the 1 stands in the 1th column, 1 = 0).

The number of copies of type (b,) equals s, and is therefore
uniquely determined. If the lattice b is finite the decomposition can
be made unique by dropping “superfluous” summands of type (a,):

Let m (n) be the largest number for which d, =+ 0(s, = 0). If
m < n no summands of type (a,) are needed. If m = n + 1 it suffices
to take d, copies of type (a,) whereas, if m = n + 2, we admit d,
copies of type (a,) and d,_, copies of type (a,_,).
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5.3. Let us consider some simple cases of special interest.

ExAMPLE 1. An embedding € is 1-dense if and only if it is of

type <g0° 8 %2 8 8) If s, +d,# 0,8 is an orthogonal sum of s,

copies (b,) and d, copies (a,). If s,=0=d, we have V = F, a sum
of d, copies (a,).

ExaMPLE 2. An embedding € is 1 -closed if and only if it is of

type <%° ii g d(; 8 8> If s,4+d,;#0, € is an orthogonal sum of s,

copies (b,) and d, copies (a,). If s, =0=d, we have V +V+* =FE, a
sum of d, copies (a, and d, copies (a,).

Example 1 has already been settled in [5], [8], but Example 2
only in the case dim E/V +V* < o. Combining the two we get:
€ is the orthogonal sum of a 1-dense and a | -closed embedding
if and only if E=V,+ V), if and only if it is of type
<d0 d, d, d, 0 0>
s, 8 0000---

To round off the discussion of such embeddings we shall give
conerete representatives for (b)), (a,), (b)), (a,)((a,) and (a,) being trivial).

(b): E =V B Rf, V with orthonormal basis (v,),.n, @(f, ) = 1,
O(f, v,) = 2724 = 0),

(a,): same as (b,), but O(f, v,) = 2722

b): E=(V@O'VHYDRS, V and V*+ with orthonormal bases
(v3)ien and (vy1.)5en Tespectively, O(f, f) = 1, O(f, v,) = 2702,

(a;): same as (b)), but O(f, v,) = 270272,

The verifications are left to the reader (the crucial thing is that in
(by), (b)) we have >.,.~@(f, v,)* =1, whilst in (a,), (a;) we must have

2uen @(f, v)* < 1).
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