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THE GROUP OF UNITS OF A COMMUTATIVE
SEMIGROUP RING

ROBEKT GlLMER AND RAYMOND C. HEITMANN

We seek a characterization, in terms of the coefficients
and support of an element, of the units of the semigroup
ring R[X; S]9 where R is a commutative ring with identity
and S is an additive abelian semigroup with identity. Such
a characterization requires some restrictions on the semi-
group S.

We obtain results of the desired form in §2 for the
case where 5 is torsion-free and cancellative, and in §3
under the weaker hypothesis that S is torsion-free and has
no nonzero idempotents. Under this weaker hypothesis on
S, the torsion subgroup of the group of units of R[X; S] is
determined in §4 of this paper.

l Introduction. If R is a commutative ring with identity,

then necessary and sufficient conditions are known in order that a
polynomial feR[{Xλ}] should be a unit. Namely, / is a unit of
i2[{X;}] if and only if the constant term of / is a unit of R and each
other coefficient of / is nilpotent [10, p. 683], In this paper we extend
the preceding results by considering the group of units of the semigroup
ring R[X; S], where S is a torsion-free additive abelian semigroup
with zero (the polynomial ring R[{XX}XBA] is isomorphic to the semi-
group ring R[X; Σ tejΘ^JL where each Zλ is the additive semigroup
of nonnegative integers). Our main results concerning units of
R[X: S] are Theorems 2.4 and 3.2. Before stating these results, we
indicate some conventions, terminology, and notation.

All rings considered are assumed to be commutative and to con-
tain an identity element. Semigroups are assumed to be commutative,
and we write the semigroup operation as addition; to indicate this,
we frequently write "let (S, +) be a semigroup". A semigroup with
identity is called a monoid. Most of the semigroups we deal with
are assumed to be monoids. If R is a ring and S is a semigroup,
then we follow the notation of Northcott in [6, p. 128] in writing
R[X; S] for the semigroup ring of S over R and in considering
the elements of R as 'polynomials' rxX

81 + r2X
8z + + rnX*n in

X with coefficients in R and exponents in S. If / is a nonzero ele-
ment of R[X; S]f then a representation of the preceding form, where
su - , sn are distinct and each r* is nonzero, is called the canonical
form of /, and {sj?=1 is called the support of /. A unit of R[X; S]
with only one element in its support is called a trivial unit; such a
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unit is necessarily of the form rX8, where r is a unit of R and s
is an invertible element of S. The kind of characterization of units
/ of R[X; S] that we seek is one stated in terms of the coefficients
and the support of /. An examination of commutative integral group
rings ZG is sufficient to show that such a characterization cannot be
expected unless restrictions are imposed on S. The primary restriction
of this paper is that S should be torsion-free, which is defined to
mean that if x and y are distinct element of S, then nx Φ ny for
each positive integer n. Other restrictions imposed on S on occasion
are that S be cancellative or that S is without torsion, where cancel-
lative is defined by the condition that a + x = a + y implies that
x = y for all a, x, y e S, and without torsion means that 0 is the
only element s of S for which there exist distinct positive integers
m and n such that ms = ns (thus, torsion-free and without torsion
are dual concepts). Proposition 3.1 show that a torsion-free monoid
S is without torsion if and only if 0 is the only idempotent of S;
consequently, a torsion-free cancellative monoid is without torsion.

In §2, we assume that S is a torsion-free cancellative monoid.
Theorem 2.4 states that an element / = Σ?=i ^X 8 ' of R[X; S] is a
unit if and only if there exists a positive integer k such that R =
(αί)® φ(αi), and sέ is invertible in S for each i such that at is not
nilpotent. It follows from Theorem 2.4 that R[X; S] admits only
trivial units if and only if R is reduced and either (1) R is inde-
composable, or (2) 0 is the only invertible element of S.

In §3, we replace the hypothesis that S is cancellative by the
weaker condition that 0 is the only idempotent of S. Theorem 3.2
yields the following characterization of units of R[X; S] in this less re-
strictive case. Assume that (S, +) is a torison-free monoid containing
no nonzero idempotents, and let G be the set of invertible elements
of S. Let / = Λ + /£ 6 R[X; S], where Supp (/x) £ G and Supp(/2) Q
S - G. Then / is a unit of R[X; S] if and only if fx is a unit of
R[X; G] and each coefficient of f2 is nilpotent. Based upon Theorem
3.2, it is shown in Proposition 3.8 that the Jacobson radical of R[X; S]
coincides with the nilradical in the case where S is torsion-free and
contains no nonzero idempotents.

Section 4 of the paper is concerned with the problem of deter-
mining the torsion subgroup of the group of units of R[X; S], where
S is torsion-free and contains no nonzero idempotents. Theorem 4.7
is a composite of Theorems 4.4 and 4.6; it states that a unit / of
R[X; S] has finite order if and only if 0 e Supp(/), the coefficient of
X° in / is a unit of R of finite order, and each other coefficient of
/ is nilpotent of finite additive order.

