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A TREE-LIKE TSIRELSON SPACE

GIDEON SCHECHTMAN

An example is given of a reflexive Banach space X such
that ( X XP+-- P X)ip,m=1,2, ---, are uniformly isomor-
phic to X. Some related examples are also given.

1. Introduction. In [4] Lindenstrauss observed that a Banach
space X such that (X X@ --- P X),» is isometric to a subspace
of X for every n must contain an isometric copy of I,. This gives
a very simple proof to the fact that there exists no separable
reflexive Banach space which is isometrically universal for all the
separable reflexive Banach spaces. Lindenstrauss asked whether the
isomorphic version of this result is true; i.e., does the fact that X
contains uniformly isomorphic images of (X@® XD --- D X)»,
n=1,2, --., imply that X contains [/, isomorphically? An affirmative
answer would give an alternative proof to the nonexistence of an
isomorphically universal space in the family of all separable reflexive
spaces as well as in the family of all spaces with a separable dual.
(The nonexistence of these spaces was proved by W. Szlenk [8] by
a completely different method.) Unfortunately the answer to
Lindenstrauss’ question is negative in a very strong sense.

THEOREM. Let 1 < p < o and M > 1. There exists a Banach
space X with a l-unconditional basis {e}iz, with the following pro-
perties:

(a) X s reflexive.

(b) X does not contain a subspace isomorphic to 1, (c, in the
case p = o).

For every mn =1,2, --- there exist m disjoint subsequences of
the natural numbers N,, N,, +--, N, such that

(€) {edien; 18 isometrically equivalent to {e}Z,, and

(d) If zielediens; 3=1,2, -+, n then

VS ler)” =[S @) = (S lear)”
(v max flo| = |3y < v max ljasll if p = ).

() There exists a K < o such that X is K-isomorphic to
XpXPH---B X)tg for every m.

The construction uses ideas from [9] and [1] as well as the basic
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idea of James to construct Banach spaces on trees. The notations
are standard and can be found in [5] or [6].

Proof of the theorem. We first deal with the case »p = . Let
(T, £) be the set

T={md;n=01 -, i=1---,2%.
With the partial order
('n’ i) é (m, j) if and Only if n é m and (ri — 1)2m—n < j é '52"“"‘ .

Let L be the linear space of all the functions on T which differ
from zero only on a finite number of points of 7. For » =0,1, ---
and 3 =1, ---, 2" define ¢,,€ L by

1 (n, 1) = (m,7J)

Caily 7) = {O otherwise .
And define the operators P, S, and P, from L to L by

. x(m, j) (n,3) =(m,Jj), xelL
(P,.a)(m, §) = { (", 3) (o, 4) = (m, 3)
0 otherwise

8. @)(m, j) = x(m + n, 4 —1)2 +35), welL

and

PX3

Pﬂ:ZPn,i'

Now, we define on L a sequence of norms [|-||, by induection
llello = llzlly, = 2 |, 9]

K
lolla = inf {lodlas + A 3} max || Pesill}
k=1 15752

where the inf is taken over all finite sequence x,, «--, 2 in L which
satisfy

K
Zxk:x and kak=xk, k—'——o,”’,K.
k=0

It is easy to prove by induction that for every xz€ L and every m
Hx[lco é Hxllm é Hxllm—l .
So that we can define

lall = lim ],
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[|+]] is @ norm. Let Y, be the completion of L with respeet to |||,
and let Y be the completion of L with respect to ||-||

LEMMA 1. (@) {e.o=0in, 18 a l-unconditional basis for Y, and
for Y.
(b) If R is @ morm ome projection on L,(T) such that P, R =
RP,,, for all k=0,1,--- and t =1, ---, 2%, then R is a morm omne
projection on Y, and on Y.

(e) 8.,,;1s an isometry from P, ;Y, (resp. P, ;Y) onto Y, (resp. Y)
for all n=0,1,---, j=1,-..,2",

(d) For every xe L the infimum in the definition of ||x||. s
attained.

