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RATIONAL FUNCTIONS WITH POSITIVE COEFFICIENTS,
POLYNOMIALS AND UNIFORM APPROXIMATIONS

PETER B. BORWEIN

Upper bounds are established for the uniform approxi-
mation of continuous functions on [1, 0] by rational func-
tions with positive coefficients. These bounds are obtained
by rewriting polynomials with no positive roots as rational
functions with positive coefficients.

I. Introduction. The uniform closure in C[l, 0] of the set of
polynomials with positive coefficients includes only those functions
analytic in the unit disc whose power series expansions have non-
negative coefficients. The uniform closure of the set of rational
functions with positive coefficients consists of all continuous func-
tions which are never negative on [0, 1]. This is a consequence of
the following interesting factorization theorem.

THEOREM 1. (E. Meissner [3].) Suppose that p is a polynomial
with real coefficients and that p{x) > 0 for x > 0. Then there
exists a rational function r(x) with nonnegative coefficients so that
p{x) = r(x).

We will provide an accurate bound for the degree of the above
r in terms of the degree of p and some knowledge of the location
of the roots of p. We will also derive some estimates concerning
how efficiently polynomials can be approximated on [0, 1] by rational
functions with positive coefficients. We will exploit these results
to prove a number of approximation theorems. For instance: if /
is analytic in some neighborhood of [0,1] and positive on [0, 1],
then there exists a sequence of rational functions {rn} where each
rn is of degree n and has nonnegative coefficients so that ||/—rj|[o,i] =
0(arv*) for some a > 1.

We employ the following notation. Let Π» denote the poly-
nomials with real coefficients of degree at most n. Let Π ί be the
sub class of Π* whose elements have nonnegative coefficients. Let
j?ί+ denote those rational functions pjqn where pn, qn e Π ί For
/ 6 C[a, b] define

UAf'Aa,b]) = infJ\f - p\\ίa,bl

\\f
2)6 Π+

= inf\\ f - r \ \ [ a M
reR+ +
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where || J|[βf6] is the supremum norm on [a, b]. We note that all
the above infimums are attained.

2* Expressing polynomials as rational functions with non-
negative coefficients* The first two results of this section are
concerned with expressing quadratic polynomials as rational func-
tions in jβ£+ where m is as small as possible. The final theorem
is an extension of these results to general polynomials.

THEOREM 2. Suppose that a, β > 0 and suppose that x^—ax+β
has no positive roots. Then

(a) for each ε > 0 there exists a constant Aε so that

x2 — ax + β = rm{x)

where

M + and m <ί

(b) for ε = 1/14,

x2 - ax + β = rm(x)

where

4 1 "11/2+1/14

4 — a2/βJ/βJ

Proof. The quadratic x2 — ax + β has no positive root if and
only if α2 < 4/8. We set c = a2/β and note that 0 < c < 4. Consider

(α2 - ax + β)(x2 + ax + β) = x* + (2/3 - α2)α2 + β2

( }

If c ^ 2 we have the desired factorization. In general we proceed
as follows:

Define Cn inductively by

(2) Co = cv* and CΛ+1 = 2 - C2 .

Let

and let

Note that, by (2)
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α) - ^ + 2 - β2nClx2n+1 + 2/3* V " 1 1 + β*n+1

Consider the smallest n (if it exists) so that Cn is nonnegative.
Then, by (1) and (3)

(x2 - ax + β)(x2 + ax + β) = px

and

where P I ' ' ^ - I G Π ^ + M since each Ck < 0 for k<n and where
2>u 6 Π^+i since CΛ ^ 0. Thus, we have

(4) x*-ax + β= fx a x + β f —

Since 0 < c1/2 < 2 we deduce that CΛ —> 1. We wish to find a small
n as a function of C, so that

(5) C . ^ 0 .

Suppose that

(6) Cx, . . . , C . < 0 .

