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ON THE SOBRIFICATION REMAINDER SX - X

RUDOLF-E. HOFFMANN

The topics of this paper are (1) a study of the sobri-
fication remainder *X — X (hence our title), (2) a new, simple
proof of the characterization of Tzrspaces Y as those spaces
Y such that Y is the smallest subspace X of SY for which
the embedding X ^ * Y is the universal sobrification, (3) an
elegant characterization of Noetherian sober spaces. These
themes are linked by the common tool by aid of which they
are investigated, the so-called δ-topology L. Skula [28].

Recall that a space Y is called irreducible iff Oι Π O2 Φ 0 for
every pair of nonempty open subsets Ot of Y(i = 1, 2) — sometimes,
in addition, Y Φ 0 is assumed. A space X is called "sober" ([3] IV
4.2.1) iff every irreducible, nonempty, closed subset M of X has a
unique "generic" point m, i.e., M — ci{m}(hence T% =>"sober" => To). To
every space X one associates a sober space SX whose elements are
all irreducible, closed, nonempty subsets of X. The open sets of 8X
are all sets of the form Ό : = {Me 8X\Mf]0 Φ 0} for some open set
0 of X. The map X: x H+ cl{x} is the reflection morphism for the
category Xop of topological spaces and continuous maps into its full
subcategory @ob of sober spaces. If X is a T0-space, then lx is an
embedding-, we shall sometimes identify X with the subspace XX[X]
of SX, in particular we shall write SX — X for a T0-space X instead
of SX — XX[X]. For further information on sober spaces see [19], [20]
(3.1), [21] and some recent work of S. S. Hong [22], J. R. Isbell
[23], L. D. Nel [26], L. D. Nel and R. G. Wilson [27] (to the his-
torical survey of [21] p. 365/366 a reference to [8] II, (1) on p. 17
has to be added).

An essential tool for the investigation of sober spaces is the 6-
topology introduced by L. Skula ([28]; cf. also [11] p. 288). The
6-topology associated with a space X is the topology which has
{On A\0 open in X, A closed in X) as an open basis. The members
of this basis are called locally closed sets (N. Bourbaki [6] Chap. I,
§3.3). The terms "b-dense", "b-isolated" etc. will refer to the 6-
topology, i.e., the topological space bX associated with a given space
X; in particular, a δ-dense subspace Y of X is a subspace of X which
is a dense subset of bX. A subspace Y of X is δ-dense, iff whenever
019 02 are open subsets of X, 0^02, then 0,0 YΦO2Π Y. In [7] G.C.L.
Brϋmmer looks at the uniformity (canonically) associated with the
Pervin quasi-uniformίty of a topological space X; this uniformity
induces a topology which is easily seen [to be the b-topology associated
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to the space X: thus bX is uniformizable by a distinguished uniformity
([7] p. 408). We note further that bX is O-dimensional, i.e., it has
an open basis of sets which are both closed and open.

Recall that a space X is TD iff for every xeX there is an open
neighborhood U of x with U f) cl{x} = {x}, i.e., every point of X is
locally closed. The TV-axiom was introduced by G. Bruns [8] II p. 7
("Γ1/2") and C. E. Aull and W. J. Thron [4] p. 29. For characterizations
of TD see [21] 2.1 and, in addition, [30] 2.1 (g). As a recent application
of the ΪVaxiom, we note that C. C. Moore and J. Rosenberg have
shown that the space of primitive ideals of the group &*-algebra of
a connected and locally compact group G is TD ([25] Thm. 1). Fur-
thermore cf. [14] (§§3.2, 3.3).

To a preordered set (X, <;) one may associate a topological space
with the same carrier set and open basis {Ua\aeX} with Ua: =
{y e X\ a<ky). Such a space is called A-discrete (or Alexandrov-discrete)
[1]. A topological space is A-discrete iff every union of closed sets
is closed. Nowadays, A-discrete spaces are also known as finitely
generated spaces, since they form the co-reflective hull of the class
of finite spaces ([16] 22.2(4)). An A-discrete T0-space is TD ([8] II,
p. 18, [4] p. 35). For some further information see [2],

I am indebted to B. Banaschewsky (Hamilton) and J. R. Isbell
(Buffalo) for discussions (during the Oberwolfach meeting on category
theory, August 1977) on some themes of this paper.

