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NATURALLY INTEGRABLE FUNCTIONS

LESTER E. DUBINS AND DAVID MARGOLIES

A bounded function / defined on an amenable group G
is naturally integrable if, for every pair of left-invariant
means μ and μ'', μ(f) — μ'(f). If G is the additive group of
integers, then (i) / is naturally integrable if, and only if,

lim n-'Σfij + i)(l Si^n)

exists uniformly in j , and (ii) the associated natural measure
v is convex; that is, for every pair of naturally measurable
sets of integers EQ and Έx with Eo c El9 there is a monotone
family of naturally measurable sets Et(0 t=k t S 1) such that
y(j£c)(θ ^ t g 1) is a closed interval. Analogous results hold
for the presently known amenable groups.

An order-preserving linear functional μ — or integral — defined
on the space B(G) of bounded, real-valued functions defined on a
group G, is a (left)-ίnvariant mean if μ(c) = c for all constants c
and if

μf= \f(xy)dμ(y)

for all x e G; and G is amenable if such a μ exists.
If μf = μ'f for all invariant means μ and μ\ then / is (left)

naturally integrable. This section is concerned with characterizing
the set, ^V\ of left naturally integrable functions. As a preliminary, a
necessary and sufficient condition for G to be amenable will be given.

For each finite subset a of G and each f eB(G), the convolution
of a with /, a*f is defined by

( 2) (a*f)(y) = - ± - Σ f(*V)(x e α)

|α |

where | α | is the cardinality of a. Plainly, for any invariant μ,

(3) μf £ a*f, for each α ,

where / is the supremum of /.
Summarizing,

(4) μf ^p(f)

where

(5) p(f) = inf α * / .
α
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Of course, p{tf) = tp{f) for t > 0.

PROPOSITION 1. For G to be amenable, it is necessary and suffi-
cient that p be subadditive. If p is subadditive then, for each
f eB(G), —p( — f) ^ p(f) and, for each c in the closed interval,
[ — p{ — f), p(f)]f there is a left-invariant μ for which μ{f) — c.
Moreover, there are no other values of μ(f) for left-invariant μ.

For each nonempty, finite subset β of G, let β' be the uniform
distribution — or integral over β, defined thus:

(6) £7 = - ^

In terms of the total variation norm, || ||, the necessary and
sufficient condition of Folner ([8], [11]) for G to be amenable can be
stated, thus.
(F.C.) For every a and ε > 0, there is a β such that

(7) 11/3' - (x/3)'\\ < ε f o r a l l x e a ,

where xβ, the left translate of β by x, is the set of all xy, y e β.
When (7) holds, β is ε-invariant under a.

LEMMA 1. Suppose G is amenable. Then, for every finite subset
7 of G and ε > 0, 3/3 c G such that, for all a ay and all f eB(G)
of absolute value at most 1,

(8) \a*β*f-β*f\<e

and, a fortiori,

(9) β*f <a*f + ε .

In fact, every β which is ε-invariant under y satisfies (8) and (9).

Proof of Proposition 1. Suppose that G is amenable, let/x and/2

belong to B(G), suppose \ft\ <; 1 and let ε > 0. Then there are αx

and a2 such that aff < p{f) + ε. For 7 = «x U a2 and β chosen so
that (9) holds, calculate, thus,

Λ) ̂

3ε + p(f2) + 3ε ,

which proves that the subadditivity of p is a necessary condition
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for G to be amenable. Suppose now that p is subadditive. Then

(11) 0 = p(0) < p(-f + /) ^ p(-f) + p(f) ,

which proves -that —p(—f) 5* p(f) That for each feB(G) and each
c in the closed unit interval, there is a linear functional μ defined
on B{G) for which μ(f) — c and that each such μ is a left-invariant
mean is established in almost direct imitation of Banach's argument
for the existence of invariant means when G is the additive group
of the integers [1]. That no c greater than p(f) is a possible value
of μ(f) for a left-invariant mean μ is the content of (4). And since

(12) μ(f) = -/£(-/) and μ(-f) £ p ( - / ) ,

— p( — f) is a lower bound for μ(f).