Then

Cn = 2 - (C.^)2 < 0

implies

( C U ) 2 > 2 and - C _ 1 > 2 1 / 2

implies

(CU)2 - 2 > 21/2 and -C»_2 > ( 2 + 21/2)1/2

and by iteration

( 7 ) c > 2 + (2+ (2 + 21/2)1/8)1/2 )1/2 - δΛ

where (equivalently) dλ = 2 and δΛ = 2 + δi'ii.

We are reduced to finding an n so that dn > c = α2/̂ S since, for
such an w (6) is contradicted and hence, (5) is satisfied.

Consider
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4 - 8n = 2 - δlίl, =
4 - 4 - V 2

2 + δlli, (2 + δι.«1)(2 +

( 8 )

It is now sufficient to pick n so that

7
( 9 )

A suitable choice is

(2 + 21/2

= 1 + int. part

log2

log2

7

4 - «*

(2 + 21'2)
^ 1 + Y log,

4 -
β

We deduce from (4) that

x2 - ax + β

where

2*+i < 4

4 - a
20

4--21

1/2+1/14

This completes (b). Part (a) is proved analogously with the observa-
tion that in (8), for k <n,

14 - δ
(2

Since SΛ-*4, we can replace (9) by

4
(4 - β) - /9

and the result follows as above.
The bound in Theorem 2 is "essentially" correct.

THEOREM 3. Let ak = 2 αwcί /5fc = 1 + 1/&2. //

aj? - akx + /Sfc - rm e JB++

then
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m
4 — _!±*L

Proof. We first show that if pn e Π ί then pΛ has no roots in
Tn = {a;: |arg (z) | < π/n}. Suppose pn(z) = Σ*=o a»«* where αΛ ̂  0.
Let ζ e {0 < arg (z) < π/n}. Then ah(ζ)h e {0 < arg (z) < hπ/n} and
hence, pn(ζ) e {im (z) > 0}. Thus, pΛ has no roots in Tn.

The quadratic x2 — aftx + βk has a root at 1 + i/k e Tk and we
deduce that if x2 — akx + βk = rme R++ then m > k. We finish the
result by observing that

4 -

THEOREM 4. Suppose pn e J[n has no roots in the region Ω(l/h) =
{z: I arg (z)\ < 1/h} and suppose that pn(x) > 0 for x > 0. Γftew,

(a) for each ε > 0 ίΛ-βrβ exists a constant Bε, depending only
on ε, so that

(b) /or β - 1/7,

m <: Bεh
a+ε)n

m

Proof. Let a;2 - αx + 7 be a quadratic factor of pΛ. We assume
α, 7 < 0 since otherwise x2 — ax + 7 has either nonnegative coeffi-
cients or a nonnegative root. We proceed to replace, using Theorem
2, each such factor by an element of Ri+.

Set 7 = l/4:(l/h2 + l)a2 + δ and set /3 - l/4(l/fe2 + l)α2. Since
x2 — ax + 7 has no roots in Ω(l/h) was see that \a2 — 4y\1/2 >̂ a/h
and 47 ̂  (1/h2 + l)a2 from which we deduce that δ ̂  0. Consider
a;2 - act; + β. By Theorem 2(b) a;2 - ax + β - rk e Ri+ where

k<20
4 -

/3

We now replace α?2 — ax + 7 by rk + 0. Since there are a maximum
of w/2 such quadratic terms to replace, we have

pn = rm eRi+ where m ̂  20A8/7(^/2) = 10h8/7n .

This completes part (b). Part (a) is proved analogously using
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Theorem 2(a) instead of 2(b).

3 . A p p r o x i m a t i n g polynomials* We es t imate how efficiently

polynomials in t h e class P. P. C. can be approximated by rat ionals

w i t h positive coefficients. A polynomial is in t h e class P.P.C.