2* The case where S is torsion-free and cancellative* For a
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ring R and a commutative monoid (S, +), we resolve in this section
the problem of characterizing the units of the semigroup ring R[X; S],
where S is torsion-free and cancellative. One version of the charac-
terization is contained in an alternate form of Theorem 2.4: The
element / = a.X8" + + a»X** of R[X; S] is a unit if and only if
R = (alf , an), α ^ is nilpotent for i Φ j , and s* is invertible in S
for each i such that α* is not nilpotent.

Before proving our first result, Theorem 2.3, we record two
results from [2, pp. 70, 71] (see also [8], [9]).

PROPOSITION 2.1. // R is an integral domain, if S is a torsion-
free cancellative monoid, and if f and g are elements of R[X; S]
such that fg is a nonzero monomial, then f and g are monomials.

COROLLARY 2.2. Under the hypothesis of Proposition 2.1, {uX*\u
is a unit of R and s is invertible in S} is the group of units of
R[X; S]. That is, R[X; S] has only trivial units.

Theorem 2.3 treats units of R[X; S] in the case where R is a
reduced ring—that is, a ring with nilradical (0).

THEOREM 2.3. Assume that R is a reduced ring, that S is a
torsion-free cancellative monoid, and that f = αxX

βl + + anX*n is
the canonical form of the nonzero element f of R[X; S], Then f is
a unit of R[X; S] if and only if each st is invertible in S and R —
(cθ Θ θ (α.).

Proof. Assume that each st is invertible in S and that R —
(αj θ θ (an). Let Rt = (α,). Then R[X; S] = R,[X; S ] φ 0
Rn[X; S], and / is a unit of R[X\ S] if and only if fR,[X\ S] =
R,[X; S] for each i. But fRt[Σ; S] = a^RAX; S] and atX« is a
unit of Ri[X; S] since α* is a unit of Rt = (α4) and st is invertible
in S. Consequently, / is a unit of R[X; S].

We assume, conversely, that / is a unit of R[X; S]. If P is a
proper prime ideal of R, then the natural homomorphism R->R/P
of R onto RjP has a unique extension to a homomorphism

φP:R[X;S] >(R/P)[X;S]

such that φP(X8) = X8 for each s in S. Since φP(f) is a unit of
(R/P)[X; S] for each P, Corollary 2.2 implies that φP(f) is of the
form uX8, where u is invertible in R/P and s is invertible in S. To
prove then that each s* is invertible in S, note that since at is
nonzero, aύ is not nilpotent, and consequently, at $ P for some proper
prime ideal P of R. It follows from the definition of φP that φP(f) =
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φP(ai)X3i so that βi is invertible, as asserted. If Q is a proper prime
ideal of R, then since ΦQ(f) is a nonzero monomial, one and only one
of the coefficients au α2, , an is not in Q. This implies:

(1) (au . . . , α Λ ) = JR.
(2) For i ^ j , a^j is in each proper prime ideal of R, and hence

didf is nilpotent. Since R has nilradical (0), it follows that a^ = 0.
(3) # = (αj 0 (α2) 0 - 0 (αj, for (1) implies that R = (αj +

• + (<O and thus, for example, (αx) Π (α2, , αΛ) = (α^, , α ^ J =
(0).

In passing from Theorem 2.3 to the case where R need not be
reduced, we use the fact that if xeR and if A is an ideal of R
contained in the Jacobson radical of R, then x is a unit of R if and
only if• x + A is a unit of R/A.

THEOREM 2.4. Assume that S is a torsion-free cancellative
monoid. If f — axX

Sι + + anX
8n is the canonical form off, then

f is a unit of R[X; S] if and only if there exists a positive integer
k such that R = (αj) φ φ (at), and s, is invertible in S for each
i such that at is not nilpotent.

Proof. If N is the nilradical of R and if φN: R[X] -> (R/N)[X]
is the homomorphism induced, as in the proof of Theorem 2.3, by
the canonical projection of R onto R/N, then / is a unit of R[X; S]
if and only if φN{f) is a unit of (R/N)[X; S]. By Theorem 2.3, φN(f)
is a unit of (R/N)[X; S] if and only if R/N = (αx + iSΓ) φ - - 0 (a.+2V)
and ^ is invertible for each st e Supp(^(/)), that is, for each i such
that at is not nilpotent. Hence, Theorem 2.4 will be proved if we
can show that R/N = {aι + N) 0 0 (an + N) if and only if there
exists a positive integer k such that R = (<xf) φ φ (at).