LEMMA 1.1. Suppose β is a basis of the open sets of a space
X, then

{Und{x}\xe Ueβ)

is a basis of the b-topology associated with X.

From this easily proved lemma we immediately obtain

LEMMA 1.2. For topological spaces X and Y holds bX x bY =
b(X x Y).

Proof. Let τx and τγ denote the topologies of X and Y respec-
tively, then {U x V\Ueτx, Veτγ} is a basis for Xx Y, hence

{(UxV)Π(clx{x} x clγ{y})

= (Unclz{x}) x (Vnclγ{y})\Ueτx, Veτγ,xeX,ye Y)

is a basis for b(X x Y) and, obviously, also for bX x bY.

PROPOSITION 1.3. Let {-3Γ<}<6/ be a family of nonempty topological
spaces. 6(Πi -2Q = ΓL (bXt) iff K: — {iBl\Xί is not indiscrete) is finite.
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Proof. For every i e K, there is some xt e Xt with cl{x%) Φ Xt.
If K is infinite, then J\κcl{xx) x Πi-*:-^ is open in b(Π.IXi), but
not open in a product topology arising from any modifications of the
topologies of Xt. If K is finite, then

UXi = U (bX<) x Π -Xi = Π bXt
I-K K I-K I

(via some obvious identifications).

It is shown in [20] 3.1.2 that a sober space is the universal
sobrification of every b-dense subspace via its embedding.

THEOREM 1.4. For a family {Xt}x of topological spaces holds
sUi Xi = Hi sXi In other words, the reflection functor s( — ): 2iψ —> @ob
preserves products.

Proof, (i) We observe first the £0-reflector 2kψ -> Zo preserves
products. Recall that the canonical Γ0-identification space Xo of a
space X is defined by the equivalence relation x & y <=> cl{x] = cl{y}.

(ii) Because of (i) we may assume now that every Xi is To.
Since @ob is reflective in 2xψ, Π/ sXt is sober. Thus it suffices to show
that ΐίjXi is — viaΠz^X ί — a 6-dense subspace of Y[I

sXi. Suppose
(Pi)ieIeY[I

sXif then let Πi s iΛ be an open neighborhood of (Q)i
with Ut open in Xt; hence Ui = Xi for all but finitely many indices
ί. Since Ui n Ct Φ 0 for every i e /, we choose some xte UiΠ Cif

then XXι(Xi) esUif] clsXi[Cx). In consequence, Π/ ^ is — via Π/ ̂ x̂  — &
6-dense subspace of Πz sXt>

REMARK 1.5. Let X be an infinite space with co-finite topology.
SX — X consists of the unique element X. Let π: X~^ X be a per-
mutation of X without fixed point. The equalizer of idx and π is
the inclusion of the empty space 0 into X, whereas the equalizer of
idSχ and 8π: SX-+SX is the inclusion of the one-element set {X}CZ^SX.
Thus s( — ):Zop—>&ob does not preserve equalizers, hence is not right
adjoint.

Similarly, by two different constant selfmaps of a two point
indiscrete space it is shown that the X0-reflection functor does not
preserve equalizers.

Let N = {0, 1, 2, } denote the space of natural numbers with
its A-discrete topology, i.e., 0 and {n, n + 1, -- }(neN) are open
in N. Let SN denote the sobrification space; if we designate the
unique element N of SN — N by oo, then 0 and {<*>} \j {n, n + 1, •}
are the open sets of 5JV(cf. [18] Theorem 2). For an arbitrary Γo-
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space X let Nx: = (SN x SX) - ((00} x I ) with the topology induced
from SN x SX (X is to be considered as a subspace of SX).

THEOREM 1.6. For every TQ-space X holds X ^ SNX — Nx, i.e.,
every T0-space is a sobrification remainder.

Proof. It is sufficient to show that SN x SX is tne sobrification
of Nx via its embedding. Thus — by the result of [20] 3.1.2 quoted
above — it suffices to show that Nx is δ-dense in SN x SX. This is
clear from N x I g Nx £

 SN x SX = %N x X), since JV x X is δ-dense
in s(iVxX) by the other implication of [20] (3.1.2).

