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TOPOLOGICAL LATTICE ORDERED GROUPS

RicHARD N. BALL

Several types of hulls and completions of lattice ordered
groups have been obtained by algebraic methods. In this
paper is laid some groundwork for the application of topolo-
gical and uniform-space concepts to the same end by setting
forth those links—topological, algebraic and semantic—
between a topological lattice ordered group H and a
topologically dense /-subgroup G.

In section one a convex ~-subgroug of a representable ~/-group
G is proved to be order closed if and only if it is closed with
respect to every Hausdorff ~-topology. In section three the disjunc-
tive formulas which hold in a topological ~-group are proved to be
the same as those which hold in a topologically dense ~-subgroup.
The last section contains the continuous versions of the classical
z-group representation theorems.

The list of contributors to the theory of topological lattice
ordered groups is long; Redfield gives a historical sketch and a
good bibliography in [18]. This investigation makes particularly
heavy use of the work of R. H. Madell, that of Redfield, and the
ongoing work of B. Smarda. But for G. Otis Kenny, whose work
introduced the author to these ideas and who unselfishly participated
in many stimulating discussions, and for Stephen H. McCleary,
whose penetrating comments improved an earlier version, the author
reserves his deepest gratitude.

1. Order aud topological closure. A topology .7~ on a lattice
ordered group G which makes group and lattice operations contin-
uous will be termed an /-topology. (G, .97) is a topological lattice
ordered group or ts-group. Smarda [20] first characterized an /-
topology in terms of the neighborhood filter of the identity.

THEOREM 1.1. If <7 is the neighborhood filter of 1 of the t/-
group (G, .77), then <& satisfies the following conditions.

(a) Z is a normal filter of subsets of G each containing 1.

(b) If Be <#Z them B'e #.

(¢) If Be <# then there is some A€ <& such that A-A C B.

(d) If Be # and if a and b are disjoint members of G then
there is some A€ % with Aa N\ Ab < B.
The metghborhood filter of any ge G 18 Fg = g#. Conversely, if
Z 1s any filter of subsets of G satisfying (a)~(d) then by defining
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the neighborhood filter of each g€ G to be <& g one obtains the unique
z-topology on G having <Z as its meighborhood filter of 1. 7 1is
Hausdorff if and only if N<# = 1.

On account of the preceding theorem we shall often blur the
distinction -between .~ and <&, saying, for example, “let <% be
an /-topology,” or “the ts/-group (G, <#).”

A subset X of an s-group G is convex if x, < g < 2, and x,, x, €
X imply geX. X~ designates {geGlx, <9 =2, 2, 2,€ X}, the
convexification of X in G. A subset X of an s-group G is order
closed if ge X whenever SC X and g=VS or g=VS. The
smallest order closed subset of G containing an arbitrary subset X
is designated ocly(X) or simply ocl(X). One may describe ocl (X)
inductively as follows. Let X, be X, let X;, be {geG|lg=AS, S<
X,} for v even, let X;,, be {geGlg = AS,S< X;} for v odd, and
let X; = U {X;|0 <7} for limit ordinals v. Then ocl (X)=X,, where
7 is some ordinal such that X, = X,,, = X,,,. The reader should
be aware that the order closure operator is never topological in the
sense of Kuratowski since ocl{a, b} = {a, b, a \Vb, a A b} # {a, b} =
ocl {a} U ocl {6}. However, the order closure operator may be topolo-
gical on sublattices or on convex sublattices, as we shall see. In
any case, a better understanding of the interplay between order
and topological closure must be a central issue in the theory of
ts-groups.

The next lemma has a straightforward inductive proof.

LeMMA 1.2. If A and B are subsets and g an element of an
Z-group, then

(a) ocl(g4) = g-ocl(4),

(b) ocl (A7) = ocl (4)71,

(e) ocl (A)-ocl (B) C ocl (AB),

(d) ocl(A)Vocl (B) < ocl(AV B) and dually.

COROLLARY 1.3. If A is a subgroup, a normal subgroup, or a
sublattice of some /-group, then so is ocl (4).

The order closure of a convex set need not be convex. However,
the order closure of a convex sublattice is a convex sublattice.

PrROPOSITION 1.4. Suppose G is an Z-subgroup of the -group
H and that X is a convex sublattice of G. Then ocly(X) is a
convex sublattice of ocly(G).

Proof. 1t is clear that each G, and each X, is a sublattice of
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H. 1t is necessary only to show that if X, is convex in G, then
X, is convex in Gyy,. If Va2,=Vg:=Vu for z,2,¢X, and
gs € Gy, it follows that for particular «, g and 4, z, < .V (9,A 2,) <
%,V ®;. Since all of these objects must be in X;, we have Vg,=V
(@, V (9s A 25) € Xy 140

The topological closure operator, written ¢l (X) for X a subset
of a ts-group, satisfies the analogues of the previous two proposi-
tions. But a lemma is necessary first.

LEMMA 1.5. Suppose X is a sublattice of the Hausdorff t-group
H. For h, h,ccl(X) the following are equivalent:

(@) Ry = hy.

(b) For any meighborhoods N, and N, of h, and h, respectively
there s a meighborhood V of h, with V & N, such that for any
2, € VN X there is some x,€ N, N X with 2, = x,.

(¢) For any neighborhoods N, and N, of h, and h, respectively
there is some meighborhood V of h, with V & N, such that for any
2,€ VN X there is some x,€ N, X with x, = x,.

(d) For any meighborhoods N, and N, of h, and h, respectively
there are elements x,€ N, X and x,€ N, N X such that z, = x,.

Proof. (a) implies (b). Suppose N, and N, are neighborhoods
of h, and h, respectively, and that s, = h,. By the continuity of A
there are neighborhoods V and U of h, and %, such that VA UZN,
and VS N, USN,. Fix e UN X. Then for any 2,¢ VN X let
z,=x, AxeN,N X. (a) implies (c) is similar, while (b) implies (d)
and (c) implies (d) are clear. Finally, to show that (d) implies (a),
consider neighborhoods A and B of h, A h, and h, respectively. Let
N, and N, be neighborhoods of %, and h, such that NNAN,Z A
and N, & B. If 2,e NNNX and x,€ N,N X satisfy x, =, then
x, =, N2,€ AN B = ¢. Since H is Hausdorft, h, = h, A k,.

An easy refinement of the preceding argument establishes this
corollary.

COROLLARY 1.6. Suppose X s a sublattice of the Hausdorff
ts-group H and that h, h, hyccl (X). Then h,<h,<h, if and only
if for all meighborhoods N,, N, and N, of h, h, and h, respectively,
there are elements x;€ XN N, with x, < 4, = ;. Furthermore, if

one or more of the h’s happen to be in X, the x, corresponding to
that h, may be chosen to be h,.

The positive cone of an s-group G, written G*, is {geG|g = 1}.
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COROLLARY 1.7. For an Z-subgroup G of the Hausdorff tz-group
H, cl (Gt = cl (GY).

The first assertion of the next proposition is due to Smarda
([20], Theorem 3.5), while the second assertion slightly generalizes
a result of Madell ([16], Proposition 4). A prime subgroup is a
convex <-subgroup which contains at least one element of each
disjoint pair of elements.

