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A DENSITY RESULT IN SPACES OF SILVA
HOLOMORPHIC MAPPINGS

J. F. COLOMBEAU, R. MEISE AND B. PERROT

A modification of an idea of Aron and Schottenloher is
used to show: For any finitely Runge open subset Ω in
certain locally convex spaces E (including the class of quasi-
complete dualnuclear spaces) the space (H(Ω,F),τ0) of holo-
morphic functions on Ω with values in a locally convex
space F is a dense topological subspace of (Hs(Ω,F),τS0),
the space of Silva holomorphic functions endowed with the
strictly compact open topology. This is used to give a
certain bidual interpretation for (Hs(Ω,F),τS0), if F is a
complete Schwartz locally convex space.

Preface. The aim of the present article is to prove the result
announced above. In order to do this we first recall some definitions
and results and fix the notation; mainly for vector spaces with
bornology. Then we show how the notion of Silva holomorphy
offers the possibility to carry over—in a natural way—many topo-
logies on spaces of holomorphic functions on Banach spaces to such
spaces on bornological vector spaces. However, we prove that on
Schwartz bornological vector spaces the natural generalizations of
the compact open and of Naehbin's ported topology coincide. Since
our main result will need the Schwartz property anyway, we work
with the strictly compact open topology which is easier to handle.
This becomes clear in the proof of the density lemma 7, where an
idea of Aron and Schottenloher is used to show that the continuous
finite polynomials are dense in the space of all Silva holomorphic
functions on finitely Runge open subsets of certain bornological
vector spaces. The result announced in the abstract is then an easy
consequence of the lemma. Observing that (HS(Ω, F), τso) is a com-
plete Schwartz I.e. space for any complete Schwartz I.e. space F,
we can use the density result to describe (HS(Ω, F), τso) as a mixed
(topological-bornological) bidual of (H(Ω, F), τso) for finitely Runge
open subsets of certain I.e. spaces E and any complete Schwartz
locally convex space F.

Part of the results of this article have been announced in [5],
[6].

1. Notation. For our notation from the theory of locally
convex (I.e.) spaces we refer to Horvath [8] or Schaefer [10], while
we shall refer to Hogbe-Nlend [7] for notations from the theory of
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bornological spaces. Throughout this article all I.e. spaces are as-
sumed to be Hausdorff and complex vector spaces. A bornological
vector (b.v.) space will always denote a complex, convex, separated,
and complete bornological vector space in the terminology of Hogbe-
Nlend [7].

The following notations, definitions, and results will be used
without any further comment: Let £ b e a b.v. space. We define
33 = S3(2£) as the set of all convex, balanced, and bounded subsets
of E. For Be33 EB denotes the linear hull of B, normed by the
gauge of B. A set B e S3 is called a Banach disc, if EB is a Banach
space. E is called a Schwartz b.v. space, if for any A e 33 there is
B 6 33 such that A is relatively compact in EB. A subset Ω of E is
called M-open, if for any B e 33 the set Ω ΓΊ EB is open in EB. A
subset K of E is cally strictly compact, if there exists B e 33 such
that K is compact in EB. We say that E has property (a), if for
any strictly compact set K in E, there is a Banach disc B e 33 such
that K is compact in EB and such that the identity on EB can be
approximated uniformly on K by continuous linear operators on EB,
which have finite rank. Obviously E has property (a), if for any
strictly compact set K in E there is a Banach disc B e 33 such that
K is compact in EB and such that EB has the approximation pro-
perty. The vector space of all bounded linear forms on E is denot-
ed by Ex. E is called t-separated or separated by its {bornological)
dual, if Ex separates the points of E. It is an easy consequence
of the theorem of Hahn-Banach that E is ^-separated iff the locally
convex inductive limit indues EB is Hausdorff or iff σ(E, Ex) is

Hausdorff.

2* Definition. Let F be a I.e. space.