If R/N= (a, + N) 0 - 0 (an + N), then R = (α1? - -, an) + iSΓ-
(α^ , an) = (αf, , αί) for every &. Because the sum is direct, it
follows that (at + N)(a9 + N) = N for ί Φ j , and hence a^j is nilpotent
for i Φ j . Choose k sufficiently large so that (atad)

k = 0 for all pairs
i Φ j . Since a\a) = 0 for i Φ j , it follows as in the proof of Theorem
2.3 that the sum R = (a\) + + (at) is direct. Conversely, if R =
(α?) φ 0 (αί), then obviously R/N = (ax + iV) + + (an + N).
As before, to prove that this sum is direct, it suffices to show that
(α* + N)(as- + N) = N—that is, a&j is nilpotent for i Φ j . Since
a%ak

3 = 0, this follows immediately. Therefore the equivalence has
been established, and this completes the proof of Theorem 2.4.

Note that the proof of Theorem 2.4 shows that the condition
that R = (αf) φ φ (at) for some positive integer k is equivalent
to the assertion that R = (a19 , an) and α ^ is nilpotent for i Φ j .
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COROLLARY 2.5. Assume that G is a torsion-free group and
f = Σ<U diX8i e R[X; G]. The following conditions are equivalent.

(1) f is a unit of R[X; G].
(2) R = (al9 α2, , an) and atas is nilpotent for i Φ j.
( 3) There exists a positive integer k such that R = (αf) φ 0

Using Theorem 2.4, we are able to give necessary and sufficient
conditions in order that the semigroup ring R[X; S], where S is
torsion-free and cancellative, should have only trivial units.

THEOREM 2.6. Assume that S is a nonzero torsion-free cancella-
tive monoid and that G is the group of invertible elements of S.
The semigroup ring R[X; S] has only trivial units if and only if
R is reduced and either (1) or (2) is satisfied:

(1) R is indecomposable.
(2) G = {0}.

Proof. It is immediate from Theorem 2.4 that R[X; S] has only
trivial units if R is reduced and (1) or (2) is satisfied. If R is not
reduced and if r is a nonzero nilpotent of R, then 1 + rX* is a
nontrivial unit of R[X; S] for each nonzero element s of S. On the
other hand, if R is decomposable and G Φ {0}, then take a decom-
position 1 = eλ + e2 into nonzero orthogonal idempotents of R and
consider a nonzero element g of G. Then ex + e2X

9 is a nontrivial
unit of R[X; S] with inverse e1 + e2X~9. This completes the proof
of Theorem 2.6.

At first glance it may not be clear that the hypotheses that S
is torsion-free and cancellative are used in an essential way in the
proofs of Theorems 2.3 and 2.4. Nevertheless, the assumptions
concerning S enter our considerations through Corollary 2.2, which
depends essentially on the fact that S can be ordered if S is torsion-
free and cancellative. In the next section we are able to prove some
substantial results about units of R[X; S] without assuming that S is
cancellative. The case where S is a group already shows that a result
like Theorem 2.4 cannot be expected if S is assumed to be cancellative,
but not torsion-free. It is well-known, for example, that the integral
group ring ZG has nontrivial units for each finite abelian group G
of exponent not dividing 4 or 6 [4].

3* The case where S is torsion-free and without torsion* We
begin this section by taking another look at Theorem 2.4, in light
of the following considerations. If (S, +) is a monoid, recall that
an ideal of S is a nonempty subset I of S such that s + IQ I for
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each seS, and that the ideal I is prime if x + y el implies that
x e I or y e I for all xf y eS. Assume that / is a proper prime ideal
of S. Then S = (S — I) U I, where S - I is a submonoid of S, and
this partition of S induces the decomposition R[X; S] = R[X; S — I] +

; /] of the semigroup ring, where R[X; S — I] is a subring, and
; J] is an ideal, of R[X; S]. Moreover, since R[X;S-I]Pι

R[X; I] = (0), the sum R[X; S - I] + R[X; I] is direct in the group-
theoretic sense. If / € R[X; S] and if /^Λ+Λ, where fλ e i?[X; S-I]
and /2ei?[X; I], then f is called the (S — I)-component of / and /2

is the I-component of /. Let /, # e R[X; S] and let / = f + f2, g =
& + &, where flf gteR[X\ S-I] and /2, g2eR[X; I]. Then /^ -
Λ&. + (/iΛ + /2^! + f2g2) is the corresponding decomposition of the
product fg. In particular, fg = 1 if and only if / i^ — 1 and fλg2 +
Λtfi + Λ̂ 2 = 0. Thus Λ is a unit of R[X; S — I] if / is a unit of
R[X; S]. Let G be the set of invertible elements of S. If S Φ G,
then I ~ S — G is a prime ideal of S, and we obtain the decomposition
R[X; S] = R[X; G] + R[X; S - G]. Although the empty set is not
considered to be an ideal of S, we find it convenient to consider the
decomposition R[X; S] = R[X; G] + (0) if G = S; in this case, the
G-component and (S — (?)-component of / are taken to be / and 0,
respectively. In terms of the decomposition of R[X; S] induced by
G, Theorem 2.4 can be interpreted as follows.