ProPOSITION 1.8. Suppose (H, &%) is a tz-group. If X is a
subgroup, a normal subgroup, or a sublattice then so is cl(X). If
G 1s a sublattice of H and X is a convex sublattice of G then cl (X)
s a convex sublattice of cl(G). If X is a prime subgroup of G
then cl (X) is a prime subgroup of cl(G).

Proof. The first statement is a direct result of the continuity
of the operations. Suppose that X is a convex sublattice of the
sublattice G of H and that y,<h=<y, for ¥, ¥,ccl(X) and hecl (G).
For U an arbitrary neighborhood of % find neighborhoods Y and V
of y, and % such that YAV & U. By Lemma 1.5 there is a
neighborhood ‘W of ¥, such that for any g€ WN G there is some
9'e VNG with g < ¢’. Finally, choose neighborhoods N, and N, of
9, and y, respectively such that N, AN, S W. Letting z,e NNNX
and 2,e N,NYNX we get x, Az,¢ WNX. Hence there exists
9V NG with 2, Az, < g, Then 2, A2, < g,\%, < ,, which implies
g, N2, UN X. That is, hecl (X). (The part of Lemma 1.5 used
in this argument does not require <#Z to be Hausdorff.) Finally,
suppose X is a prime subgroup of G and that h, and h, are disjoint
members of ¢l (@). If h,¢cl(X) there must be a neighborhood N,
of h, disjoint from X. If N, is any neighborhood of %, then, since
(N,N G A (N,N G) is a neighborhood of 1 in G, there are elements
9,¢N,NG and ¢g,e N,N G with g, Ag,=1. This forces g,€¢ X and
h,eel (X).

Two types of ~-topologies assume particular importance in what
follows. As 7-topology <7 is said to be conver if <& has a base
of convex sets and order closed if <% has a base of order closed
sets. The next proposition can be easily established using Lemma
1.2.

PROPOSITION 1.9. Given an /-topology <& let <Z~ be the filter
generated by sets B~ for Be <& and let ocl (<Z) be the filter gener-
ated by sets ocl (B) for Be<#. Then <F~ is the finest convex
7-topology coarser tham & and ocl (<Z) is the finest order closed
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z-topology coarser than <7 .

Redfield [18] first noticed that if <Z is a filter having a base
of convex sets then requirement (d) of Theorem 1.1 could be replaced
by the following weaker condition.

(d" If Be.<Z then there is some A€ <z with ANAC B.

When verifying that a filter of subsets is an ~-topology we shall
use (d’) whenever it is clear that the filter has a base of convex
sets.

Not every <-topology is convex, of course, but a rather intimate
relationship between <& and .<#~ exists. For example, <% is
Hausdorff if and only if .22~ is Hausdorff. These results are due
to Smarda [19].

PropoSITION 1.10. For any <-topology <& on an s-group G,
NB =N.B".

Proof. Consider 1 < xe€ 1.2~ and an arbitrary Be .. Since
2 A1l =1 there must be some Aec.<% with Ax NA < B. But xe A~
implies « < a for some aeA. Therefore x=a2xNacAxNAC B.
That is, xe N.<Z.

An /-ideal is a normal convex s-subgroup of an s-group. /-
ideals are the kernels of /-homomorphisms.

COROLLARY 1.11. If <Z 1is any <-topology on the Z-group G
then N.<Z 1s an /-ideal of G.

The next proposition provides a link between topological and
order closures of an <-subgroup. It implies that for G an /-subgroup
of the Hausdorff ts/-group H, cl(G) is an /-subgroup of ocl (G™).
This rules out, for example, the possibility that cl(G) ever be a
lex extension of G.

PROPOSITION 1.12. Suppose G is an 7-subgroup of the Hausdorff
tz-group (H, &Z). Then for any hecl(G) and any mneighborhood N
of h,h=V{hAglgeNNG} = A{hVglge NN G} in cl (Q).

Proof. Suppose that for some keel (G), k=hAg for all ge NN
G. Given neighborhoods A and B of & and k respectively let C be
a neighborhood of & satisfying CZ A and CACZ A. Choosing
keB and gcCNNNG gives k=gAheA. If the X of Lemma
1.5(d) is taken to be H we get &k = h.
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The next proposition implies, among other things, that cl (G) is
never a lex extension of G.

COROLLARY 1.13. If G s a subgroup of the Hausdorff tz-group
H then cl (@) is an 7-subgroup of ocl (G~).

One of the reasons for studying order closed ~/-topologies on an
z-subgroup G of a ts/-group H is the particularly close connection
between G and cl(G) which results in this case. To say that G is
order dense in H is to say that for every 1 < he H there is some
9€G such that 1 < g <h. It is well known that this condition
implies that suprema and infima in G and H agree.

PROPOSITION 1.14. Suppose G is an 7-subgroup of the Hausdorff
tr-group (H, ). If <& is an order closed s-topology on G, then
G is order demse in cl (G).

Proof. Consider 1 < heecl(@). Let J be some neighborhood of
h such that 1¢J and J N G is order closed in G. Let S be JN G7,
a nonempty set by Corollary 1.7. There must be some ge G with
1<g=<8, for otherwise AS =1, contrary to assumption. By
Corollary 1.6, g < h.

The point of the following example is that, in the notation of
Proposition 1.14, <Z may be order closed on cl(G) without being
order closed on G. Let H be RE, the s/-group of all real-valued func-
tions on the real numbers R with componentwise group and lattice
operations (cardinal order). Let G be C(R) = {h€ H|h continuous}.
Let <Z be the Hausdorff ~-topology on H generated by the prime
subgroups H, = {he H|(r)h = 0} for re¢ R. The reader may verify
that <Z is not order closed on G but is order closed on H, which
is the closure of G with respect to <#. An interesting open question
is whether <% must be order closed on el (@) whenever <7 is order
closed on G.

The following proposition is a slight generalization of a result
of Madell ([16], Theorem 9).

THEOREM 1.15. An order closed comvex sublattice X of an /-
group G 1is closed with respect to any Hausdorff <-topology on G.

Proof. Suppose G is endowed with some Hausdorff ~-topology
and yecl (X).
Case 1. y ==z, for some z,€ X. Then y,c(cl(X)Va)Ay <
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cl (X Va)Ay)=cl(K), where K={xe X|x, <2z = y}. Now y=VK,
for if K<z <y, then {ge€G|g £ 2} is an open subset of G contain-
ing y disjoint from K. Here we make use of the fact that {ge
Glg <2} is closed, being the inverse image of the closed set. {z}
under the continuous map ¢ — ¢ V2. Therefore yec X.

Case 2. y < x, for some x,€ X. Similar to Case 1.

Case 8. y is unrelated to any member of X. Fix x,€ X. Since
el (X) is a sublattice, ¥\, and y A2, are in cl(X ). By Cases 1
and 2, yVa, and y Az, are in X. By the convexity of X, ye X.

Is any order closed ~-subgroup X of the s-group G closed with
respect to every Hausdorff /-topology on G? An affirmative answer
to this question would have interesting repercussions and makes the
relaxation of the convexity hypotheses of Theorem 1.15 an important
open question.

The remainder of this section is devoted to proving several
near converses to Theorem 1.15 and to exploring the consequences.
The utility of these partial converses lends importance to the search
for a full converse. In order to prove any converse one must
construet, for a given sublattice X and given y = VS for SC X,
a Hausdorff s-topology <Z with respect to which yeel (X). The
next lemma provides a hint as to how this can be done.