Plainly, for each left-invariant mean μ, μ annihilates the uniform
closure tc of the linear span, ιcOt of all functions of the form / — Lf
where Lf is some left translate of / and feB(G). Therefore, the
uniform closure of R + tc0 is a subset of ^V, where R 4- tcQ designates
the set of all functions of the form c + f for c a constant, that is,
an element of R, and / ' e tc. As demonstrated by Granirer and Witz
in [9] and [21], there are no other elements of ^V.

Three definitions facilitate the statement of the theorem. Of
course, the oscillation of a real-valued function is the difference
between its supremum and its infimum. If, for every ε > 0, there
is an a such that | a*f — c | is at most ε, / is averagable to the
constant c. If, for some n, there exist fu ••-,/„ and //, - ,fή such
that / = Σfif f = Σfl and, for each i, ft is a left translate of //,
then / and / ' are (left) scissor-congruent. The following is at most
than an embellishment of ideas and results in [3, 4, 9, 14, 21].

PROPOSITION 2. Suppose G is amenable. Then the following
conditions on a bounded f are equivalent.

(a) / is naturally integrable.
(b) p(f) = -p(-f).
(c) f is averageable to a constant.
(d) For every ε > 0, there is a finite, nonempty subset a of G

such that the oscillation of a*f is at most ε.
(e) For every ε > 0, there is an f 6 B(G) whose oscillation is

at most ε and which is scissor-congruent to f.
(f) f is in the uniform closure of the linear space of those

functions which are scissor-congruent to constant functions.
(g) / is in the uniform closure of the set of functions of the

form c + Σχ(fi — Ltf^) where c is a constant and, for each i, L{f is
a left translate of f e B(G).
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For the proof of Lemma 1, three lemmas are aseful.

LEMMA 2. Suppose G is amenable, f e B(G) and ε > 0. Then,
for some nonempty, finite subset β of G,

(13) - P ( - / ) - e < β*f < P(f) + ε .

Proof. For some ax and a2,

(14) <*i*/< Kf)+-e/2 and α 2 * ( - / ) < p(-f) + ε/2 .

Therefore, Lemma 1 yields a /3 such that

(15) β*f<p(f) + ε and /3*(-/)< p(-/) + ε ,

which implies (13).

Let /(/) be the set of all numbers c such that, for some left-
invariant μ, μ(f) — c.

LEMMA 3. Each of the following conditions implies its successors.
( i ) For some finite, nonempty set a, f = a*f.
(ii) / ' is left scissor-congruent to f.
(iii) / — / ' belongs to κ0.
(iv) For every left-invariant mean μ, μ{f) — μ(f)
(v)

LEMMA 4. The set of (left) naturally integrable functions is a
uniformly closed, linear space.

Proof of Proposition 2. That (a) implies (b) is an evident
corollary to Proposition 1. With the help of Lemma 2, the implication
(b) —• (c) is easily verified. That (c) implies (d) is trivial. The
observation made in Lemma 3 that (i) —> (ii) makes obvious the
implication (d) —> (e). To see that (e) implies (f), proceed thus. Assume
(e) and suppose: the oscillation of / ' is at most ε and / ' is scissor-
congruent to /. So / = Σϊfi9 f = Σψ and, for each i, /, - LJl is
a left translate of //. Let e' be the difference between the supremum
of / ' and / ' , so ε' is a nonnegative function bounded above by ε.
Let //' = // + (lM)ε'. Plainly, Σfl' = c, the supremum of / ' . Now
calculate, thus

(16) 0 ̂  ΣLJΓ - f

- ΣLJfί + ̂ ε') - ΣLJl
V n /
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n

So / differs from ΣLJΪ, a function scissor-congruent to a constant
function, by at most ε. This proves that (e) -» (f). Suppose (/)
holds. Then for each ε > 0, there is an / ' such that \f - f'\ < ε
and, for some constant c, f is scissor-congruent to c. So there exist
//, ••••,/• such that Σfl = / ' and ΣLJl = c where LJl is some left
translate of ft. So f — c — Σfl — LJl belongs to ιc0, or equivalently,
/ ' 6 R + κ0. Consequently, (g) holds. That (g) implies (a) is evident
from Lemma 4.