(a) If Ω is an open subset of a I.e. space E, a function /: Ω-^F
is called holomorphic, if / is continuous and Gateaux holomorphic.
H(Ω, F) denotes the linear space of holomorphic F-valued functions
on Ω, H{Ω) stands for H(Ω, C). The compact open topology of uni-
form convergence on the compact subsets of Ω is denoted by τ0,
while τω denotes the ported topology introduced by Nachbin. It is
defined by the system of all ported semi-norms p on H{Ω, F), where
a semi-norm p on H(Ω, F) is called iΓ-ported, if there exists a com-
pact K in Ω and a continuous semi-norm q on F such that for any
open neighborhood VaΩ of K there is a c ( 7 ) > 0 such that

p{f) £ c( V) sup q(f(x)) for any fe H(Ω, F) .
xeV

(b) If Ω is an ikf-open subset of a b.v. space E, a function
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f:Ω~+F is called Silva holomorphic, if for any B e 33 the restriction
of / to ΩB: — Ω(~]EB is holomorphic on the open subset ΩB of EB.
HS{Ω, F) denotes the vector space of all Silva holomorphic functions
on Ω with values in F, HS{Ω) stands for HS(Ω, C).

From the definition of Silva holomorphy the proof of the fol-
lowing lemma is obvious.

3* Lemma. Let Ω be an M-open subset of a b.v. space E and
let F be a I.e. space. By using the inclusion as an ordering of 33
and using the restrictions as linking maps one has (algebraically)

This lemma indicates that there is a natural way to extend
topologies on spaces of holomorphic functions on normed spaces to
spaces of Silva holomorphic functions. We shall do this, however,
only for the compact open and the ported topology.

4* Definition* Let Ω be an ikf-open subset of a b.v. space E and
let F be a I.e. space. The strictly compact open topology τso (resp.
the strictly ported topology τsω) on HS(Ω, F) is defined as the (topolo-
gical) protective limit -pτojBe^H(Ωβy F), τ0) resp. vτojB3]i(H(ΩB, F), τω).

<—- < — •

REMARK, (a) The topology τHω was introduced for H(Ω, F) by
Bianchini, Paques and Zaine [3].

(b) It is easy to see that τs0 is just the topology of uniform
convergence on the strictly compact subset of the M-open set Ω.

On Banach spaces τω is known to be strictly fmer than τ0. Hence
one might guess that τsω is a better topology than τso. However,
it turns out that τsω coincides with τso if E is a Schwartz b.v. space.

5* Proposition* Let E be a Schwartz b.v. space and F a I.e.
space. Then ive have (HS(Ω, F)y τHω) — HS(ΩJ F), r,0) for any M-open
subset Ω of E.

Proof. It is easy to see that τbQ) is finer than τs0. Let us show
that the converse holds, too. If any Be^8 is given, there exists
C G S3 such that the canonical map iBG: EB —-> EG is compact, since E
is a Schwartz b.v. space. Then the mapping j β C : (H(ΩG, F), τo) ->
(H(ΩB, F), τω), jB0(f) = f°iBC, is continuous. In order to see this, let
p be any ported semi-norm on H(ΩBj F), and let K and q be as in
2.(a). Since iβC is compact, we can find an open subset V in ΩB
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with Kd V and a compact subset Q of Ωc such that iBC(V)(zQ.
Then we have for any feH(Ωc, F):

^ c( V) sup q{jBC{f){x)) = c( V) sup q{f{iBC{x)))
i teK x e v

sup q(f(y)).
Q

This shows the continuity of j B C . By the definition of the topo-
logies τsω and τs0 this implies that τ80 is finer than τ8ω.

REMARK, (a) In Barroso, Matos and Nachbin [2] it is shown
that on Silva spaces τ0 and τω coincide. Since τ0 = τ80 on such
spaces, it follows that τω — τsω — τ80 = τ0 in Silva spaces.