(*) Assume that G is the set of invertible elements of the
monoid (S, +) . Consider feR[X; S], and let f andf2f respectively,
be the G-component and (S — G)-component of f If S is torsion-free
and cancellative, then f is a unit of R[X; S] if and only if f is a
unit of R[X; G] and f2 e N[X; S — G], where N is the nilradical of R.

In the statement of (*), we remark that N[X; S — G] is taken
to be (0) in the case where S — G. Note that the following assertions
in (*) are valid without the hypothesis that S is torsion-free and
cancellative: (1) If / is a unit of R[X; S], then f is a unit of R[X;G].
(2) If /i is a unit of R[X; G] and if each coefficient of /2 is nilpotent,
then / is a unit of R[X; S], Because of (2), it is natural to attempt
to prove (*) under weakened hypotheses on S. Also, we are interested
in obtaining a result like Theorem 2.4 in the case where S is not
assumed to be cancellative. Each of these goals is realized in Theorem
3.2, which shows that (*) is valid if S is torsion-free and without
torsion. The terminology here is as follows. An element s of a semi-
group SQ is a torsion element if there exist distinct positive integers
m and n such that ms — ns. A monoid S is said to be without
torsion if 0 is the only torsion element of S. A torsion-free cancel-
lative monoid is without torsion; the next result gives conditions
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under which an arbitrary torsion-free monoid is without torsion.

PROPOSITION 3.1. Let (S, +) be a torsion-free monoid. Then S
is without torsion if and only if 0 is the only idempotent element
of S.

Proof If S is without torsion, then it is clear that 0 is the
only idempotent element of S. Conversely, assume that 0 is the only
idempotent of S and let x be a torsion element of S. Then (x), the
subsemigroup of S generated by x, contains an idempotent kx [1,
§1.6]. Thus kx = 0 by assumption, and since S is torsion-free, the
equality kx = k-Q implies that x = 0. Hence S is without torsion.

In view of Proposition 3.1, we choose henceforth to speak of a
torsion-free monoid containing no nonzero idempotents, rather than
a torsion-free monoid without torsion.

We observe at this point that the conclusion of (*) need not
extend to the case where S contains a nonzero idempotent s. For
example, the element u = 1 — 2X* of the integral semigroup ring
Z[X; S] is a unit since u2 = 1, but the (S — G)-component of u is
— 2X% and —2 is not nilpotent in Z.

THEOREM 3.2. Assume that (S, +) is a torsion-free monoid
containing no nonzero idempotents. Let G be the set of invertible
elements of S and let N be the nilradical of the ring R. An element
f of R[X; S] is a unit if and only if the G-component of f is a
unit of R[X; G] and the (S — G)-component of f is in N[X; S — G].

The proof of Theorem 3.2 will be given following a sequence of
lemmas, each of which is a special case of Theorem 3.2 itself.

LEMMA 3.3. Let R be a field of characteristic p Φ 0, and let
(S, +) be a torsion-free monoid containing no nonzero idempotent
element. Assume that S* = S — {0} is the only proper prime ideal
of S. If 1 + f is a unit of R[X; S], where f e R[X; S*], then f = 0.

Proof. We first claim that the set / = {s e S \ there exists t e S*
such that s — s + t] is empty. If not, there exists t e S* such that
the set It = {s e S \ t + s — s) is also nonempty. The set It is a proper
ideal of S, and since S* is the unique proper prime ideal of S, it
follows that It meets the subsemigroup (t) = {kt}k=i of S [3, Lemma 4],
Thus t + mt = mt for some positive integer m, and since t Φ 0, this
contradicts Proposition 3.1. Consequently, I is empty.

We denote by ~ the cancellation congruence of S — that is, a ~ 6
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if and only if there exists an element ceS such that a+c=b+e. Let
S = S/~ denote the factor monoid of S with respect to ~ , and for
seS, let [s] be the class of s with respect to ~ . It is well-known
that S is cancellative. We proceed to prove that S is torsion-free.
If n[a] = n[b], then na ~ nb and na + t — nb + t for some teS. It
follows that n(a + t) = n(b + t), and since S is torsion-free, a + t =
b + t. Hence a ~ 6, [a] — [δ], and S is torsion-free. Let [#] be an
invertible element of S, say [0] = [x] + [y] = [x + y]. Then x + y ~ 0,
and since I is empty, we conclude that χ + y — 0. Because S* is the
only proper prime ideal of S, it follows that 0 is the only invertible
element of S. Therefore x — y = 0, and [0] is the only invertible
element of S. Summarizing, S is a torsion-free cancellative monoid
with no invertible element other than [0]. It then follows from
Theorem 2.6 that the only units of R[X; S] are those of R.