A subset T € G* is a filter if ¢, f,e T implies ¢, At,e T and if
g=teT implies ge T. If TS G* has only the first property then
we often blur the distinction between T and the filter it generates,
{geGlg =t for some teT}. For example, by 7™ is meant the
filter {§eGlg = t* some te T}, n a positive integer. If T is a filter
on G* let us agree to term an ~-topology <& T-coarse if every
Be <Z intersects T; that is, if leecl(T). Several points deserve
mention. First, if <Z is T-coarse then <% is also ¢g~'T"g-coarse for
each g € G and each positive integer n. Secondly, if <& is Hausdorff
and T-coarse then A T = 1. Thirdly, if & is T-coarse and ¥ is
a coarser /-topology than <& then % is also T-coarse.

PrROPOSITION 1.16. Suppose X is a sublattice of the ts-group
(H, Z) and that S ={xc X|x <y} 6. Then yeel(S) if and only
if F 1s yS~'-coarse.

Proof. 2 is yS'-coarse if and only if 1ecl(y¥S™) if and only
if yeel(S).

Given a sublattice X and y=VY S for some S X, let T=yS™"
To form a Hausdorff convex -/-topology <#Z which is T-coarse we
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need only decide, for each n» and g, which member of ¢~'T"g to
include in each Be <. But first an observation which plays a
technical role in the proof. A subset FF < G is wupper directed if
for any f, f,€ F there is some f,€ F with f; = f,, fz.

LEMMA 1.17. Suppose g = V F for some upper directed subset
F of the z-group G. Then 9" = V{f"|fe F}.

Proof. ¢* = V{filfie F}-V{f:lf;e F} = V{f.f:lfic F}
= V{W'fs =2 fu fus s FY .

Conrad attributes the archimedean case of the next corollary to
Bernau [5]. An ~s-group is 7representable if its minimal prime
subgroups are normal.

COROLLARY 1.18. An /-group G is representable if and only
if FSGand g=VF imply g" = V{f"|feF}.

Proof. Suppose G is representable, FF S G, and g = Y F. Since
F'={fiVfiV---NVf.|fie F} is upper directed, ¢g" = V{f"|fe F'}.
But if G is representable then (f,V/foV- -V )" = )"V ({D)"V---
V (fi)", so g* = V{f*|feF}.

THEOREM 1.19. If T < G* is a normal filter on the represent-
able z-group G and AT =1, then there is a convex Hausdorf
z-topololy <& which is T-coarse.

Proof. The reader should note that each 7™ is a normal filter,
that AT* =1, and that T2 T*2 T*2.--. For each map f: N>G*
such that (n)feT" define B;={zeGllz| = V)fVEQFfV---Vn)Ff
some n € N}. Let .<# be the filter generated by all such B,’s. We
claim that <& is a Hausdorff ~-topology. Note that <# is convex
and T-coarse by definition.

(a) <# is a filter since, given f: N— G* and k: N — G* with
(n)feT" and (n)ke T we have B, B,2 B, where (n)h = (n)f
A@nk.

(b) Clearly B;* = B; and B;V B; = B; N\ B; = B;.

(¢) Given B;c .<# define k: N— G so that (n)ke T satisfies
(EX=Z@2n)fe T*™. Then [DEV @KV --- V()] =((Q)k)?V (2)k)*V - --
V(mk?:=@fVMA@SfV---Vven)f=QfVE@rVv---Ven)f. There-
fore B,-B, < B;.

(d) To show <& Hausdorff consider 1 < 2e€G. Define 1)fe T
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so that (1)f Z x, possible since A T =1. Define (2)f € T* so that
D) fV(2)f £ x, possible since (1)f = A{t\V(Q)f|te T?. The function
f defined by proceeding in this fashion gives B;e <% with z¢ B;.

COROLLARY 1.20. For a convex sublattice X of an abelian /-
group G the following are equivalent.

(a) X s order closed.

(b) X s closed with respect to every Hausdorff <-topology.

(¢) X is closed with respect to every convex Hausdorff -topol-
0gy.

If the filter T of Theorem 1.19 has the property that 7° =T
then it is the cone of a compatible tight Riesz order (CTRO), and
“ is generated by sets of the form [t7),t] = {geG|t* < g < t}.
One may view such topologies as the most direct nontrivial generali-
zation to ~/-groups of the interval topology on totally ordered
groups. In these terms the topology constructed in Theorem 1.19
may be viewed as the next most direct such generalization. Further-
more, the proof of Corollary 1.20 asserts that if a convex sublattice
of an abelian ~s-group fails to be closed with respect to any
Hausdorff ~-topology then it fails to be closed with respect to a
topology of the sort used in Theorem 1.19. This fact argues in
favor of the existence of many such topologies.

The preceding theorem can also be gotten for certain important
types of nonnormal filters 7. Let us agree to say that a filter T
on the representable /-group G converges strongly to 1 if for every
g > 1 there is a normal prime subgroup P omitting g such that
A{Pt|te T} = P.

THEOREM 1.21. If G is representable and T is a filter on G
which converges strongly to 1 then there is a convex Hausdorff --
topology <& which s T-coarse.

Proof. For each f: N X G — G* such that (n, g)f € g T"g define
B; = {z]lz| < V(F)f for F a finite subset of N X G} and define <%
to be the filter generated by all such B,’s. As before, <% is a
T-coarse convex <-topology. To show .2 Hausdorff consider 1<x e
G and let P be the normal prime subgroup omitting 2 such that
P= A{Pt|teT}. It follows that P= A {Pg~t"g|tc T} for every
neN and geG. Define (n, g)f to be any member of g—*T"g such
that P(n, 9)f < Px. Then for any finite subset FS N x G, P(V
(F)f) < Px. Hence V (F)f Z2x. Therefore x¢ B, and <% is
Hausdorft.
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LEeMMA 1.22. If C is any convex -subgroup of the representable
s-group G and if 1 < xzeoecl(C), then for every y > 1 there is a
normal prime P omitting y such that Pe = Px for some ceC,
c = x.

Proof. If yeC* then the representability of G ensures the
existence of some normal prime subgroup P omitting ¥ and there-
fore containing C. But since C** is order closed, xeC** and
xAyYy=1 so xeP. In this case Pc = Px =P for any ceC. If
y¢C* one may assume yecC; otherwise replace ¥y with y Ac¢ for
some ¢ e C such that y A¢>1. The fact that aycocl (C) and zy>x
implies that there is some ¢e C with ¢ <xzy but ¢ £z, for otherwise
2y = Vi{ieAzyleeC}. The representability of G yields a normal
prime P omitting ¥ such that Pc> Px. Therefore P(c A\ x) = Px.

COROLLARY 1.23. If C is a convex /-subgroup of the represent-
able z-group G, and if x, %, ++-, X, €0cl (C), then there is a convex
Housdorff 7-topology <& such that each x; is in cl (C).

Proof. Let = |z, V]| V---V]x,|€oel (C). Let T={xc'ec=<
z,ceC}. T strongly converges to 1 by the previous lemma.

COROLLARY 1.24. A convex <-subgroup of the representable /-
group G is order closed if and only if it is closed with respect to
every convex Hausdorff /-topology.