(b) If one wants to work only with the topology rso, then one
may assume always that the underlying b.v. space is a Schwartz
b.v. space because of the following reason: If E is a b.v. space,
then we may define a new b.v. space Es which is the vector space
E with the bornology of the strictly compact subsets of the old
b.v. space E. It is a consequence of the theorem of Banach-Dieu-
donne that Es is a Schwartz b.v. space, having the same strictly
compact sets as E. If Ω is M-open in E, then it is M"-open in E8

and one can show easily that Silva holomorphy of a function defined
on Ω does not depend on the fact whether Ω is regarded as a sub-
set of E or Es. This means that (HS(Ω, F), τ80) = (HS(ΩS, F), τ8 0),
where Ω8 denotes the M-open subset Ω of Es.

In order to state the density result announced above we need
some notation.

6* Definition* (a) Let £ be a complex vector space. A set
Ω c E is called finitely Runge, if for any finite dimensional linear
subspace Eo in E the set Ω Π Eo is a (nonempty) Runge open subset
of Eo (i.e., H(E0) is dense in (H(Ω Π Eo), τ0)).

(b) Let (E, g) be a I.e. space. A function p on E is called a
finite monomial if it is a constant or if there exist n e N and

yλ, --,yne (E, g)' such that p(x) = Π <2/, , %) for any x e E .

A finite polynomial is a finite sum of finite monomials. The
space of all finite polynomials on E is denoted by &/(E9 %).

REMARK. It follows from the convergence properties of the
Taylor series that any translate of a balanced open set Ω in a I.e.
space E is a finitely Runge subset of E.
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Let us recall that it follows from a remark in 1. that on a
ί-separated b.v. space E there exists at least one I.e. topology g
such that any bounded subset of the b.v. space E is also bounded
in the I.e. space (E, g)

7* Lemma. Let E be a t-separated b.v. space with property
(a), and let % be a I.e. topology on E for which any bounded subset
of the b.v. space E is bounded in the I.e. space (E, §). Then
^f(E, g) (g) F is dense in (HS(Ω, F), τso) for any finitely Runge
M-open subset of E and any I.e. space F.

Proof. By a standard reduction argument we may assume that
F is a Banach space. Let K be a strictly compact subset of Ω and
let feHs(Ω, F) and ε > 0 be given. Since E has property (a) by
hypothesis, there exists a Banach disc B in E, such that K is com-
pact in EB and such that the identity on EB can be approximated
uniformly on K by continuous linear operators on EBi which have
finite rank. Then ΩB: — Ω Π EB is a finitely Runge open subset of
EB and f\ΩB is in H(ΩB, F). Using these facts one proves in the
same way as in Theorem 2.2 of Aron and Schottenloher [1], that
for any ε > 0 there is p e ,^f(EB) (x) F with

Since the canonical inclusion j B : EB -»(E, g) is continuous and injec-
tive its transpose tJB: (E, %)' —> (EB)' has σ(EB, EB)-dense range. Now
observe that the topology X(EB, EB) of uniform convergence on the
pre-compact subsets of EB is consistent with the duality between
EB and EB. Hence the range of tJB is even X(EBf EB)-dense. By the
definition of a finite polynomial it follows that there exists q e

with

Hence the lemma is proved.

REMARK. Under the hypothesis of Lemma 7 (HS(Ω), τ80) has the
approximation property. This follows from Lemma 7, Remark (b)
after Proposition 5, Proposition 3 in [4] and a characterization of
the approximation property by means of the ε-product (Schwartz
[11]). We do not give any further detail because a more general
result can be obtained by translating the notion of Silva approxi-
mation property introduced by Paques [9] to the bornological setting.

Our density result will now be a consequence of the preceeding
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lemma. Remember that a I.e. E is called a co-Schwartz space if E
endowed with its von Neumann bornology is a Schwartz b.v. space.

8* Theorem* Let (Et %) be a I.e. space and assume that E
endowed with its von Neumann bornology is a b.v. space with pro-
perty (a). Then for any I.e. space F and any finitely Runge open
subset Ω of (E, %) the space H(Ω) (x) F and a fortiori H{Ω, F) is
dense in (HS(Ω, F), τ80). If (E, %) is a co-Schwartz space moreover,
then (H(Ω, F), τ0) is a dense topological linear subspace of (HS(Ω, F),
τso) = (HS(Ω, F), τsω).