The remainder of this section is concerned with two applications.
The first is a generalization, as well as a slight strengthening of,
Hermann WeyΓs observation that if θ is an irrational real number,
then the sequence nθ taken modulo 1 is equidistributed. The second
states — in a sense stronger than usual — that the primes are a thin
subset of the integers.

If, for every ε > 0, there are continuous functions w' and w" on
a compact group such that w' < w < w" and such that the Haar
integral of w" — w' is less than ε, then w is Eudoxian integrable.

PROPOSITION 3. Let φ be an isomorphism of a group G onto a
dense subgroup of a compact group K. Let w be a Eudoxian inte-
grable function defined on K and let f — w°φ be the composition
of w with ψ. Then f is averagable to a unique constant. Conse-
quently, if G is amenable, f is naturally integrable.

Proof. Let ε > 0 and let w' and w" be continuous, real-valued
functions defined on G such that w' < w < w" and such that Xw" —
Xw' < ε where X is the Haar integral. As Von Neumann's ([16], [17])
development of the Haar integral for compact groups makes evident,
there is a finite subset a of G such that \a*w' — Xw'\ and \a*w" — Xw"\
are everywhere less than ε. Since φ(G) is dense in K, it may be
assumed that a is a subset of φ(G). Moreover, since a*w is between
a*wf and a*w", an evident calculation shows that \a*w — Xw\ is at
most 2ε. Let β be the subset of G which φ maps onto a. It is
now clear that | β*f — Xw \ is at most 2ε and, therefore, that / is
averageable to the constant Xw. Finally, if G is amenable, Proposi-
tion 2 implies that / is naturally integrable.

Incidentally, whether G is amenable or not, the conclusion of
Proposition 1 could be strengthened to say: for any ε > 0 and any
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finite set W of Eudoxian integrable functions defined on K, there is
a finite subset β of G such that, for all weW, \β*{w°φ) — Xw\ < ε
everywhere on G.

EXAMPLE 1. Let A be an arc of the unit circle Z and suppose
zeZ is not a root of unity. Then the set S = SAfZ of integers n
for which zn e A is a naturally measurable set of integers whose
measure, p, is proportional to the length of A. That S has a density
equal to p is a well-known observation of Hermann WeyΓs ([19], [20]).

As a prelude to the next application, namely Proposition 4, the
following obvious fact is recorded here.

LEMMA 5. The infinite cyclic group generated by a positive
integer n, as well as each of its translates, has measure 1/n under
every translation-invariant measure defined on the integers.

Another example of a naturally measurable set of integers is the
set of primes. The following argument is due to Nathan Fine who
explained it in conversation with one of us over twenty years ago.

LEMMA 6. For every ε > 0, there is a positive integer n such
that fewer than nε translates of the infinite cyclic group Hn generated
by n cover the set of primes.

Proof. As is well-known, there is a positive integer m such
that φ(m), the cardinality of the set, S, of positive integers i < m
which are relatively prime to m, is less than m ε/2. (See, for
example, [12, Theorems 19 and 60].) As is not difficult to verify,
every positive integral multiple of m which exceeds 2m/ε is an n
which satisfies the lemma.

PROPOSITION 4. There is one, and only one, translation-invariant
probability measure defined on the smallest translation-invariant
field which includes the arithmetic sequences. With respect to the
completion of this measure, the set of primes is measurable and has
measure zero; a fortiori, the set of primes is naturally measurable
and has natural measure zero.

Proof. Immediate from Lemmas 5 and 6.

2* Convexity of invariant means. This section extends certain
results of Granirer [10] and of Chou [2] by showing that each
invariant mean, μ, on an infinite, amenable group, G, possesses a
certain property enjoyed by nonatomic, countably additive measures
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defined on sigma-fields, namely: For each AcG, for B ranging over
the subsets of A, the range of values of μ(B) is a closed interval.

We begin by presenting formally certain ideas of de Finetti [6,
p. 117]. A collection of sets which has the property that every set
which is a finite, linear combination of sets of the collection belongs
to the collection is a linear space of sets. Here, the useful conven-
tion, also introduced by de Finetti [2] of identifying a set with its
indicator function is being adopted. In this paper, it will always
be assumed that the universal set Ω or, equivalently, the constant
function 1, is an element of the linear space.