2. Prime topologies. The central role of prime subgroups in
the theory of lattice ordered groups makes the subject of the
/-topologies generated by primes unavoidable. In particular, the
topologies of [15] and [6] are of these types. For P a prime
subgroup of the s-group G let us call a set of the form {g € G|Pa<
Pg < Pb} a P-interval and write it (Pa, Pb). Such a set is the
inverse image under the natural map of an interval of the chain of
cosets of P.

PrROPOSITION 2.1. A prime subgroup P of the ts-group G s
topologically closed if and only +if every P interval is an open set.

Proof. Suppose P is a topologically closed prime subgroup of
G. Then {x|Pr = Pb} is also closed, being the inverse image of
the closed set Pb under the continuous map z — x Ab. Likewise
{x|Px < Pa} is closed. Therefore (Pa, Pb) is open. Conversely, if
every P-interval is open then for any 1 < ¢ P the open set (P, Px?
contains x and is disjoint from P. Hence P is topologically closed.
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We shall most often use the preceding proposition in the follow-
ing form: a prime subgroup P of the {/-group (G, <) is topologi-
cally closed if and only if (Pa™*, Pa)e £ for all aecG"™ — P. The
next result is due to Madell ([16], Proposition 7).

COROLLARY 2.2. Any prime properly containing a topologically
closed prime subgroup is itself both closed and open.

Proof. If @ is a convex /-subgroup properly containing the
closed prime P, then @ = U{(Pq', Pg)|qe @" — P}. Therefore Q,
along with each coset, is open and hence closed.

PROPOSITION 2.3. Suppose G is an /-subgroup of the ts-group
H. The topologically closed primes of cl (@) are in one-to-one order
preserving correspondence with those of G by means of the intersec-
tion map. The inverse of this map is P— cl (P).

Proof. cl(P) is a topologically closed prime subgroup of cl(G)
whenever P is a prime subgroup of G. If P is closed, then ¢l (P)N
G = P. Suppose @ is a topologically closed prime subgroup of
¢l (G). Then Q@ NG is a topologically closed prime subgroup of G
such that cl (@ N G) £ Q. Equality must hold, since otherwise @ —
cl (@ N'G) would be a nonempty open subset of ¢l (G) which would
have to intersect G. Therefore ¢l (@ N G) = Q.

Proposition 2.3 should not be construed as saying that the
topologically closed primes of cl (@) intersect to 1 just because those
of G do. For example, take G to be the s-group of continuous
real-valued functions on the real numbers R having bounded
support. Let .<Z Dbe the Hausdorff ~/-topology generated by sets
B, = {f xe S f idr < 1/n7{ for positive integers n. Observe that
every prime soilbgroup of G is contained in some maximal prime
subgroup G, = {g€ G|(r)g = 0}, and that ¢l (G,) = G with respect to
,. Let <&, be generated by finite intersections of the prime
subgroups G,, re R. Let H be the cardinal product G G and let
< be the product of topologies <7, and <%,. Think of G s-embedded
in H as the diagonal {(g, 9)|g€G}. It is not difficult to show that
G is dense in H; however, the intersection of the topologically closed
primes of H is G&@ 1, while in G this intersection is 1.

If I is a set of prime subgroups of an <s-group G, we shall
write & (I") to mean the filter generated by finite intersections of
the primes from I" and write <Z(I") to mean the filter generated
by finite intersections of the P-intervals (Pa™t, Pa), Pe I, ae€ G"—P.
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The reader should realize that <#(I") and < (I") may coincide.

LemMA 2.4. &) or F ") is an s-topology if and only if it
18 a mormal filter. Either topology is Hausdorff if and only if
Nnlr=1.

Proof. We prove parts (b) and (¢) of Theorem 1.1 for <z (I).

(b) Given Pel and aceG"—P, let B= (Pa*, Pa) and consider
A = ((a™*Pa)a™, (e *Pa)a) N ((aPaa™?, (aPa~*)a)e <Z(I"). Then zc A
implies (¢ 'Pa)a™ < (o 'Pa)x or Px™* < Pa. Similarly Pa™' < Px™'.
That is, x7'e B so A < B™.

(¢) Given Pel and aeG"' — P, let B= (Pa*, Pa). We seek
AeZ (') such that A-AS B. If B= P then let A= P. If not,
there must be some b between 1 and o with P < Pb < Pa. In
fact, one may assume that Pa*' < Pb* < P < Pb< Pa. Define

A, = (Pb™, Pb), A, = ((b"*Pb)a™"b, (b"'Pb)ba),
A, = (bPbMba™, (bPb™Had™) ,

and A=A NANAecZ ). If x and y are in A, then Pxy<Pby
since x € A,. But in this case Pby < Pa since (b7'Pb)y < (b7'Pb)b™'a
because y € 4,. Therefore Pxy < Pa. Similarly Pxy > Pa™. There-
fore A-A < B.

Whenever they are normal filters, <Z(I") and & (I") will be
termed the coarse and fine prime topologies of I', respectively.
& (') is a normal filter if and only if {P a prime |[P2Q¢c [} is a
normal set of primes. <# (") is a normal filter if and only if for
every Pel',ge @G, and a € G* — ¢g7'Pg there are primes P, P, ---, P,
in I’ and elements a,€ G* — P, such that N (Pa;*, Pa,)< (97 Pg)a™?,
(97'Pg)a). An important special case of the latter condition is the
following. Let G be a transitive ~-group of order preserving
permutations of the chain 2 and let 4 be a subset of 2 dense in its
interval topology. If I' is the set of stabilizers {G,|d € 4}, then
& (I") is a normal filter. This special case is sufficiently important
to merit the terminology coarse and fine stabilizer topologies for
Z (') and € (I") respectively, where I' = {G;|7€ 2}. Unless other-
wise specified, we shall always assume that /-permutation groups
are topologized by their coarse stabilizer topologies.

Suppose I' is a normal set of prime subgroups of the ~/-group
G. Let I''I") be {P a prime |P is closed with respect to
FB (&)} and let I', = {Q a regular prime @ 2 Pe['}. It is not
difficult to establish that & (") = ZFI") = & T",), that T, <
ZI < &™), and that I" and I are closed with respect to
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intersections of chains. With a little more effort one may also
show that each of < (") and & (I') is order closed if and only if
each Pe I is order closed.

Let I' be the set of order closed prime subgroups of the -
group G. The s-topology <& (I') is called the a-topology on G. The
a-topology is Hausdorff if and only if G is completely distributive;
that is, when NI" = 1. It was Madell [15] who first delineated the
attributes of this important convex order closed ~-topology. The
next proposition is Theorem 4 of [15].

PROPOSITION 2.5. The a-topology is coarser than every Hausdorff
z-topology. In particular, any completely distributive 7-group has
a unique coarsest Hausdorff «-topology.

Proof. If P is an order closed prime and <% is a Hausdorff
/-topology then P is topologically closed. Therefore (Pa™*, Pa)c 7
for all ae Gt — P. That is, <#(I") € &%, where [’ is the set of
order closed primes.

If {G:|ne 4} is a set of s-groups, letIIG, = {f: 4— UG,|(\)f e
G, all e} with componentwise operations and let 3G, = {f¢e
IIG,|(\)f = 1 except for finitely many \}.