(polynomials w i t h positive coefficients in x and (1 — x), see [1]) if i t

can be w r i t t e n Σakix
k(l — xY where aki ^ 0. We use th i s es t imate

and Theorem 4 to approximate polynomials w i t h no roots in a region

containing [0, 1]. We adopt t h e notat ion R.P.C. (rationals w i t h

positive coefficients in x and (1 — x)) for those rat ional functions

which are a quotient of two elements of t h e class P.P.C.

LEMMA 1. Suppose pn ~ Σ f c + i ^ αA i#
f c(l — xY is a P.P.C. of degree

n. Then there exists r(x)eRi£ so that for x e [0, 1),

ί r(x) - pn(x) I ^ nxmpn (x)
(1 — x)n

Proof.

Since a1 —

( 1 )

Let

We observe

— α")
1 + a;

hι = (α - 6)(α*

Π rV

that

1

. . . 4
/y

-* + <

(1 +

for cc

- x '"-1

m(l-

1 - x'

x«b +

a; +

6 10,

n.

L

1),

(1

=

• + x

~ X)

ab1"'1

1
M-l\t |

1 _

1 —

^ ixm .

1 + x +

and consider

r(x)=

Each t e r m of the above sum can be brought to the common denomi-

nator (1 + x + + xm~ιY and hence, r(x) e Jf2^«. Also, by (1),

\r(x) - pn(x)\ akix
hixm

( 2 )

Since

nxm
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k + ifL n (1 - xY

_ ~y _ P(g)

x)

we have

nxmp(x)
(1 - »)-

LEMMA 2. Suppose p and g are both P.P.C. of degree n. Then
there exists rei?2

4«m so that for any xe[0, 1], satisfying (l — x)n>nxm,

2nxm

— x)n — nxm q{x)
\p(x)/q(x)-r(x)\£

Proof. By Lemma 1 we can choose s and ί e Bϋ so that for
x e [0,1),

and

Then, for xe[Q, 1),

p(x) s(x) s(x)

- s(x)

nxn

(1 — *)"

2nxm p(x)
q{x)

s(x)(q(x) - t(x))
t(x)q(x)

nx™
(1 - x)*

s(x)

(1

t{x)

p(x) s(x)
t(x)

The result follows with r = β/ί.
We now prove an analogue of Theorem 4 for rationals in the

class K.P.C. Define a diamond-shaped region in the complex plane
G(a) by

G(a) = {z: I arg («)| ^ α} ^: |arg (1 - s)| ^

LEMMA 3. Lei ε > 0. Suppose pn e Πw
region G(l/h) and pn(x) > 0 for xe[Q, 1].

Λ(cc) = rm(x) where
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rm(x) is a R.P.C. of degree m,m^Bsh
a+ε)'n and Bε is the same

constant as appears in Theorem 4.

Proof. We write pn(x) = sk(x)tn_k(x) where sk e J[k has no roots
in {z: |arg(z)| ^ 1/h} and ί ^ e Π -t has no roots in {z: |arg(l—z)\<ί
1/h}. By Theorem 4,

**(«) = Uj(x)eRϊ+ where i ^ Bεh
a+ε)k

and since £m_fc(#) = <Zw_fc(l — x) where qm-k{l — x) has no roots in

{z: a r g («) ^ 1/λ},

tn_k(χ) = F,(l - α?) where V̂ a?) eBί + and i ^ Bεh
a+ε)(n - fc) .

We set rm{x) = 17̂ (3?) V^l — x) to complete the result.

LEMMA 4. Lei ε > 0. If pne J[n has no roots in the region
G(l/h) and pn(x) > 0 for $6 [0,1], then there exists reRtcmn where
c = Bεh

a+ε) so that for x e [0, 1),

provided (1 — #)CΛ

Proof. By Lemma 3, there exists s an R.P.C. of degree at
most en — Bεh

a+ε)n so that p — s. By Lemma 2, there exists r e
j?2

+

c;m so that

|p(aθ - | ( ) r ( ) | ^
(1 — ̂ )cw — cnxm

4* Approximating analytic functions* Let p > 1 and let Ep

be the closed ellipse in the complex plane with foci at 0 and 1 and
with semiaxes l/4(/> + p"1) and 1/4 \p — p~1\. S.N. Bernstein proved:

THEOREM 5. ([2] p. 76.) // / is analytic on Ep then there
exist polynomials pn e J[n so that

and pn-*f uniformly on Ep.