Proof. E endowed with its von Neumann bornology is obviously
a ί-separated b.v. space, which has property (a) by hypothesis.
Hence it follows from Lemma 7, that &*/(E, %)0 F is dense in
(HS(Ω, F),τso). Clearly this implies the density of H(Ω) (g) F and
H(Ω, F) in {HS{Ω, F), τ.o).

If (E,%) is a co-Schwartz-space, then a subset K of E is com-
pact in (E, %) iff it is strictly compact in the b.v. space E introduc-
ed above. Hence (H(Ω, F), τ0) is a topological subspace of HS(Ω, F),
τso) which is equal to (HS(Ω, F), τsω) by Proposition 5.

REMARK. Any quasi-complete dual-nuclear I.e. space E satisfies
all the hypotheses of Theorem 8.

9* Corollary* If (E, %) is a co-Schwartz I.e. space satisfying
all the hypotheses of Theorem 8, and if F is a complete I.e. space,
then (HS(Ω, F), τ80) is the completion of (H(Ω, F), τ0) for any finite-
ly Runge open subset Ω of E.

This follows from Theorem 8 and the observation that
(HS(Ω, F), τs0) is complete, if F is complete. In [3] the completion
of (H(E), τsω) is studied; under the above assumptions on E it fol-
lows that it is exactly (Hs(E)τ80).

Now we want to use Theorem 8 to describe (HS(Ω, F), τso) as a
mixed (topological-bornological) bidual of (H(Ω, F), τQ), if F is a
complete Schwartz I.e. space. Before we can do this we need the
following result on the Schwartz property of (HS(Ω, F), τ80) which
is a consequence of Cauchy's integral formula and the theorem of
Arzela-Ascoli. The detailed proof is left to the reader.

10* Proposition* Let E be a b.v. space, Ω Φ 0 an M-open
subset of E and F a I.e. space. Then (HS(Ω, F), τso) is a Schwartz
I.e. space iff F is a Schwartz I.e. space.
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Let us recall that for a I.e. space G one can regard the locally
convex dual G' as a b.v. space by taking the bornology of the
equicontinuous subsets. The bornological dual G'x of Gf becomes a
I.e. space under the topology of uniform convergence on the bound-
ed subsets of this b.v. space G'. In Theorem 4. p. 95 in Hogbe-
Nlend [7] it is shown that G = G'x for any complete Schwartz I.e.
space E. This together with Theorem 8 and Proposition 10 gives
the description announced above:

l l Corollary 2* Let (E, §) be a co-Schwartz I.e. space and
assume that E endowed with its von Neumann bornology is a b.v.
space with property (a). Then we have for any finitely Runge open
subset Ω of (E, %) and any complete Schwartz I.e. space F

(H(Ω, F\ τ 0 Γ = (HS(Ω, F), τ80) .

Proof. By Theorem 8 (H(Ω, F), τ0) is a dense topologieal linear
subspace of (HS(Ω, F), τ80), hence we have (H(Ω, F), r 0)' = (H8(Ω, F),
τso)

r and both spaces have the same system of equicontinuous sets.
By the completeness of F and Proposition 10 we get that (HS(Ω, F),
τso) is a complete Schwartz I.e. space. Hence it follows from the
considerations above that we have

(H(Ω, F\ ro)'x - (H8(Ω, F), r s o)'* - (ΠS(Ω, F), τ80) .

REMARK. In [5] where Corollary 2 was announced, it was un-
fortunately forgotten to assume t^iat E has property (a).

REMARK. Let us also notice that the proof of Theorem 8 gives
actually the following more general formulation of Theorem 8:

Let (E, g) be a I.e. space in which any compact set is contained
and compact in the normed space EQ for some balanced convex com-
pact set Q and such that Ec, the vector space E endowed with the
bornology of the compact sets of (E, §) has property (a). Then for
any finitely Runge open subset Ω of (E, %) and any I.e. space F,
the space (H(Ω, F), τ0) is a dense topologieal subspaee of (Hs(Ωe, F),
τso) = (Hs(Ωef F), τ8ω), where Ωc denotes Ω as a subset of Ec.
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