The probability measures defined on a linear space, £f, of events
is plainly a convex set whose extreme points are the two-valued, or
zero-one, probabilities, that is, those that assign to every E e <2f
the value of zero or one. As usual, if μ and u' are measures such
that μE ^ μ'E for all E e ^f, then μ is said to majorize μ' or, more
concisely, μ ^ μf.

If, whenever an index s is less than an index t, Es ^ Et, the
family {Et} is a chain.

LEMMA 1. The following conditions on a probability μ defined
on a linear space J5f of events are equivalent.

(a) For every extreme probability μ' and real number c, if
μ ^ cμ\ then c ^ 0.

(b) For all EeS^, with μ{E) > 0 and all ε > 0, there is an
E1ec2f,E1c:E such that

) < 2 +(1) ε <
1 } 2 6 < μ{E)

(c) For each Ee^f and ε > 0, there is a chain {Et, te T) which
satisfies: T is a finite subset of [0, 1] such that, for each V e (0, 1),
there is a teT with \t — t'\ < e; Ete£? and μ(βt) = t for all teT;
for some teT, Et = E.

(d) For each E e Jέf, there is a chain {Eu teT} such that T is
a dense subset of [0, 1], EteSf and μEt = t for all teT and, for
some teT,Et = E.

In the event £? is a field of subsets of a set Ω, for (c) or (d)
to hold for all E it suffices that it holds for E = Ω.

For a probability μ with a given domain, j*f, the outer μ-
probability, μ* or μ% is defined, as usual, for every event E as
the infimum of μ(E') for E' e^,E(Z E'. With the inner ^-probability
analogously defined, call (μ, J*f) order-complete if every E with equal
inner and outer ^-probability is an element of J5f. When μ is
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understood, £έ* is called order-complete, and when ^ is understood,
it is μ which is so labelled.

LEMMA 2. // {^fy μ) is order-complete, this condition, too, is
equivalent to (d).

(d') For every EecSf and every t in the interval [0,1], there
is an Et e S^ such that Et = tf s <| t —> Es c Et and, for some t, Et

is E.

If (a), (b), (d) or (d) of Lemma 1 holds, μ is continuous; if (d')
holds, μ is convex.

LEMMA 3. If μ is a probability measure defined on a linear
space ^ of events then, for each positive integer n, there are at
most n distinct two-valued probabilities μ' defined on JZ2 such that
μ majorizes (l/n)μr.

Proof. As is easily verified, distinct two-valued probabilities
are mutually singular. Therefore if μ majorizes (l/ri)μ's for j in a
finite set, then μ majorizes (l/n)Σμ'jf from which it follows that the
index set has at most n members.

Recall that if μ' is any probability on a group G and g e G, then
gμ' is the left translate of μ' by g. Of course, if μ' is two-valued,
so is gμ'.

LEMMA 4. It μf is a two-valued probability on group G, then
the map g —» gμ' is injective.

Proof. It plainly suffices to show that, unless g is the identity,
e of G, gμ' and μ' are distinct. As will soon be shown, for each
g Φ e, there is a subset A of G and an integer n ^ 2 such that A,
gA, - - , gn~ίA constitute a g-cyclic partition π of G, that is, one for
which gnA = A. Since one and only one of these sets, say gιA, has
μ* measure 1, its successor gi+1A has ^'-measure 1 under gμ', and
hence gμ' is certainly distinct from μ'. To verify the existence of
the partition π, let H be the group generated by g and let LaG
contain one and only one element from each right coset of H. If H
is finite, let A — L, so n is the order of H; if H is infinite, let S
be the group generated by g2, and let A = SL, so n = 2. In either
case, A generates a ^-cyclic partition of G, as is easily verified.

PROPOSITION 1. Every invariant mean on an infinite amenable
group is convex.
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Proof. Let μ be an invariant mean for an infinite amenable
group Gy let μ' be an extreme probability and suppose that μ ;> (l/n)μf

for some positive integer n. Then μ — gμ ^ (l/n)gμf for all g e G.
As Lemma 4 now implies, μ ^ (l/n)μ" for infinitely many different
extreme probabilities μ". But this is impossible according to Lemma
3. So μ satisfies (a) and, consequently, (d) of Lemma 1. Since μ is
defined for all subsets of G, it is trivially order-complete, so Lemma
2 now implies that μ satisfies (d'), that is, μ is convex.