PROPOSITION 2.6. Suppose {Gi|n€ 4} is a set of 7-groups. The
a-topology on IIG, s the product of the a-topologies on each G,;, and
the a-topology on XG,; is imherited from the a-topology on IIG,.

Proof. The proof is an immediate consequence of the fact that
the order closed primes of IIG; and XY@, are precisely those of the
form (Pr;', where P, is an order closed prime of G; and =, is
the projection map from the product onto G,.

The importance of the a-topology derives in part from the
importance of completely distributive ~-groups. For example, the
targets of three major representation theorems, namely A(S), V,
and cardinal products of totally ordered groups, are all completely
distributive. Also, the a-topology on a totally ordered s-group is
the interval topology, the only nontrivial convex Hausdorff «-
topology. In an /-permutation group, the a-topology and the coarse
stabilizer topology coincide whenever stabilizers are order closed.

Two questions arise naturally from Proposition 2.5. Can a non
completely distributive ~#-group have a coarsest Hausdorff ~-topology?
Is the a-topology the finest ~-topology coarser than every Hausdorff
7-topology? It is possible to decide these matters in the represent-
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able case. We remind the reader that every group topology is
regular; that is, every neighborhood of g€ G contains a closed
neighborhood of g.

THEOREM 2.7. Suppose G is a representable s-group and that
I' is the set of order closed primes of G. Then any /-topology &
coarser than every Hausdorff <-topology must be coarser than & (I).

Proof. Consider an arbitrary neighborhood De <. We may
assume D to be closed with respect to &7. Let 4 be the set of all
prime subgroups of G. By assumption, & is coarser than = (4)
so that there must be primes P, P, ---, P, with D2 N P,.. Let X
be the closure of N P, with respect to <. By Propositions 1.8
and 1.28, X is an order closed convex ~-subgroup contained in D.
But this implies that Nocl(P,) =ocl(NP)S X< D. The upshot
of all this is that De & ().

COROLLARY 2.8. A representable s-group has a coarsest
Hausdorfl 2-topology if and only if it is completely distributive.

In some cases Theorem 2.7 may be the best result one ecan
expect. If I' is the set of order closed prime subgroups of G, then
NI is called the distributive radical of G, written D(G). The lex
product of an s-group G with the real numbers R, written G % R,
is the group product G X R ordered by (g, n) < (g,, m) if n < m or
n=m and g, < ¢,. Notice that the only proper order closed prime
subgroups of G ; R are those of the form P x 0, where P is an
order closed prime subgroup of G.

ProPOSITION 2.9. Suppose G is an /-group such that D(G)=G,
that H is G X R, and that I' is {G x 0). Then, on H, =) is
strictly finer than the a-topology <Z(I"), and & (I') is the finest
z-topology coarser than every Hausdorff <-topology.

Proof. Consider an arbitrary Hausdorff ~-topology <2 on H.
Find disjoint ¢,, g,€ G with neither g, nor g, the identity. Since
% is Hausdorff there must be some Be <Z containing neither h,=
(9, 0) nor h, = (g, 0). Since h, A h, =1 there must be an Ac. %
such that Ak, A Ah, & B and A = A™'. This forces A £ G x 0, since
(g, r)e A with > 0 implies h,, h,e B. That is, G X 0€ <& so % is
finer than & (I).

Suppose T is a filter on G* with AT =1 and that P is an
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order closed prime subgroup. Since the natural map preserves
infima, P = A{Pt|te T}. This observation shows that the a-topology
on any <-group is T-coarse for every filter T such that A T = 1.

PROPOSITION 2.10. Any sublattice of an Z-group which s closed
with respect to the a-topology is order closed. A convexr sublattice
of a completely distributive z-group is order closed if and only if
it is closed with respect to the a-topology.

It is interesting to observe that the representable and completely
distributive cases of a result of Byrd and Lloyd [4] may be proved
by topological means.

PrOPOSITION 2.11. In a representable or completely distributive
z-group G, any convex 7-subgroun containing an order closed prime
subgroup s itself order closed and prime.

Proof. Suppose @ is a convex s-subgroup properly containing
the order closed prime subgroup P of G. By Theorem 1.14 P is
closed with respect to any Hausdorff ~-topology. By Corollary 2.2,
Q is also closed with respect to every Hausdorff ~-topology. By
either Corollary 1.28 or Proposition 2.10 @ is order closed.

We close this section by remarking that results 1.18 and 1.20
can also be proven by producing Hausdorff prime topologies with
the desired properties. This seems to indicate that there is a
plenitude of such topologies in existence.

3. Semantic links between G and cl(G). Suppose G is an
s-subgroup of the t/-group (H, <#). A strong semantic link exists
between G and ¢l (G). Let ¢, ¢, -, c, be constants from H, and
let W,, W,, ---, W, be words built up from the ¢,’s and from vari-
ables v, v,, - -+, v, using group and lattice operations. Let us agree
to term any formula obtained by joining the atomic formulas “W,=
1” by conjunction and disjunction a disjunctive formula. If + is a
formula having free variables v, v,, ---, ¥, we shall abbreviate its
universal closure Vv, v, -+, v,or by Vo, Finally, (X) is the
z-subgroup of H generated by a subset X of H.

THEOREM 3.1. Suppose G is an -subgroup of the Hausdorf
tz-group H. Let + be any disjunctive formula mentioning constants
Ciy €y vy Cp i H, Then (G, e, Cy -+, Coy =V if and only if
el (@), €y, sy ==+, Cpy = V.

Proof. Since implication from right to left is clear, suppose
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el (@), ey €y +++, €y E V. We may assume + is of the form
“W,=1lor Wy=1o0r --- or W, =1." Thus we are assuming we
have elements h, € {cl(G), ¢, ¢,, +--, ¢,.» such that W;(h,, h,, -+, h,)=1
for 1 < j <n. The continuity of the operations now assures the
existence for each 7 of a neighborhood J; of %, such that 1¢ W/,
gy v, ) for 1< j<n. The continuity of the operations also
implies that (G, e, ¢, ---, ¢, is topdlogically dense in <cl(G), ¢,
Cy ***y Cmy. Therefore, choosing ¢g,€ GNJ;,, one obtains 1+ W;g,
gy -+, g for 1 < j <n. That is, <G, ¢, ¢y -+, Cny E YUr.

COROLLARY 3.2. If G is any --subgroup of the Hausdorff ts-
group H, then G and cl (G) generate the same variety of Z-groups.
Moreover, G is totally ordered if and only if cl (@) is.

Proof. @G is totally ordered if and only if G & Vz, y((x Vy)x ' =
Lor xVvVyy'=1).

Theorem 3.1 provides a simple proof of the representable and
completely distributive cases of a (generalization of a) result due
to Bernau [3].

PROPOSITION 3.3. If G is an (convex) /-subgroup of the (repre-
sentable or) completely distributive o-group H, then G and ocl (@)
satisfy the same disjunctive formulas and therefore gemerate the
same varieties of £-groups.

Proof. Suppose ocl(G) = (b, by ---, h,) for the disjunctive
formula 4 and h,, hy, ---, h,€0cl (G). By results 1.23 and 2.10 there
is a Hausdorff ~-topology on H with respect to which &, h,, ---, h;, €
cl (G). Theorem 3.1 now implies G = V.