(e) For every xe L

K K
loll = min {llegl, + 3 3 max [|Panlli o = 3, P = o -

14

Proof. (a) and (b) are proven by induction and passing to the
limit. (d) is a simple consequence of (b) (for R = I — P,). We prove
now (e). For every {z,}i., such that = = > ,2, and Pz, =z,
k=0,---, K and for all m

K
ol < Jlelln < [1@olln-y + » 3 max [Py @lm-
k=1151=<2
K
= [l + N 3 max ([P [ ns -
k=11=5t=2

So, passing to the limit and using (b) to prove that the infimum is
attained, we get

K K
lall = min {ljol,, + % 35 max || Pz = 30, Paw = o) -
k=11sis2k £E=0

In order to prove the other side inequality it is enough to prove that
for all m and all xe L

K K
|[¢||,, = min {]Iac(,!ll1 + 0 X, max [Pl @ = 3 @, Py = xk} .
k=112 k=0

We prove this by induction on m. This is obvious for m = 0, assume
it is true for m — 1 and assume that

K
Haﬂ1m = HxJ|m—d + x’:il nxa}§||fﬁnixklhn-1
k=11=is2

where v = 3\ x, and P, =, k=0, ---, K.
By the induction hypothesis

Jig
ol lm-y = [[#olls, + 3 35 max [Py, 9,
i=iisise
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for some {y,}i_, such that x, = >\, v, and Py, =¥, h =0, ---, H.
We assume as we may that H = K, then x =y, + D, (@ + ),
Pz, +y,) =2, +¥Ys, k=1, -+, K and

K
[2llm = 1Woll;, + N g{ max [| Py + Yol -

To prove (c¢) it is clearly enough to show that for every x such
that P, ;x = 2 and for every m

ol = min {gallus + X 3 max | Pueillu)

k=n+1

where the minimum is over all the sequences {x,}i-, such that
x=>%,x, and P, ;Px, =24, k=n,n+1,---, K.
Let x satisfy P, ;x =« and let {y,}i~, be such that

H
Hx”m = Hyollm_l + )\’ ;Z{ Ezasz(h HPh,iyh”m—l ’
r = 5é Y and I%ZhL:: Y » h = O, e, H.

h=0

We can assume that H > n and by (a), we can also assume that
Pn,jyh = Yh, h = 07 M) H.

lla = 10llacs % 3 max 1Py thllas + % 35 max [|Pyal

=n+1 1=

= 1Wllacs + % S0l + 3, 33 max [Paal] -

115is2h

If 3 l|1Uallme: > 0 then since A > 1

lolla > 19+ 90 + =+ + Ballas + 2 S, max [Pl

=n+1 1=
in contradiction to the fact that the minimum is attained at
Yo ***, Yx. This concludes the proof of Lemma 1.

PROPOSITION 2. (a) For every n=20,1,--- and {y}Z, such
that P'n,zyz = Y 1 = 1’ *t %y 2”’!

max [[y[| =

1Si52m

= M max ||y .
1si=s2m
(b) Y does not contain an isomorphic image of c,.

Proo f (a) The left hand side follows from the 1-unconditionality
of {e,Joo?,. For the right hand side put

on
x, =Y and x,=0 for Lk+#n
i=1
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then, by Lemma 1l.e,

2%
> Y
i=1

< M max [|P, &,|| =) max [jy,]| .
15i52m 1527
(b) Assume that Y contains an isomorph of ¢,. Since the unit
vector basis of ¢, tends weakly to zero, we can assume that there
exist a sequence {u,};-, of norm one elements in Y, an increasing
sequence {m,}s—, of positive integers and a constant K such that

(Pmn—Pmn+1)un:unr n=12---

and

o

Zlamun

in=

< K max |a,|

1= <o

max |a,| =

1=n <o

for every sequence {a,};-, such that a, -0 as n — . For every =
let 1 <4, < 2™ be such that

”meinun” = maxmn “Pmnzunll
1<i52
and put
v, = P, iU, .

By part (a) and Lemma 1.a.
1 = {ju,]| = Mwall S M| =N

and

> e,

n=1

=< =< K max |a,|

157 <oo

A7t maX [a,] < HZ a,0,
150 <00 n=1

for every sequence {a,}r-, such that a, — 0 as n — . We also have

P, .v.,=v,n=12 --.. By passing to a subsequence we can also

assume that

P,

Myrty

v,=wv, forall »r=n.