3* Naturally measurable sets of integers* The following variant
of a result of Jerison [13] which is generalized in the next section
finds application below.

PROPOSITION 1. For an f defined on the infinite cycle group of
integers to be naturally integrable it is necessary and sufficient that

(1)

exists uniformly in j .

Proof. Since a function which satisfies the condition is plainly
averageable to a constant, Theorem 1 of § 1 yields the sufficiency of
the condition. For the necessity, let / be naturally integrable with
integral c, suppose \f\ <i 1, and let ε be positive. By Theorem 1,
of Section 1, there is an a such that a*f has all of its values in
the interval [c — ε, c + ε]. Choose n sufficiently large so that the
finite set β = {l,—-,n} is ε-in variant under a. By Lemma 1 of
Section 1, β*f has all its values in the interval [c — 2ε, c + 2ε]. Since
β*f is the function whose value at j is n~ιΣf(j + ί)(l <; i <; n), the
proposition is proved.

In contrast to the set of primes, the set S of square free integers
is not naturally measurable. For, on the one hand, S has a nonzero
density, namely Q/π2, as is well-known (see e.g., [12, Theorem 333].)
On the other hand, as will soon be verified, for n, there are n
successive integers none of which belong to S. This implies, in view
of Proposition 1, that, were S naturally measurable, its natural
measure would be zero. So to complete the proof of the above
italicized statement, only this lemma need be established.

LEMMA 1. For every positive integer n} there are n successive
positive integers each of which has a nontrivial square divisor.
Indeed, for any n distinct primes pu , pn, there is a positive
integer j such that j + i is divisible by p\, 1 ̂  i ^ n.
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Proof. That the system of n congruences j + i = 0 mod p , 1 ^
i ^ n, has a solution is an immediate consequence of the Chinese
Remainder Theorem. (See, for example, [12, Theorem 121].)

4* Convexity of natural measures • The theorem of this section
says that if G is any member of a well-known class of amenable
groups — possibly all — then its (left) natural measure is convex.
For earlier related results, see [2], [10] and [8].

The (left) natural measure of an amenable group G is simply
the restriction of any left invariant mean on G to the collection of
(left) naturally measurable subsets of G.

If H is a normal subgroup of G and GjH is isomorphic to Q,
then G is an extension of Q by H. If gf is a collection of groups
such that He ^ and Q e gf implies that gf contains every extension
of Q by H> then & is closed under extension.

Call 2^ directed if, for every (Glf G2) with GL e gf, i = 1, 2, there
is a G e g? which includes both Gλ and G2 as subgroups. If gf is
directed, then Vgf, the set-theoretic union of all G e ^ 7 , is obviously
a group. If, for every directed subset 3ίf of gf, V;)ίf e %?, then ΫJ
is closed under directed limits.

Call a group G accessible, and write G e ,£< if G 6 g^ whenever
gf satisfies this condition: gf is closed under both group extension
and directed limits and S? includes all finite groups as well as the
infinite cyclic groups. As is not difficult to verify, solvable groups
are accessible.

THEOREM 1. // G is an infinite, accessible group, then its natural
measure is convex.

The proof of Theorem 1 requires the introduction of a class of
groups which is shown to include J ^ the class of infinite, accessible
groups, and to be included in c<£\ the class of amenable groups whose
natural measure is convex.

A tiling τ of G is an ordered pair (β, J) where β and J are
nonempty subsets of G such that the set of all right-translates of
β by elements of J, or equivalently, the set of all left-translates of
J by elements of β, constitutes a partition of G. If \β\ < coy r is
proper.

A collection of proper tilings of G is adequate if, for all finite
subsets a of G and ε > 0, there is a tiling (β9 J) in the collection
such that β is ε-left invariant under a.