The statement of (1.6) is analogous to the fact that every com-
pletely regular T2-space is a Stone — Cech — remainder — cf. [13]
(9K6, p. 138). The proof of (1.6) above is, in some sense, even more
simple, since there is no straightforward analogue of (1.4) in the
case of compacts-spaces. Maybe it is also worth noting that in
(1.6) a single space SN of ordinals suffices — other than in [13] (8K5,
p. 138).

Since every Γ0-space is a sobrification remainder of some T0-space
(1.6), it may be of interest to look at the sobrification remainders
of certain distinguished subclasses of the class of all T0-spaces, e.g.,
ϊVspaces. When is Nx (1.6) a T^-space?

LEMMA 1.7. (a) If Y is a TD-space, then SY — Y is sober.
(b) Nx is TD iff X is both sober and TD.

Proof, (a) By (2.1) every element of Y is δ-isolated in SY, hence
Y is δ-open in SY. Thus SY — Y is 6-closed in SY, hence sober.

(b) Suppose Nx is TD9 then N x X = NZ9 since N x X is δ-dense
in SN x SX, hence in Nx (a discrete space has no proper dense subspace).
In consequence, (X = SX and) X is TD. If X is sober and TD9 then
Nx = N x X is TD.

REMARK 1.8. The sobrification process also gives rise to a (new?)
cardinal invariant of a TVspace X. Let

r0X: = X , u0X: = SX - X ,

unX: = d(rnX) - rnX,

rn+1X: = d(unX) - unX.

Here <?(-) denotes the δ-closure of (-) in SX. By [20] 3.1.2

unX s s(rnX) - rnX

and



ON THE SOBRIFICATION REMAINDER SX - X 149

rn+ίX=s(unX)-unX.

We observe that

rn+1 X C rnX and wn+1 X £ unX .

For ^ 0 and, similarly, for every limit number λ we may define

rλX: =

and

uλX: =

There is a smallest cardinal a <i card X such that ra+1 X — raX. Y: —
raX has the property rγ Y = Y. Such Γ0-spaces F may be called
periodic. Y = rαX is the largest 6-closed periodic subspace of X.
a may be called the periodicity index of X. (It is not difficult to
describe a categorical setting in which such an index arises.)

EXAMPLE 1.9. Let R denote the set of real numbers. The "left
topology" on R U {<*>} has 0, R U {°°} and {00} \J {xeR\r < x}(reR)
as its open sets. This space U* is sober. Its 6-dense subset Q of
rational numbers is a periodic space in the induced topology. B* is
easily identified with the sobrification remainder of (R, <;) in its A-
discrete topology: If X is TD9 then SX — X need not be also TD.

2. In [9] J. R. Buchi discusses the problem of "minimal"
representation of a lattice by a "set lattice" ([9] def. 37, Cor. 40); the
case of a minimal representation of a lattice of open sets of a topo-
logical space has been investigated by G. Bruns [8] §§7,8 who has
obtained a characterization of those lattices, which admit such a
minimal representation. Our result (2.1) below in part overlaps with
the results of G. Bruns (cf. [8] §8, Satz 5, p. 13). The theme has
been independently dealt with by D. Drake and W. J. Thron ([12],
in particular Thm. 5.4). In the following we briefly rephrase part
of Bruns' representation theory (and we add some information obtained
in the meantime).

Let (L, <£) denote a complete lattice. A reduced, isomorphic,
topological representation (φ; X, Γ), for short: an r.-i.-t.-representa-
tion of (L, <£) consists of a T0-space (X, Γ) — whose lattice of closed
subspaces is designated by (Γ, Q) — and a lattice-isomorphism
φ: (L, <I) —> (Γ, £ ) . The class of r.-i.-ί-representations receives the
following pre-order: (<p; X, Γ) <̂  (ψ; Y, A) iff there is an embedding e
of (X, Γ) into (Γ, A) such that
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for every aeL. This class contains — if it is nonempty1 — a greatest
element (XL; SL, SΓ) with SL = {a\a "(join-)prime" in L, i.e., =£0 and
whenever a <; sup {au α2} for αlf α2 e L, then α <: a1 or α <Ξ α2} and
SΓ = {sc\ce L] with 5c: = {a e SL \ a <£ c}, and Zχ,(c): = sc for every
ceL. Every r.-i.-t.-representation (9?; X, Γ) of (L, <0 is equivalent
to (i.e., both smaller and greater than) an r.-i.-t.-representation
(α/r; Y, Δ) arising from (and uniquely determined by) a subspace (Y, Δ)
of (SL, SΓ):