This last property (with other m,’s) remains true for every block
basis of the u,’s. Thus, by a theorem of James [3], we may assume
that there exist an %, a 1 < j < 2" and two normalized vectors w,,
w, in Y such that

I—-Pyw,=w,, P,;w,=w, and ||w, + w,]| <N —¢& where

e > 0 satisfies 1 <X — e <1 + ¢/n. Let {x,}5i-, be such that w, + w, =
Zf=oxky kak = Tg» k= 0, ) K and

K
(*) 1w, + w,l| = ”onll + N > man”szka
F=11st=<2
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(such z,’s exist by Lemma 1l.e). We can also assume that K = n
and that supp xz, < supp (w, + w,), k =0, ---, K. We first prove that

**)

<2
If this were not true then, since P, ;P,x, = P,x, for k=0, ---, K,

N =6 > flw + w) Z 0 X max (PP

= xzz:i H >N —c€.
From (**), we get that
(%) HP,on + _2 oc,, , = %
Indeed,

K K
} + Zxk + kZ_aank!

= [n (5 %)

_ . _AN—¢e__ &

=)l - |3 P 21222 £

Now, by Lemma 1.e, the equalities

=S —Py, PU—Py=U—P, k=0 --,n—1
and

K K
P.x, —I—kak = Px, —I—I;xk , Par=2,, k=0,n,n+1,---, K,

(*) and (***) we get

N — &> [l + wll Z [T — Pwlly, + 3 3 max [Pl — Pl

K
+ || Poao|| + x%gﬁﬁ [ Py, |

= ||w,

X e
+ Dal =1+ —
f=n p

which contradicts the choice of &. This concludes the proof of
Proposition 2.

The space Y satisfies (b), (¢) and (d) of the theorem for p = <o
this follows from 2.b, l.c and 2.a, respectively it is also not hard to
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see that Y satisfies (e), however (a) is not satisfied, indeed, if
{(my, 14)}5=. is a totally ordered sequence in T then it is not difficult
to see (using l.e.) that [e, . Jr-, is isometric to [,, so some additional
work is needed.

Proof of theorem for p = co. Define on L a new norm by
Hell] = [|a|]** xe L

(for & = >\, @y €. |2|* is defined to be 3, ;la,.%.,.), and let X be
the completion of L with respect to this norm. It is easy to check
that {e, .}y, constitutes a l-unconditional basis for X. Now, if
{x,.}2_, is a block basis of {e, )5, i=, then

M

> amxml

m=1 |

< b max |a,| for all a, ---, ay

msM

a max |a,| <
1=m=M

in B

if and only if

a'* max |a,| g“’ i O |02 H < b'* max |a,| for all a, -+, a,.
1smsM m=1 1=ms=M

This proves that (b), (¢) and (d) of the Theorem remain valid for X

(with A\'* instead of \). In order to prove (a) it is enough, by James

theorem [2] to prove that X does contain an isomorph of 4. This

in turn is a consequence of the following simple fact: if {x,}2., are

disjointly supported with respect to {e, .}3-, %, then

= (2 )™

To prove (e) it is enough, in view of (c), (d) and Pelczynski’s
decomposition method [7], to prove that X is isomorphic to X P X.
Now, as we mentioned above for any totally ordered sequence
{(ny, 2}y in T {e,, )i in Y is equivalent to the unit vector basis
in I, thus, {e,, )i, in X is equivalent to the unit vector basis in [,.
So, X contains a copy of 4 and therefore is isomorphic to each of
its one co-dimensional subspaces. In particular to [e,]5-, %, which,
in turn is isomorphic to X P X.

M
D T

m=1

Proof of the theorem for 1 < p < . Let X and {e}, be the
space and the basis which satisfy the theorem for p = < and let
{fi}. be the biorthogonal basis of {¢};>, then clearly X* and {f.,}2,
satisfy the theorem for p = 1.

For p > 1 define, for every eventually zero sequence {a}:,,

.l/p

@zl = || lads:
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Considerations similar to those in the proof of the p = «~ case show
that the completion of the space of finite sequences under
satisfies the theorem.

b4

REMARK. It may be useful to know what is the dual norm to
Define on L a sequence of norms as follows

lzlo = Il

|2, = max {]x]m_l, A7 max § IP,MxI,,,_l}

1Sk<oo i=1
and define
2| = lim ||, .
It can be shown that for every xze L
ok
ol = max {|all,, v max 3 |P, )
1Sk<co 1=1

and that {[e,..]5-0%-1, ||} is the dual of {[e, ]%-02%1, ||-|

}.

Once this duality is proved it can be used to simplify the proof
of the theorem, in particular the proof of Proposition 2.b. We
prefered, however, to give a proof which avoids the routine proof
of the duality.
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