LEMMA 1. Every accessible group possesses an adequate collection
of proper tilings.
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Proof. Consider first the trivial case of a finite group, G. For
any eeG, (G, (e)) is a tiling of G, and this one-point set of tilings
is plainly adequate. Now consider G, the infinite cyclic group of
integers. For neG, n>l, let J—nG be the cyclic subgroup gener-
ated by n and let β be the set of n successive integers 1, , n. As
is easily verified, especially by reference to Proposition 1 of Section 3,
(β, J) is a proper tiling of G and the set of such tilings is adequate.

Assume next that H is a normal subgroup of a group G, that
H and GjH belong to the set, .^, of groups which possess adequate
collections of proper tilings. To see that Ge ^ , one may proceed,
thus. Let D be a finite subset of G and let ε > 0. Plainly, if π is
the canonical projection of G onto G/H, πD is a finite subset of G/H.
Since G/H e &, there is a tiling (βr, Γ) of G/H which is ε-invariant
under πD. Let β be a selection from β', that is, a subset of G with
the property that π is a one-to-one map of β onto β'. Plainly,
β~λDβ and, a fortiori, the intersection of H with β~ιDβ, is a finite
set, where β'1 designates, of course, the set of the inverses of the
elements of β. Since He^?, there is a tiling (a, J) of if which is
ε-invariant under H f] (β^Dβ). Now let / be an /'-selection, that is,
a subset of G with the property that π is a one-to-one map of / onto
/'. As is easily verified, (βa, JI) is a tiling of G. There remains,
therefore, only to verify that βa is (2ε)-invariant under D. For this
purpose, note first that \βa\9 the cardinality of βa, is simply the
product of \βI by \a\. Then fix d e ΰ and let βd be that subset
of β consisting of all 6* such that dδ* = bh for some beβ and some
feeff. Note next that \βd\ > (1 — ε)\β\, for /3' is ε-invariant under
diί. Now fix 6* e /3rf, so the relation db* = 6Λ determines unique
6 6 /3 and heH, and let α* be the set of a e a such that feα 6 a.
Since α is ε-invariant under h, \a*\ > (1 — ε) |α| . Recapitulating,
for δ* e βd and α e α*, db*a — δfeα = 6α; e βa. As the map (6*, α) -> δ*
α from β x α —> G is easily verified to be one-to-one, the set of δ*α,
6* eα, a ea such that db*a e/3α has cardinality at least (1 — ε)21β\ \a\
which exceeds (1 — 2ε)\βa\. So βa is 2ε-invariant under D, which
completes the proof that Ge^?.

Let G = VSίf where ^f is a directed subset of S .̂ Let ε > 0
and let a be a finite subset of G. Plainly, for some Heέ%f, aaH.
So, there is a tiling (β, J) of H which is ε-invariant under a. The
axiom of choice implies the existence of a subset K of G such that
(iϊ, If) is a tiling of G. As is now easily verified, (β, JK) is a thing
of G which is, of course, ε-invariant under a. Consequently, G e ^?.
So ^ is closed under directed limits.

[Incidentally, in view of Lemma 1, if it should prove possible to
construct a group which, on the one hand, satisfies F0lner's condition
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but, on the other, does not possess an adequate set of tilings, a
'new' amenable group would thereby be obtained. For the only
discrete amenable groups which seem to be presently known are
accessible.]

Proper tilings generate naturally measurable functions and sets,
as the next lemma suggests. If τ — (β, J) is a proper tiling of G,
define E(f\τ), the conditional expectation of f given τ, to be that
function /* defined on G such that, for each j e J, f* is constant on
βj and satisfies

(1) Σf*(g)(g e βj) = Σf(g)(g e βj) .

LEMMA 2. For any f and proper tiling τ, f is scissor-congruent
to E(f\τ). Consequently, if f is a bounded function defined on an
amenable group G and E{f\τ) is a constant, then f is naturally
integrable.

Proof. Consider first the special case that, for some beβ, f is
zero except possibly on bJ. For each a e β, let fa be zero everywhere
except on aJ where it agrees with E(f\τ). Plainly, fa is a left
translate of I/3Γ1/, so E{f\τ), the sum of the fa, is scissor-congruent
to /. For the general /, express / as the sum of functions fb, b e β,
where fb agrees with / or bJ and is zero everywhere else. By the
special case already considered, fb is scissor-congruent to E(fb\τ).
Since scissor-congruence is preserved under addition, /, the sum of
the fh, is scissor-congruent to E(f\τ), the sum of the E(fb\z).