The natural projection of S onto S can be uniquely extended to
an .β-homomorphism θ of R[X; S] onto R[X; S]. Thus 0(1 + /) =
1 + θ(f) is a unit of R[X; S], and since / is empty, it follows that
[0] is not in the support of #(/). Consequently, θ(f) = 0. Let / =
rxX

Sl + . . . + rnX
Sn. If sit sd e Supp(/) and if sέ — ŝ  , then we choose

ttj 6 S such that s4 + ίo = s,- + t4 i. Let t — Σi~i î> where the symbol
Σ w indicates that the sum is taken over all pairs (i, i) with sif s3- e
Supp(/) and s* ^ sy. We note that

8t + t ~ 8j + t < = ^ Sί ^ Sj <==> 8t + t = 8, + t .

Next consider X*f = r j 8 1 ^ + +rΛX8^+ t = rίX8fc+ + r^XβS where

sif , si are distinct. We have 0 = 6>(X4)̂ (/) = 0CXV) = < ^ t 4 ] +
h r l F ^ 3 , and since si Φ s) for i Φ j , it follows that r[ = =

rί = 0. Therefore X*/ = 0. In particular, if t = 0, then / = 0 and
the proof is complete.

Assume that t Φ 0. Because 1 + / is a unit, it has an inverse
(1 + f)~\ which is easily seen to be of the form 1 + g, where
θ£Supp(#). Again using the fact that S* is the only proper
prime ideal of S, we see that a positive integral multiple of each
element of Supp(#) is in in the ideal t + S of S. Choose pk large
enough (recall that p is the characteristic of R) so that pku et + S
for each u e Supp(#). Since 1 = (1 + /)(1 + g), we have 0 = / + g +
fg = <J + g + fgYk - f»!c + gpk + fpkgpk. By choice of *, X* is a
factor of gpk, and hence fpkgpk = 0. Consequently, fpk = -grpfc and
0 = /»V* = -/ 2 p f c . Hence / = 0, for Corollary 2.3 of [7] implies
that the ring R[X; S] is reduced.

The statement of Lemma 3.4 is obtained merely by weakening
the hypothesis in Lemma 3.3 that S — {0} is the only proper prime
of S to the assumption that 0 is the only invertible element of S.
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LEMMA 3.4. Let R be a field of characteristic p Φ 0, and let
(S, +) be a torsion-free monoid containing no nonzero idempotent
element. Assume that 0 is the only invertible element of S. Ifl + f
is a unit of R[X; S], where feR[X; S - {0}], then f = 0.

Proof Assume that Lemma 3.4 is false. We write (1 + /)~x =
1 + g, where Og Supp(gr). We may assume that |Supp(/)j + |Supp(^)|
is minimal among all counterexamples to the statement of the lemma.
Replacing S by the submonoid of S generated by U = Supp(/) U
Supp(g), we also assume, without loss of generality, that the sub-
semigroup of S generated by U is S* = S — {0}. Because 0 is the
only invertible element of S, it follows that S* is a prime ideal of
S. In light of Lemma 3.3, we conclude that there exists a prime
ideal P of S properly contained in S*.

As S* = (S* - P) U P and S* is generated by U, it is clear that
* 7 g P and Z7g(S* - P). We write 1 + / = 1 + A + / 2 , where 1 + Λ
is the (S — P)-component of 1 + / and /2 is the P-component of /;
similarly, 1 + g = 1 + gx + g2, where 1 + g1 is the (S — P)-component
of 1 + g. It follows from previous observations that 1 + fx is a unit
of the semigroup ring R[X; S — P] and that 1 + g1 is the inverse of
1 + fx. Since J7<gS* — P, either /2 or g2 is nonzero, and ISuppCjQj +
I Supptei) I < I Supp(/) I + I Supp(gr) |. Moreover, as Z7gP, either ft or g1

is nonzero. Thus 1 + fx and 1 + gι provide a counterexample to
Lemma 3.4 that contradicts the assumption that |Supp/ | + |Supp#|
is minimal. This completes the proof of Lemma 3.4.

LEMMA 3.5. Let R be a field of characteristic p Φ 0, and let
(S, +) be a torsion-free monoid containing no nonzero idempotent
elements. Each unit of R[X; S] is in R[X; G], where G is the set
of invertible elements of S.

Proof. Let u be a unit of R[X; S] with inverse v and write
u — uλ + u2, v = v1 + v2, where uλ and vx are the Gr-components of
u and v, respectively. Then ux is a unit of R[X; G] with inverse
v19 and hence vxu = 1 + vλu2 is a unit of R[X; S] with inverse uxv —
1 + u&ϊ. As V}U2 and u{02 are in R[X; S — G], it follows that l+vxu2

is, in fact, a unit of the semigroup ring R[X;(S — (?) U {0}]. Applying
Lemma 3.4 in this perspective, we conclude that vλu2 = 0, and hence
u2 = 0. Consequently, u = t^ e R[X; G], as was to be proved.

The next lemma is the final preliminary result needed for the
proof of Theorem 3.2. The statement of Lemma 3.6 differs from
that of Lemma 3.5 only in that R is assumed to be a reduced ring,
rather than a field of nonzero characteristic.
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LEMMA 3.6. Let R be a reduced ring, and let (S, +) be a torsion-
free monoid containing no nonzero idempotent elements. Each unit
of R[X; S] is in R[X; G], where G is the set of ίnvertible elements
of S.