The centralizer of a subset X of an ~-group G is the ~-subgroup
{9eGlgeg™ e =1, xe X}. It follows from the next result that
centralizers are closed with respect to any Hausdorff ~-topology
and therefore, in completely distributive fs/-groups at least, order
closed. In particular, if G is a periodic ~-subgroup of A(S) (defined
in [9]) and if A(S) is endowed with any Hausdorff /-topology then
¢l (@) and ocl (@) are periodic with the same period as G.

COROLLARY 3.4. If C is maximal among those (convex) -sub-
groups of the (representable or) completely distributive -group H
which satisfy a fived set of disjunctive formulas then C is order
closed.
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Just as the rationals may be completed by Dedekind cuts to
yield the real numbers, so an arbitrary <-group may be completed
by cuts to yield its Dedekind-MacNeille completion ([8]). For X a
subset of the lattice G let L(X) ={geGlg < X} and UX) ={ge
Glg = X}. A subset X of a lattice G is a cut if ¢ # X + G and
LU(X) = X. Notice that L(g) is a cut for each geG. For cuts
X, and ‘X, we define X, <X, if X, € X, and X,-X, = LUX,X,).
These conventions make the set of cuts of a lattice into a lattice
and the set of cuts of an ~-group into a partially ordered semigroup
with identity L(1). G” designates the ~-group of units of this
semigroup; specifically, G® = {X|X is a cut and X-L(X™") = L(1)}.
It is light work to prove that G is an ~/-group in which G is
7-embedded via g — L(g). One may also show ([1]) that for any
/-group H having G as an <-subgroup there is an /-monomorphism
0: H— G? with ¢ the identity on G if and only if every he H'
satisfies h = V(L) N G) = A (UR) N G).

COROLLARY 3.5. If G is a completely distributive /-group then
G and GP satisfy the same disjunctive formulas.

Proof. It is clear that ocl (G) in G? is G”.
The following corollary is part of a result due to Bernau ([3]).

COROLLARY 3.6. If G is a completely distributive /-group then
G and its lateral completion Gt satisfy the same disjunctive for-
mulas.

Proof. It is clear that ocl (G) in G* is G~.

4. Continuous representation theorems. When can a repre-
sentation of the s-subgroup G of the ts/-group H be extended to a
continuous representation of cl(G)? The next result provides a
necessary condition for such a representation since the targets of
the classical representation theorems are completely distributive.

PROPOSITION 4.1. Suppose 6 is an Z-monomorphism from the
tz-group Giinto the completely distributive s-group H endowed with
some Hausdorff «-topology. If 6 is continuous then the topologically
closed prime subgrouns of G must intersect to 1.

Proof. Under the circumstances 6 must be continuous with
respect to the a-topology on H. Hence (P)d™ is a topologically
closed prime subgroup of G for each order closed prime subgroup
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P of H.

It is necessary to introduce some ideas from <-permutation
group theory. These concepts are due to Holland in the main [13],
though the most comprehensive exposition and the terminology may
be found in [9]. Suppose G is a transitive <-group of order
preserving permutations of the chain 2. Let 4 be the set of
convex G-congruences on 2 other than the identity congruence.
Let 2 be the chain obtained by completing 2 by Dedekind cuts.
Let 2° be {vye 2| for every & €4 there are 7, v, 2 with 7,2,
and v, <7 <7,}. Glass gives other definitions of £2° on pages 247
and 278 of [9]. The reader should realize that 2 £ 2° C Q and that
each ¢gc @, considered to be permuting 2, actually maps 2° onto
2°. For each &« ec4d let &~ be the equivalence relation on Q°
obtained by convexifying the &  classes. Finally, let G°={h e A(2)h
respects Z"~ for each =z e 4}. It should be clear that G < G" and
that the convex G° congruences on 2° are precisely those of the
form &~ for  e4d. Put another way, intersection provides a
one-to-one order preserving correspondence between the convex /-
subgroups of G° containing the stabilizer G and those of G contain-
ing G, for each ve Q.

One might naturally wonder whether G° is transitive on £2°.
The answer to this query must be negative in general; for example,
the ~-permutation group G constructed in [13] is doubly transitive
on its chain 2, so that 2° = Q. Nevertheless, G° = A(2) fails to be
transitive on 2. However, if G has no finest nonidentity convex G
congruence then G° must be transitive on Q°.

PROPOSITION 4.2. If G is a tramsitive but not locally o-primi-
tive 7/-group of order preserving permutations of the chain 2, then
G° is transitive on 2°.

Proof. It is sufficient to find, for v¢ 2 and 6e 2°, some heG
such that (v)h = 6. Let {&,|a < B} be a subscripting of certain of
the members of 4 with the following properties.

(a) &, is the large congruence. That is, 7,%%7, for all v,, v,€ 2.

(b) & ny is strictly finer than #,.

(¢) For limit ordinals 7, &), is the coarsest congruence finer
than each %, a < 7.

(d) For every & €4 there is some a < g8 with &, finer than
.

For each a < B8 let g, G satisfy (7)9.%.5.0. Requirements (a)~(d)
guarantee that for each pe 2° o =% v, there is a unique a < 8 such
that oZ,~v but p#.,5v. Define h: 2°— 2° by
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(O)h = 0 for p =90
o= (0)9. where 0Z,~7 but 0% .77 .

The reader may check that AeG°. It is amusing to notice that
(Q)h = LU {0}.

There is a connection between G” and 2° when G is a uniquely
transitive <s-group of order preserving permutations of the chain
2. In this case one may take 2 to be G itself. But the cuts added
to G to form the totally ordered group G” are precisely those cuts
added to 2 to form Q°.

PROPOSITION 4.3. Suppose G is a uniquely transitive -group

~ of order preserving permutations of the chain 2. Then cl(G) with

respect to the coarse stabilizer topology on G° is tramsitive on Q°
and is -isomorphic to G”.

Proof. Suppose 6 is the canonical order isomorphism from G
onto 2. By the remark preceding the proposition # may be uniquely
extended to an order isomorphism from G? onto 2°. @ then induces
an <-isomorphism 4 from G? into G° in the following fashion. For
each tc G” define (£)9 = g,€ G° by ©)g, = (0)67'td for all o 2°. Since
(G™) is clearly transitive on 2° it follows that (G?)d is maximal
among totally ordered ~/-subgroups of G°. On the other hand G is
clearly dense in (GD)ﬁ with respect to the coarse estabilizer topology
on G°. Since cl (@) must be totally ordered, it follows that el (G)=
(G™)4.

Theorem 4.5 is a useful description of those <-subgroups of a
transitive <-permutation group dense in its coarse stabilizer topol-
ogy. The next result lays the foundation for this description. The
notation G < K means that G is an /-subgroup of K.

LEMMA 4.4. Suppose G is an /-subgroup of the transitive
z-group K of order preserving permutations of the chain A. Then
the following conditions (a) and (b) together are equivalent to condi-
tion (c).

(a) For any o< A the orbit (6)G is dense in the interval topology
on A.

(b) For any 6 d and any convex G congruence % on ()G,
the equivalence relation Z~ obtained by convexifying the classes of
& in A is a convex K congruence on A.