We show that positive analytic functions can be approximated
almost as efficiently by rational functions from the class R.P.C.

THEOREM 6. / / / is analytic and never zero on Ep and f(x)>0
for xe[Q, 1], then there exists a sequence of rne R.P.C, rn of degree
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n, so that for each ε > 0,

11/ -rJ|[Oi l] = 0(1/^)

where cε — ^ [ ( t a n " 1 ^ + /0~1)/2)]~(1+ε) and Bε is the same constant as
in Theorem 4.

Proof. By Theorem 5 there exists a sequence of polynomials
pn so that

( l ) I I / - P . I I [ . . I ]

and each pn has no zeros on Ep. We note that the region

2

and hence, by Lemma 3,

pn — rme R.P.C. where m <* Bε

The result is finished by substituting rm into (1).
We have the following two theorems for approximating analy-

tic functions by rational functions with positive coefficients.

THEOREM 7. Let 0 < p < 1. If f is analytic and never zero on
Ep and f(x) > 0 for x e [0, 1], then there exists a constant j so that

i2ί+(/: [0, p]) = 0(l/7'«)

where 7 depends only on p and δ.

Under stronger assumptions on / we recover exponential rates
of convergence.

THEOREM 8. Let 0 < δ < 1. Suppose that f(z) = Σakz
k, ak real,

is analytic in a region containing {z: \ z \ <̂  1} and suppose that

f(x) > 0 for x e [0, 1] .

Then there exists rj > 1 so that

Bn

++(f: [0, δ]) = 0(W)

where rj is independent of n.

Proof of Theorem 7. By Theorem 4, there exists a sequence of
polynomials pn e Π« s o
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( 1 ) Wf-Pn\\io.ii = θa/P*)

where each pn has no roots in Ep. Since G(taxrl[(p + p~1)j2] c Ep

we deduce, from Lemma 4 with h = l / t a n " 1 ^ + p"1)^] and m — in,
that there exists rkn e Riun2 so that

(2) \P»-r*J^

From (1) and (2) we have, for fixed ί sufficiently large,

Since kn ̂  2icn2, the result follows.
We need the next lemma in the proof of Theorem 8. Let Da

be the open disc of radius a centered at the origin.

LEMMA 5. Let β > a. Suppose f(z) = ΣϊU α*s* is analytic on
Dβ. Then, for z e Da,

±(sk(f:a)/ak)zk

•p(/y\ — fc=0

±zkla"
k=0

where sk(f: a) is the kth Taylor polynomial of f evaluated at a.

Proof Let

1 — z/a

Then,

Proof of Theorem 8. By assumption, / is analytic in some disc
Dβ where β > 1. Setting a = 1 in Lemma 5 yields, for z e Du
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Since /(a?) > 0 for xe [0, 1], there exist N so that for n^ N,
sn(f: 1) > 0 and so that Σ*U**(/: l)#fc is strictly positive on [0, ̂ >].
For m > JV set

( 1 ) rm(z) =
Σ>sk(f:l)zk

i2
sk(f:ΐ)zh

The second term of the right side of (1) is an element of i?i+. The
first term has a fixed numerator which is positive on [0, oo] and by
Theorem 4, there exists a constant A, independent of m, so that
this term is an element of ΛJίί. Thus, there exists A so that for
each m> N

We finish the proof by observing that

11/- - <r Mr ,Tm\\[0,dl

VII
>j Sk\J , ±)Z

oo

oo

Σ sfc(/: l)cr

Σ

+ II.

m

oo

Σ δ*

5, Approximating continuous functions* We prove the follow-
ing three theorems:

THEOREM 9. If f e C[0,1/2] and f ^ 0 on [0,1/2]

Λίί(/: [0,1/2]) ^ H/licoa/2^2— + 2ω(/, 1/i/n) .