Proof. Let / = fXSί + + f%X*» be a unit of R[X; S], with
inverse g = gtX

h + + gmXtm- Let Π be the prime subring of R
and let Ro = Π [fu --,/«., 91, , £»]- The ring Ro is reduced, and
Ro is known to be a Hubert ring such that Ro/M is a finite field for
each maximal ideal M of RQ (see §3 of [7]). In particular, if {Mλ}λeΛ

is the family of maximal ideals of Ro, then ΠXBAMX is the nilradical
of Ro (hence Π Mλ — (0)) and each R0/Mλ is a field of nonzero charac-
teristic. For XeΛ, denote by φλ the canonical homomorphism of
R0[X; S] onto (RJMX)[X; S]. Noting that / is a unit of R0[X; S], it
follows that φλ(f) is a unit of (R0/Mλ)[X; S] for each λ. By Lemma
3.5, φλ{f)e(R0/Mλ)[X; G]. Thus if h is the (S - G)-component of /,
then h e ΠxeΛ (Mλ[X; S - G]) = (ΠχeΛ Mλ)[X; S - G] - (0). Therefore
feR[X;G], as asserted.

Proof of Theorem 3.2. We have already observed that / is a
unit of R[X; S] if the G-component of / is a unit of R[X; G] and
the (S — G)-component of / is in N[X; S — G]. Conversely, assume
that / is a unit of R[X; S]. If ψ is the canonical homomorphism of
R[X; S] onto (R/N)[X; S], then φ has kernel N[X; S]. Since φ(f)
is a unit of (R/N)[X; <S], where the ring R/N is reduced, Lemma 3.6
shows that φ{f) e (R/N)[X; G]. Let fe be a preimage of φ{f) in
R[X; G], and let g=f-h. Since 9>(ff) = 0, g is in N[X; S], the kernel
of φ. Therefore the (S — G)-component of g is in N[X; S — G],
Because / = h + g, where h e R[X; G], it follows that / and g have
the same (S — G)-component. Consequently, the (S — G)-component
of / is in N[X; S — G]. Because we already know that the G-
component of / is a unit of R[X; G], this completes the proof of
Theorem 3.2.

Using Theorem 3.2, it is easy to extend Theorem 2.6 to the case
where the monoid S is torsion-free and contains no nonzero idempo-
tents. We state this result without proof.

THEOREM 3.7. Assume that S is a nonzero torsion-free monoid
containing no nonzero idempotents and that G is the group of in-
vertible elements of S. The semigroup ring R[X; S] has only trivial
units if and only if R is reduced and either (1) or (2) is satisfied:

(1) R is indecomposable.
(2) G = {0}.
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Theorem 3.2 can also be used to determine the Jacobson radical
of R[X; S] in the case where S is torsion-free and contains no nonzero
idempotents.

PROPOSITION 3.8. // S Φ {0} is torsion-free and contains no
nonzero idempotents, then the Jacobson radical of R[X; S] is N[X; S],
where N is the nilradical of R. Thus, the nilradical and the Jacobson
radical of R[X; S] coincide.

Proof Let / be an element of the Jacobson radical of R[X; S]
and let G be the set of invertible elements of S. Since 1 + / is a
unit of R[X; S], it follows from Theorem 3.2 that the (S - G)-
component of / is in N[X; S - G] £ N[X; S]. Let h be the (S - G)-
component of /. If / = h, then the proof is complete. If / Φ h,
then by replacing / with f — h, we can assume without loss of
generality that / e R[X; G]. We prove that / 6 N[X; G] by considering
separately the cases G = (0) and G Φ (0). If G — (0), then we choose
a nonzero element seS. Since f eR and since 1 + fX8 is a unit of
R[X; S], Theorem 3.2 shows that / e N in this case. If G Φ (0), then
G is infinite because G is torsion-free. We can therefore choose g e G
so that 0ίSupp(Xσ/). It follows from Theorem 3.2 that 1 + Xgf
is a unit of R[X; G], and then Corollary 2.5 shows that each coefficient
of / is nilpotent. That is, / 6 N[X; G] and the proof of Proposition
3.8 is complete.

4* Units of finite order. Having determined in Theorem 3.2
and Corollary 2.5 the group of units of R[X; S] for S torsion-free
and containing no nonzero idempotents, it is natural to ask for con-
ditions under which a unit / of R[X; S] has finite order. Consistent
with previous standards, we desire that such conditions be given in
terms of the coefficients and support of /. Theorems 4.4, 4.6, and
4.7 of this section contain results in this direction that we consider
to be satisfactory. Because of Theorem 3.2, there is a natural way
of considering a unit of R[X; S] in the form u + n, where u is a
unit of R[X; G] and n is nilpotent. The initial results of this section
are concerned with the problem of determining conditions under
which such a unit u + n is of finite order.