(¢) For any o€ d, G acts faithfully on 2 = (0)G, 4 S 2°, and
K <G
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Proof. If (c) holds then (a) follows from AZ2° and (b) follows
from K < G°. Now suppose that (a) and (b) hold, de 4 is fixed,
and that 2 = 0)G. It follows from (a) that G acts faithfully on £
and that 4 £ 2. In order to show that 4 & 2° consider v€ 4 and
% a nonidentity convex G congruence on 2. By (b) &~ is a non-
identity convex K congruence on /4 so that Y&~ is a nonempty
interval of 4 without first or last element. By (a) there must be
elements v, v,€ 2 with v, &7, and v, <7 <Y, Since & was
arbitrary, v€ 2°. Finally, each permutation %< K must respect each
z~ for € a convex G congruence on 2 because of (b). That is,
K < G

THEOREM 4.5. Suppose K 1is a transitive <-group of order
preserving permutations of the chain A. If G is an Z-subgroup
demse in the coarse stabilizer topology on K, then for any ded G
acts faithfully on 2 = ()G, 4 S 2°, and K < G".

Proof. We need only verify conditions (a) and (b) of Lemma
4.4. To check condition (a), fix e 4 and consider 7, pe 4 with
7 < p. We must produce an element ge G such that 7 < (0)g < p.
It may happen that no member of 4 lies between 7 and p. In this
case the stabilizer K, is (Kb, K,k) for any ke K* such that
(mk = p. Therefore K, is an open set. Since {ke K|(0)k = 7} can
be written k,K, for any particular %k, € K taking ¢ to %, it follows
that this set is open also. Therefore there must be some geG
taking ¢ to 7. In case 7 < v < p for some 7€ 4, choose ke K*—K,
such that 7 = Mk <7< (Mk <o and choose me K such that
(0)m = v. Then there must be some ge G N m(K;k™, K;k). For such
ag,n<(@g<op. ‘

It remains to check (b) of Lemma 4.4. To that end fix e 4,
let 2 = (0)G and consider a nonidentity convex G congruence & on
2. Let P be {geG|(0)gZ&d}, a prime subgroup of G properly
containing G,. Recall that P canonically induces % in the sense
that, for 7, v€ 2, & if and only if whenever (0)g,=% and (0)g,="v
it follows that g,9;'e P. By Proposition 2.3 there is a unique prime
subgroup € of K properly containing K, such that QNG =P. @
canonically induces a convex K congruence & on 4; that is, vy
if whenever (6)k, = v and (0)k, = v it is true that kk;'e Q. Clearly
& is the restriction of & to 2. Finally, since each & class D is
a nonempty interval of A4 without first or last element, 2N D is
coterminal in D. That is, &€~ = <.

We propose to use products of various G”s as targets in the
representation theorems. The next two propositions argue in favor
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of the suitability of G° for this purpose. The first says that G°
ought to be big enough, and the second says it ought to be complete
enough.

ProposiTION 4.6. If G 1s an Z-permutation group acting
transitively on the chain 2, then G° is a depressible and laterally
complete <-subgroup of A(R2°. G° is order demse in A(Q) and is
therefore completely distributive.

Proof. The definition of G° makes the first statement clear.
Consider now an arbitrary 1 <he A(Q) and ve 2 with (v)h > 7.
Suppose there is a nonidentity convex G congruence < such that
N, (Mh™ <7< < (v)h. Find 1 < g€ G which moves v up and has
support contained in v<=r. Clearly h > g > 1. If no such & exists
then there must be a finest nonidentity convex G congruence % .
Find 1 < geG® which moves v up and has support contained in
7. Then h=hAg>1and hAgeG

PROPOSITION 4.7. Suppose G is an /-permutation group acting
transitively on the chain 2. Then G° is both order closed amnd
closed with respect to every Hausdorff <-topology on A(2°) or on
A(D).

Proof. It is sufficient to prove G° closed with respect to the
a-topology on A(2). Fix de®, let K =-cl(G° in A(R), and let 4
be the orbit (§)K. Then K is transitive and faithful on 4. It
should be clear that the construction of £2° and G° from 2 and G
yields nothing new when iterated. Therefore, by Theorem 4.5,
K =@

An s-permutation group H is locally doubly tramsitive on the
chain 4 if there is a finest nonidentity convex H congruence & and
if for all @, B, v,0€ 4 with aZ B, v& 9, a < 8,7 < d, there is some
he H with (a)h =7 and (B)h =06. H is doubly transitive if & is
the large trivial congruence. It is well known that an ~/-permuta-
tion group H acting transitively on the chain 4 is locally doubly
transitive if and only if there is a finest nonidentity convex H
congruence & and if for any v,d¢e 4’ with v& 9, G: £ G, implies
v =ad.

LEMMA 4.8. Suppose H 18 an Z-permutation group acting
transitively on the chain A. Then for any Z-subgroup G of H and
any d € 4, cl (G,) = ¢l (@), with respect to the coarse stabilizer topology
on H.
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Proof. By Proposition 2.1 the stabilizers cl(G), and G, are
topologically closed. Since ¢l (G),N G = G;, the lemma follows at
once from Proposition 2.3.

PROPOSITION 4.9. Suppose H is an /-permutation group acting
transitively on the chain A and that G is an /-subgroup of H
whose closure im the coarse stabilizer topology is faithful on the
orbit () cl (@) for some o€ Ad. Then G, which acts faithfully on
)G, s locally doubly transitive on (0)G if and only if cl(G) s
locally doubly transitive on (0)cl (G).

Proof. Let K be cl (@), let <& be the restriction to K of the
coarse stabilizer topology on H, and let & be the coarse stabilizer
topology of K thought of as permuting the orbit (0)K. Since <&
is finer than & and G is dense in (K, &), G must be dense in
(K, €). Theorem 4.5 implies that G acts faithfully on 2 = (0)G,
that (O)K < 2°, and that K < G°. The proof is completed by the
proof of Lemma 4.8 and by Proposition 2.3, which provide a one-to-
one order preserving correspondence between the stabilizers of G
and those of K.

PROPOSITION 4.10. Suppose H is an /-permutation group acting
doubly transitive on the chain A and that G is an <-subgroup of
H transitive on A. Then G is doubly transitive on A if and only
if G 1s dense in the fine stabilizer topology on H +if and only if
G 13 dense in the coarse stabilizer topology on H.

Proof. If G is doubly transitive then it is =-fold transitive
and hence clearly dense in the fine and coarse stabilizer topologies.
On the other hand if G is dense in the coarse stabilizer topology it
must be doubly transitive by the previous result.

Let G be an s-permutation group acting doubly transitively on
the chain 2. By Proposition 4.10, G is dense in the coarse stabilizer
topology on A(2). In [2] is proved that any doubly transitive A(R)
fails to be normal valued. By Proposition 3.3 G itself must fail to
be normal valued. If we allow ourselves to use the fact that
normal valued /-groups form the maximal proper variety [11], we
have a proof that any doubly transitive <-permutation group G
generates the variety of all s-groups. This was first proved by
Holland in [11].

The previous methods may be used to prove the next proposi-
tion.
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PropPoSITION 4.11. Suppore H is an Z-permutation group acting
transitively on the chain A and that pe H has a centralizer C wgich
18 o-primitive and periodic with period p. A transitive /-subgroup
G of C 1is periodic with period p if and ouly if G is dense im the
fine stabilizer topology on C if and only if G is dense in the coarse
stabilizer topology on C.