THEOREM 10. ///eC[0,1/2], / ^ 0 on [0,1/2] ίfom /or
δ > 0 there exists Aδ depending only on δ so that

Ri+(f: [0,1/2]) ^ Aδω(f,

THEOREM 11. If feCk[Q, 1/2], / > 0 on [0,1/2] and f(k) elip>,
0 < α < 1, £&ew /or eαcfe δ > 0 there exists Aδ so that

: [0, 1/2]) ^

where Aδ is independent of n.

We have use the notation α>(/, •) for the modulus of continuity
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Of / .

We now collect the results we need to prove the above theorems.
For feC[0,1] we define the nth Bernstein polynomial by

Bn(x) = Bn(f: x) =

THEOREM 12. ([5] p. 15.) If feC[0,1] then

\\f(x) - Bn(f: αO||[0fl] ^ 2ω(/,

THEOREM 13 (Lorentz [1].) If feCk[0,1], / > 0 <m [0,1]
/ (Λ) 6 lip a, 0 < α ^ 1, £/&e?t £/&ere exists pn a P.P.C. of degree n so
that

where C is independent of n.

Proof of Theorem 9. We extend / to a continuous function on
[0, 1] by setting, for x e [0, 1/2]

Then the modulus of continuity of / on [0, 1] is the same as the
modulus of continuity of / on [0, 1/2].

Consider Bn the wth Bernstein polynomial for /. Since / is
nonnegative on [0, 1], Bn is a P.P.C. of degree n and ||JB»||[0fi/2] ^
||/||[o,i] Thus, by Lemma 1 with x ^ 1/2 and Theorem 12,

(Bn: [O, i- I B n -

^ 2 -- + 2α)(/f

Theorem 10 is a corollary to Theorem 9. We observe that it
suffices to prove Theorem 10 under the assumption that / has a zero
on [0, 1/2] and that under this assumption 2α>(/, l/ι/Ί^)^(l/^)| |/| | [ 0,1].
The result is now completed by choosing m — nδ for small δ, and
applying Theorem 9.

Theorem 11 is proved analogously to Theorems 9 and 10. We
first extend / to [0, 1] in such a way that / > 0 on [0, 1] and so
that/eC^O, 1] with / ( f c )elipα. We now approximate this extended
/ by a P.P.C. as guaranteed by Theorem 13 and proceed as in the
proofs of Theorem 9 and Theorem 10.
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6* Remarks*
(1) D. J. Newman and A. R. Reddy [4] show that the best

approximant to xn+1 from Ri+ on [0, 1] is a monomial axn and that

jRί+(0"+1: [0,1]) = m (a"+1: [0,1]) ~ e/n .

This should be compared to the fact ([2] p. 31) that

ΐ[*(x*+1: [0, 1]) = 2n .

(2) The restriction that / be strictly positive is essential in
Theorems 7 and 11.

LEMMA 6. Let 0 < a < β. If f(a) = 0

Proof. Let pjqn be a best approximant to/from Ri+ on [a, β]m

Then we can write

n

pjp) — Σ Uk%k where ak ^ 0 .

We have

Pn(β) = Σ ^Λ^fc = Σ -^T-akttk ^ -^—Pn(ά)

and hence,

-tin \J L̂ ? PJ/ =

Since

SM £ f{ά) + Ri+(f: [a, β])

we have

Rϊ+(f: [α, /3]) ^ /(/3) - ™^^ί+(/ K /5])

Suppose that / is continuous on [0, 1] and /(1/2) = 0. If we
set a = 1/2 and β = 1/2 + 1/2 w in Lemma 6 then
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*."(/: [MB * «

In particular
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