THEOREM 4.1. Assume that n is a nilpotent element of R and
u is a unit of R of finite order. The unit u + n has finite order
if and only if n has finite additive order.

Proof. It is well-known that u + n is a unit of R. Since u
has finite order, u + n has finite order if and only if u~\u + n) —
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1 + u~λn has finite order. Moreover, u~xn is nilpotent and u^n has
finite additive order if and only if n has finite additive order. We
therefore assume without loss of generality that u = 1.

If 1 + n has finite order t, then 1 = (1 + n)* = 1 + tn + rn2 for
some element reR. Therefore

tn = -rn2, fn = t{-rn2) = {-rn){-rn2) = rV ,

and by induction, it follows that tkn = ( — r)knk+1 for each positive
integer k. Let m be the order of nilpotence of n. Then tm~ιn — 0,
and hence n has finite additive order.

Conversely, assume that kn = 0 for some positive integer ά. We
prove that 1 + n has finite order by induction on the number of
(not necessarily distinct) prime factors of k. If k — p is prime, then
choose the positive integer m so that npm = 0. We have (1 + n)pm =
1, so 1 + n has finite order. If the result is assumed for integers
with h prime factors and if k — /p1 php has h + 1 prime factors,
then we choose m large enough so that npm = 0. We have (1 + n)pm =
1 + prn for some reR, and (k/p)pnr = 0. By the induction hypo-
thesis, 1 + prw has finite order. Consequently, 1 + n also has finite
order.

COROLLARY 4.2. Assume that u is a unit of R and n is a
nilpotent element of R of finite additive order. Then u + n has
finite order if and only if u has finite order.

Proof. Theorem 4.1 shows that u + n has finite order if u has
finite order. If u + n has finite order, then since — n is nilpotent
of finite additive order, Theorem 4.1 shows that u = u + n — n has
finite order.

COROLLARY 4.3. If R has nonzero characteristic, if u is a unit
of R, and if n is a nilpotent element of R, then u + n has finite
order if and only if u has finite order.

We remark that Corollary 4.3 fails without the hypothesis that
R has nonzero characteristic. For example, let R = Q[X]J(X2) = Q[x].
Then x is nilpotent and does not have finite additive order. Therefore
1 + x is a unit that is not of finite order. But (1 + x) — x = 1 is
of finite order.

THEOREM 4.4. Assume that (S, +) is a torsion-free monoid con-
taining no nonzero idempotents, and let G be the set of invertible
elements of S. Assume that f is a unit of R[X; S], that ft is the
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G-camponent of f, and that /2 is the (S — G)-component of f. Then
f has finite order if and only if fx has finite order and f2 has finite
additive order.

Proof. It follows from Theorem 3.2 that f is a unit of R[X; S]
and that /2 is nilpotent. Therefore Theorem 4.1 implies that / has
finite order if fx has finite order and f2 has finite additive order. Con-
versely, if / has finite order t, then the G-component of /* = 1 is
1 = ff. Thus /i has finite order. Since /2 is nilpotent and / = f + f2

has finite order, f2 has finite additive order by Theorem 4.2.

The condition in Theorem 4.4 that f2 should have finite order is
completely determined by the coefficients of f2 (which are coefficients
of / ) , but we seek a more definitive criterion for determining whether
/i is a unit of R[X; G] of finite order. The desired result is stated
in Theorem 4.6, which requires one preliminary result.

PROPOSITION 4.5. Assume that the polynomial f = fo + fxχ +
• + fόX* + + fnX

n e R[X] is such that fά is a unit of R, while
ft is nilpotent for each i Φ j . If there exists a positive integer h
such that fk = Xjh, then f3- has finite order.

Proof. Let A be the ideal of R generated by {ft\i Φ j}. We
claim that for any m > 0, there exists a positive integer k such that
JcAm = (0). Since A is nilpotent, we can take k = 1 for all sufficiently
large m. Assume the the integer t ^ 1 is such that the claim is
true for all m> t. We prove the claim for t. We can choose k so
that kAm = (0) for each m> t. For some h we have fh = Xh\ and
hence kfh = kXhj. For i Φ j , the coefficient of χιh-»s+i in kfh is
0 = h[(i)fi~ιfi + u], where u is in A2. This statement is true be-
cause the coefficient of χ ί fe-1)^+ ί is a sum of products of h coefficients
fh, , fih of /, where ix + it+ + ih = (h - ΐ)j + i; if at most
one of the elements fic is in A, then h — 1 of them must be fό and
the other must be /,. Therefore

Vi = -ton
1 c kA'A'-1 - kAt+1 = (0) .

Since fs is a unit of R, it follows that khfA1'1 = (0) for each i Φ j ,
and consequenlty khAt = (0), thereby establishing the claim. The claim
implies that there exists a positive integer K such that KA — (0).
We proceed to show that fs has finite order.