Suppose G is an /-permutation group acting transitively on
the chain 4. Let G* be the closure of G in the coarse stabilizer
topology on G°. The condition for he G° to be in G* is the follow-
ing. For every finite collection {a,, 8;, 7;|1 < 4% < n} of points of £2°
such that a; < 8; < 7, there must be some ge G with (a)h<(8)9<
(v)h and (a;)g < (B)h < (7,)g for each 4, 1 <1 <m. G* must be
order closed as well as closed in every Hausdorff ~-topology on G°,
A(A°, or A(A). It follows that G* is laterally complete though not
always depressible. The author is willing to conjecture that stabili-
zers are order closed in G*. If this conjecture is true then G* is
completely distributive and G is order dense in G* if and only if
stabilizers are order closed in G. (Stephen McCleary has informed
the author that he has a proof of this conjecture.)

There is a close relationship between the o-primitive components
of G and those of G*. Consider a covering pair (¥, &) of convex
G congruences on 4 and the corresponding covering pair (&~, 27)
of convex G* congruences on A°. Fix de 4 and let 2 (2*) be the
chain 0./ (0=2~/%&~) of all & classes (&~ classes) in 6= (6.22™).
The convexification map takes £ into 2* in an order preserving way
so that we may think of 2 as being a subset of 2*. In fact, 2 is
2* unless & is the identity congruence, in which case 2* is 2. Let
H(H*) be the image of {ge G|(0)9=2d}({he G*|(6)h=2~6}) under the
natural <-homomorphism into A(L2)(A(L*)). Observe that these
conventions make H an ~s-subgroup of H*. H and H* are the
o-primitive components of G and G* corresponding to (¥, &) and
(€, £~). The point is that if & is the identity congruence on
A then H* is an <-subgroup of the closure of H in the coarse
stabilizer topology on A(2*) and if & is not the identity congruence
then H* is an <-subgroup of the closure of H in the fine stabilizer
topology on A(2*). McCleary’s classification theorem [17] provides
a description of the possibilities for H and H*.

THEOREM 4.12. Suppose H is a transitive o-primitive -permu-
tation group acting on the chain 2. Then one of the following
0CCUTS.

(a) H 1is totally ordered. In this case H is Z-isomorphic to a
subgroup of the real numbers and is closed in the fine stabilizer
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tovology on A(2). The closure of H with respect to the coarse
stabilizer topology on A(Q2) is s-isomorphic to either the integers or
the real mnumbers depending on whether H has a least strictly
positive element or not.

(b) H s periodic with period pe A(2). In this case the closure
of H in the fine (coarse) stabilizer topology on A(R)(A(RQ)) is the
centralizer of p in A(R)(AR)). The closure of H in the fine sta-
bilizer topology om A(2) is {gc A(R)|gp = pg and g respects all
orbits of H in 2}.

(¢) H is doubly tramsitive on 2. In this case the closure of
H in the fine (coarse) stabilizer topology on A(2) (A(2)) is A(Q)
(A(@2)). The closure of H in the fine stabilizer topology on A(2) is
K = {ge A(Q2)|g respects all orbits of H in 2}.

Proof. (c) The first assertion follows from Proposition 4.10 and
the nm-fold transitivity of H on 2. Let M be the closure of H in
the fine stabilizer topology on A(2). Consider 1 < me M and ac Q.
Since there must be some ke H such that mh~'e H, it follows that
(a)ym = (a)h and that me K. The equality of M and K may be
deduced from the following equivalent formulation of the double
transitivity of H on 2. For every pair of finite sequences «, <
a, < - <a, and B, < B, < +++ < B, of points from £ such that
«; and B; share the same H orbit there is some ge G with (a,)9=2;,
1 <4 <mn. The verification of part (b) is similar.

We come finally to the continuous representation theorems. The
continuous version of Holland’s representation theorem [12] follows
from Theorem 4.5.

THEOREM 4.13. Suppose G is an /-subgroup of the ts-group H
and that {P;} is the set of topologically closed prime subgroups of
G. For each ) let 2, be the chain G/P;, let 0;: G — A(2,) be the
usual z-homomorphism with range G;, and let 6: G — IIG, be the
product /-homomorphism. There is an <-monomorphism 0: cl(G) —
IIG, extending 6 such that 0 is continuous with respect to the
a-topology on IIGS if and only if Necly(P) = 1.

Proof. Let cly(P;) = Q,, a closed prime subgroup of K =cly(G).
By Proposition 2.3 every closed prime subgroup of K is a @, so
that <#({Q;}) is an s-topology on K coarser than the original topology
by Proposition 2.1. If N Q; =1 then <Z({Q;}) is Hausdorff and we
may assume it to be the topology on K. The existence of 4 now
follows from standard arguments using Theorem 4.5. The converse
follows from Proposition 4.1.
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In light of McCleary’s proof that G* is always completely
distributive, G may be substituted for G in the above theorem to
obtain a sharper result.

The distinguishing characteristic of a representable s-group is
that the intersection of the conjugates of any prime subgroup is
itself prime. Therefore the primes minimal among the topologically
closed primes of a representable ts-group are normal. The next
theorem is a generalization of a result of Madell [16].

THEOREM 4.14. Suppose G 13 a representable -subgroup of the
tz-group H. Let {P;} be the set of primes minimal among the
topologically closed primes of G. For each N let G, be the totally
ordered group G/P,, let 6;: G — G, be the canonical 7-homomorphism,
and let 6: G — IIG; be the product s-homomorphism. There is an
7-monomorphism 8: cly(G) — IIG? extending 6 such that 6 is con-
tinuous with respect to the a-topology on IIG? if and only if
Nely(P) = 1.

Proof. Let @, and K be as in the proof of Theorem 4.13. By
Corollary 1.8 each @, is prime in K. As before we may assume
the topology on K to be <Z({Q)), in which case the existence of &
follows from the remark preceding Proposition 3.5 via standard
arguments.

COROLLARY 4.15. Suppose G is a totally ordered s-subgroup of
the Hausdorff ts-group H. Then there is an -monomorphism
0: el (G) — G® over G such that 0 is continuous with respect to the
interval topology on GP.

We close with the continuous version of the Conrad-Harvey-
Holland representation theorem for abelian ~s-groups ([7],[5]). A
subgroup P, is regular if it is prime and if there is another prime
subgroup P? minimal among those primes properly containing P,.
P?/P, is /-isomorphic to a subgroup of the real numbers whenever
it is abelian.

THEOREM 4.16. Suppose G is an abelian subgroup of the
ts-group H and that I'={P;} is the set of topologically closed regular
subgroups of G. For each monminimal P,el’ let R, be P*P, and
for each minimal P,e " let R; be (P*/P)°. Let 6:G— V(I', R,) be
a v-homomorphism ([5]). There is a v-isomorphism 0:cl(G) —
V(I', R)) extending 0 such that 0 is continuous with respect to the
a-topology on V if and only +f N cly(P) = 1.
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Proof. Let @, and K be as above. Propositions 2.1 and 2.3
show that Q, is regular in K. The argument then proceeds along
the lines of Propositions 4.13 and 4.14.
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