LEMMA 3. // G is an infinite, amenable group which possesses
an adequate collection of proper tilings, then its natural measure
is convex.

Proof. Plainly, for any amenable group the collection Sέr of
its naturally measurable subsets is a linear space of sets on which
its natural measure v is order-complete. So, in view of Lemma 2
of §2, it will suffice to show that every naturally measurable subset
A of G can be split into two naturally measurable sets of almost
equal measure. With this aim in view, let / be the indicator function
A and let δ be a small positive number. As Proposition 2 of §1
says, for some finite subset a of G,

( 2 ) osc(α*/) < δ .

As will next be shown, the cardinality of a can be chosen arbitrarily
large. For, if not, choose an a of maximal cardinality such that (2)
obtains, and note first that for each g e G, ag, the right-translate of
a by g, is another a which satisfies (2). Moreover, since G is infinite,
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g may be so chosen that ag is disjoint from a. Plainly, a U ag
satisfies (2), which contradicts the assumed maximality of the car-
dinality of a.

By hypothesis, there is a tiling τ = (β, J) such that β is δ-
invariant under a. Consider the largest integer r such that, for every
jeJ, \AΓ\(βj)\^2r, and let B be a subset of A such that, for every
j e J, \Bf](Bj)\ = r. In view of Lemma 2, B is naturally measurable
with measure r/m where m is the cardinality of β. Plainly, v(B) —
r/m^v(A)/2. There remains therefore only to verify that if | α | ,
the cardinality of a, is sufficiently large, then v(A)/2 <; v(B) + 2δ.
For this purpose, notice first that for some j,2(r + 1) > \AΓϊβj\,
or, equivalently, that

(3 ) 2(r + l)/m > (β*f)(j) for some j e J .

Since β is <5-invariant under α, "α*/3" can of course be substituted
for 'a' in 2. So Lemma 1 of §1 implies that the oscillation of β*f
is less than 2δ. This certainly entails that β*f is everwhere greater
than its mean minus 25. This fact, together with (3), implies

( 4 ) 2(r + l)/m > v{A) - 2δ ,

for the mean of /3*/ is simply v(A). Recapitulating,

(r + l)/m + δ

= v(JB) + ί + 1/m .

So, to complete the proof of the lemma, there remains only to verify
that if \a\ is sufficiently large then 1/m < δ, that is, that 1 < δ\β\.
But, because β is ^-invariant under a, this last inequality is automatic
provided that l < S | α | , as is easily verified, thus. In the trivial case
in which \β\ ^ | α | , the conclusion is evident. In the remaining case,
1/31 < | α | . In this case, for each b eβ, there is some aea such that
ab is not an element of β. But β is δ-invariant under a. So δ >
1/1/51.

Plainly, Lemmas 1 and 3 together imply Theorem 1.

5* Two remarks* As has been noted, the naturally measurable
subsets of an amenable group form a linear space of sets. Therefore,
they are closed under disjoint unions, complements and proper diffe-
rences. But they are not closed under intersections, as the following
example shows. If A c Z is not naturally measurable, then neither
is 2A. Define C = {2n + 1: n$ A, n eZ}. If D = (2A) U C, D is easily
seen to be naturally measurable for, if τ = ({0, 1}, 2Z), E(D\π) == 1/2.
But neither Z) Π 2Z nor Z) U 2Z is naturally measurable.

If a function is measurable with respect to the naturally mea-
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surable sets, it is, of course, naturally integrable. But the class of
such functions is a proper subset of the class of naturally integrable
functions. For if g is any bounded, nonnegative function supported
by the even integers, then g — gx is naturally integrable but is not
measurable unless g is.
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unpublished work (of L. E. D.). The remainder of D. M.'s thesis, which he submitted
in partial fulfillment of the requirements of the Ph. D. degree at U. C. Berkeley, treats
of unrelated matters and D. M. plans to publish that portion separately.
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