In the ring R[X, X"1], we have

f/X* = fs + [(/o/XO + + (Λ-i/X) + fi+ίX + + f*Xn-'] ,
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where (f/X3')h = Xjh/Xjh = 1. Therefore f/X' is a unit of finite order,
where f5 is a unit and [(fo/Xj) + + f*X*~*] is nilpotent of finite
additive order (since KA = (0)). Applying Theorem 4.1, we conclude
that fj has finite order, and this completes the proof of Proposition
4.5.

THEOREM 4.6. Let G be a torsion-free abelian group and let
f = axX

8^ + + amX*™ + am+1X*™+i + + anX
8* be a unit of

R[X; G], where the labelling is such that at is not nilpotent for
1 <^ i <^ m and at is nilpotent for m + 1 <ί i <L n. The following
conditions are equivalent.

(1) The unit f has finite order.
(2) m = 1, Si = 0, ax is a unit of R of finite order, and the

element am+1X*m+ί + + anX*n has finite additive order.

Proof. It is clear that (2) implies (1). To prove the converse,
let a = a,XSί + + amX8™ and let β = am+1X

8™^ + + anX
s*.

Since G is torsion-free, it admits a total order <, and we assume
without loss of generality that the labelling is such that sx < s2 <
• < 8m. Let JV be the nilradical of R and let φ be the canonical
homomorphism of R[X; G] onto (R/N)[X; G]. If / has order ί, then

^ + ίK^Cα!))*-1^^]^1"1^^ +

where tsλ < (ί — 1)^ + s2 < < tsm and where {φiμ^JΫ Φ 0 and
(<p(aM)y Φ 0. If m > 1, it follows that [?>(/)]* ίs n ° t a monomial.
Hence m = 1, ίsx = 0, and ̂ (α^ is a unit of R/N. Since G is torsion-
free, it follows that sλ = 0. Moreover, aλ is a unit of R. To complete
the proof, we must show that aλ has finite order and that β has
finite additive order; by Theorem 4.1 and Corollary 4.2, either of
these statements follows from the other, and hence we prove only
that αx has finite order.

Let Go be the subgroup of G generated by Supp(/) U SuppC/"1)-
Then / is a unit of the group ring R[X; GQ], and Go is finitely
generated. Replacing G by Go, we may assume without loss of
generality that G = Z φ φ Z is a direct sum of k copies of Z
[5, Theorem 16]. Hence R[X; G] is, to within isomorphism, the
quotient ring RIX*1, , X^1] of the polynomial ring R[Xl9 , Xk] in
k indeterminates over R. Considering R[X; G] to be R[Xf\ •,-Z?1],
we show that the constant term of / is of finite order by induction
on k. If k = 1, we can assume that

/ = b_rχ-r + • - + b^X-1 + bQ + b,X + + bsX
s,
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where 60 is a u n i t of R and each other coefficient of / is nilpotent.
If / has order t, then h = Xrf e R[X] and fc* = Xrt. By Proposition
4.5, 60 is of finite order. Therefore the desired conclusion holds if
k = 1.

If the conclusion is assumed for G of rank r, then in the case
of a group of rank r + 1, we consider R[X^\ , .X^i] as
ΛίJζ*1, •• ,-Xr

±1][JS:r

±Λ]. Writing / as a polynomial in J ζ ^ with
coefficients in R[X*\ •• ,Xr

±1], the coefficient h of Xr°+1 is a unit
of R[X?1, , Xr*1] and all other coefficients are nilpotent. The case
where G is of rank 1 implies that h is a unit of -BfXi*1, , X?1]
of finite order. But h is such that its coefficient 60 of XϊXS' -XI is
a unit of R, while all other coefficients are nilpotent. It then
follows from the induction hypothesis that 60 has finite order, and
this completes the proof of Theorem 4.6.

Combining Theorems 4.4 and 4.6, we obtain another description
of the units of R[X; S] of finite order.

THEOREM 4.7. Assume that (S, +) is a torsion-free monoid
containing no nonzero idempotents. An element f of R[X; S] is a
unit of finite order if and only if Oe Supp(/), the coefficient of X°
in f is a unit of finite order, and each other coefficient of f is a
nilpotent element of finite additive order.

For a ring T, let U(T) denote the group of units of T. Theorems
3.2 and 4.7 yield information concerning the structure of the group
U(R[X; S]) and its torsion subgroup in the case where S is torsion-
free and contains no nonzero idempotents. To wit, let G be the group
of invertible elements of S, let N be the nilradical of R, and let C
be the ideal of R consisting pf nilpotent elements of finite additive
order. Theorem 3.2 implies that U(R[X; S]) is the direct product of
U(R[X; G]) and the group 1 + N[X; S - G], while Theorem 4.7 shows
that the torsion subgroup of U(R[X; S]) is the direct product of the
torsion subgroup of U{R) and the group 1 + C[X; S — {0}].
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