Y = {a 6 SLI φ(a) is a point closure clx{x} in X}

such that the canonical inclusion e: (Γ, Δ) ̂  (SL, SΓ) gives ψ(a): =
e^lX^a)]. The subspaces (Y, Δ) of (SL,SΓ) thus obtained are easily
seen to be precisely the b-dense subspaces of (SL, SΓ). Thus an r.-i.-ί.-
representation of (L, ^ ) is an embedding of a 6-dense subspace into
(SL, SΓ); the pre-order for r.-i.-t.-representations becomes the (partial)
order between these inclusions2.

Recall that a point c of a space X is "isolated" iff {c} is open
in X. A space X is TD iff every point of X is b-isolated, i.e., iff
bX is discrete ([7] 4.1, cf. also [27], [18] Bemerkung).

THEOREM 2.1. Let X be a T0-space, then the following conditions
are equivalent:

( i ) X has a smallest b-dense subspace Yγ.
(ii) X has a minimal b-dense subspace Y2.
(iii) X has a b-dense subspace Y3 which satisfies TD.
(iv) X has a b-dense subspace YA consisting of points which are

b-isolated in X.
(v) The set Yδ of all b-isolated points of X is b-dense in X.

If one (hence all) of these conditions is satisfied, then Y1=Y2 — Y3 =

Proof. Note that the 6-topology of a subspace is the induced
6-topology. X is Γo, iff its 6-topology is 2\ (hence T2, etc.). Thus
the questions reduce to minimality of discrete dense subspaces, and
discreteness of minimal dense subspaces.

(i) => (ii): Trivial.
(ii) <=> (iii): A dense subset is minimal-dense, iff it is discrete as

a subspace.
(ii) => (v): Suppose Z is a 2\-space, P, Q Q Z dense, P is the

1 It is nonempty iff every element of L is a join of "(join-)prime" elements [9] p.
157 (Th. 15), cf. [8] pp. 198-199.

2 Note that the inclusions and not the 6-dense subspaces themselves are to be
considered as 'representative' representations, since it may happen that two different
6-dense subspaces are homeomorphic, e.g., Q and j + Q in R* for an irrational number j .
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set of all isolated points of Z, pe P — Q. Since P is discrete, there
is an open set O of Z with O ί i P = {p}. Since Q is dense, there is
some q e Q Π 0. Since Z is T19 there is an open set V £ 0 with
g 6 F , ί ? ? 7 , hence 7 n P = 0 - contradiction. Thus PQQ.

(v) => (iv): Trivial.
(iv) => (i): A dense subspace necessarily contains all isolated

points, hence Y4 = Yi.

Let D(X) denote the lattice of open sets of the space X. From (2.1)
one easily deduces

COROLLARY 2.2. ([8] II p. 18, [30] p. 673). Suppose X and Y
are TD-spaces and let φ: O(X) —> O( Y) be a lattice-isomorphism, then
there is a homeomorphismf: Γ-> X with f'V] = <?(?): O(X) -> Ό(Y).
In particular, a sober space is the sobrification space of at most one
Tjy-subspace.

DEFINITION 2.3. A topological space X is called a 58-space iff X
is To and SX^SY for some TVspace Y.

The above Theorem 2.1 describes the class of 23-spaces X as
those ΪVspaces X whose set of δ-isolated points is 6-dense in X.

Note that the property of a space to be a 3S-space is lattice-
invariant relative to To. Recall that a class & (resp. a "property" ί£)
of topological spaces is called lattice-invariant ("verwandtschaftstreu"
[24] p. 298) relative to a class 8 of spaces with fi£S iff property
& is expressible (relative to 8) in terms of the lattice O(X) of open
sets of the space X with the inclusion order, i.e., iff whenever l e S ,
Γ e S , D(X)^D(Y), then 7 e S . (Remember that Ό(X) = Ό(Y) iff

S-3Γ = 5 Y; clearly, a property expressible in terms of £)(X) is also
expressible in terms of the opposite lattice WL{X) of closed subsets
of X ordered by inclusion).

We give the following explicit description of this fact. Recall
that an element a of a complete lattice L is strongly (join-)irreducible
iff a = supie/^i implies α = ^ for some iel.

THEOREM 2.4. A T0-space X is a %5-space iff its lattice SΆ(X) of
closed subsets enjoys the following property: Every element of 9ί(X)
is the supremum ( = join) of strongly irreducible elements.

Proof. (1) We note that x e X is δ-isolated iff cl{x) is strongly
(join-)irreducible in 5ί(X). (Cf. [30] 2.1(g).)

(2) Suppose that there is an open neighborhood V of some
x e X such that V Π cl{x} does not contain a 6-isolated point, then the



152 RUDOLF-E. HOFFMANN

supremum of all strongly irreducible elements of 9ϊ(JQ which are
smaller than cl{x) is smaller than cl{x} — VeSΆ(X).

In order to avoid any confusion with Bϋchi's theorem quoted by
G. Bruns [8] I, p. 198 we note that the concept of SOΐ-δ-subirreducible
element in a lattice L is usually different from the above concept.

EXAMPLE 2.5. (a) An infinite power Πi S of the Sierpinki space
S ({0,1} with open sets 0 , {1}, {0,1}) is not TD (cf. [7] p. 408, [18]
Thm. 1), but it is a 33-space, since its subspace of 6-isolated points
{(Xi)i\Xi£{0, 1}, {ίel\xt Φ 0} is finite} is δ-dense in Πi S. We note in
passing that this subspace is even A-discrete. A general criterion,
when a space contains a δ-dense A-discrete subspace, will be given
elsewhere ("Topological spaces admitting a dual", in: Categorical
Topology Springer Lecture Notes in Math., 719 (1978), 157-166).

(b) i?* (1.9), does not contain any 6-isolated point, hence iί* is
not the sobrification of any 2^-space. Of course, the same holds for
every T0-space containing a δ-dense periodic subspace. (cf. 1.8).

One readily observes that a point (^)z of a product space Π / ^
is 6-isolated iff it satisfies (1) and (2):

(1) The set K: = {ieI\{Xi} is not closed in XJ is finite.
( 2) For every i e /, &< is δ-isolated in Xt.

For the formulation of (2.6) below we need the following property:
( * ) For every point a; of a space X there is a closed point

yeX(i.e.f cl{y} — y) with yecl{x}.

THEOREM 2.6. Π J - ^ with topological spaces XtΦ 0(iel) is a
^8-space, iff conditions (i) and (ii) are satisfied:

( i ) Every Xt is a %5-space
(ii) K: — {ie I\Xt does not satisfy property (*)} is finite.

Proof. Since a finite product of ΪVspaces is TD9 a finite product
of 33-spaces is a 23-space by (1.2). Suppose ΠIXί is a product of
33-spaces Xt satisfying (*), let {xx) e Πi Xt and let Π / ^ be a neighbor-
hood of (Xi) in Π z ί with [7{ open in Xt; hence L: = {ie I\Uι Φ Xt}
is finite. For every ie L let yt denote a 6-isolated point of Xt con-
tained in Ui Π cl{x%)\ for i e I — L let yt denote a closed point contained
in clx.iXi). By the remark preceding the theorem, (yt)z is a 6-isolated
point of Π i ί contained in (Π/^i) Γl ci^xjfe)/}. — Conditions (i) and
(ii) are easily seen (by similar considerations) to be necessary.

REMARK 2.7. A space X may be called a S3*-space iff it is a 33-
space satisfying condition (*). Since (*) is productive, so is the class
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of 25*-spaces by (2.6), hence it is the greatest productive class of
33-spaces. Of course, every ΓΓspaces is a 33*-space. However, a
33*-space satisfying TD need not be 2\.

LEMMA 2.8. Every finite T0-space is a ^-space. An A-discrete
T0-space is a S3*-spαce iff every element — in terms of the associated
pre-order — has a lower bound which is a minimal element.

Proof. A finite jΓ0-space, and moreover ([8, 4]) an A-discrete To-
space is TD, hence a 23-space.

LEMMA 2.9. The class of 93*-spaces is lattice-invariant relative
to To.

Proof. Property (*) may be rephrased in 8t(JSΓ): Every (nonempty)
irreducible element is minorized by an atom.

REMARK 2.10. We note that the class of sober 35*-spaces is
productive, but not reflective in 2ϊψ, since there are sober spaces
which are not 35-spaces— cf. (2.5b) and [19] 1.3.

REMARK 2.11. A Γ0-space X is called a Jacobson space* ([10]
0.2.8.1) iff its subset of closed points is 6-dense in X — cf. also [24]
5.7 (p. 311). Every Jacobson space is a 33*-space; S is a 93*-space,
but not a Jacobson 1space. The proof of 2.6 shows that a product
of nonempty topological spaces is a Jacobson space iff so is every
coordinate space. Also the characterization Theorem 2.1 has an
analogue; the following conditions (a), (b), (c), (d) are pairwise equi-
valent for a T0-space X:

(a) X is a Jacobson space;
(b) X has a 6-dense subspace which satisfies 2\;
(c) X has a 6-dense subspace consisting of closed points of X;
(d) there is TΓspace Y with SX = SY.
A Jacobson space is a 35-space all of whose 6-isolated points are

closed points, i.e., a 33-space satisfying the property £* of [30] p. 675:
Every strongly irreducible element of St(X) is an atom*. Thus 2.4
with "strongly irreducible" replaced by "atom" characterizes Jacobson
spaces.

3. Since for a space X, bX is uniformizable, i.e., completely
3 We observe that in [10] (0.2.8.1) the requirement of the T0-property is omitted.
4 Recall from [21] p. 374 that To + £** ([30] p. 675) = sober + 2\. Furthermore,

we observe that sober + TD — To + "every irreducible element of ^l(X) is strongly ir-
reducible".
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regular, it is natural to ask: When is bX a compact T2-space? The
answer is essentially based upon a result of M. Hochster [17] (Thm.
I, p. 45).

Recall that a space X is said to be Noetherίan (N. Bourbaki, [5]
II, 4.2, p. 123) iff every ascending chain of open subsets is eventually
stationary, i.e., iff every open subspace is quasi-compact (for a detailed
study see [29]). — A Noetherian sober space is sometimes called a
Zariski space ([15] 3.17, p. 93).

THEOREM 3.1. A topological space X is both Noetherian and
sober iff bX is a compact T2-space.

Proof, (i) Suppose that bX is compact and Hausdorff, and let
V be open in X. Then bV is a closed subspace of bX, hence bV is
quasi-compact. Since V is coarser than bV, V is also quasi-compact.
— Now let C be an irreducible, closed, nonempty subspace of X.
O: = {V Π C\ V open in X, V Π C Φ 0} is a family of 6-closed subsets
of X with the property that every finite subfamily has a nonempty
intersection. Since bC is closed in bX, hence compact, there is an
element xe Γ) D, hence C — cl{x). Since bX is T2, X is To.

(ii) Suppose that X is a Zariski space, then, of course, X is a
"spectral space" in the sense of M. Hochster, and the 6-topology
coincides with M. Hochster's "patch topology" ([17] p. 45, p. 52), thus
[17] (Theorem 1, p. 45) applies.

A space is called quasi-sober [22] (2.1) iff every irreducible,
closed, nonempty subset has at least one generic point (cf. also [20]
2.6).

COROLLARY 3.2. bX is quasi-compact, iff X is a quasi-sober
Noetherian space.

Proof. Suppose bX is quasi-compact. Then the Γ0-identification
space (bX)0 = b(X0) is compact and Γ2, hence Xo is a Zariski space
(3.1), i.e., D(X) = O(JSΓo) is "Noetherian" and X is quasi-sober ([22]
2.2). —The other implication is established by reversing these con-
clusions.

Note that the A-discrete space N above is both Noetherian and
To, but not sober, hence bN is not quasi-compact.

NOTE ADDED IN PROOF. The space SN appearing in 1.6 above
was characterized in [18] Theorem 2. By the aid of this result (and
2.1 above!), we obtain an interesting characterization of the space
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N of natural numbers in in A-discrete topology: Up to a homeo-
morphism N is the only T0-space M which enjoys the following
properties'.

(i) M (is a TD-space which) is not sober.
(ii) Whenever X is a T^space which fails to be TD, then there

exists a continuous surjective map f:X—> SM.

Proof. By 2.1 above, SM cannot be a Γ^-space, since M.Φ SM.
Thus, by [18] Theorem 2, SM is homeomorphic to SN. Now—by 2.1
above—M is either homeomorphic to N or to SN ( = NΌ {°°}) By
(i), N is homeomorphic to M.
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