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COMPACT ENDOMORPHISMS OF BANACH ALGEBRAS

HERBERT KAMOWITZ

Let T be a compact endomorphism of a commutative semi-
simple Banach algebra B. This paper discusses the behavior
of the adjoint T* of T on the set X’ of multiplicative linear
functionals on B. In particular it is shown that N7**(X’) is
finite, thus generalizing the example of compact endomorph-
isms of the disc algebra.

0. Introduction and preliminaries. In this paper we discuss
maps which are simultaneously endomorphisms of Banach algebras
and compact operators. That is, these operators T are linear, satisfy
T(f9) = (Tf)(Tg) for all f and g in the algebra and map bounded
sets into sequentially compact sets.

As a motivating example, consider the disec algebra A, the sup-
norm algebra of functions analytic on the open unit disc D and
continuous on D. Every nonzero endomorphism 7 of A has the
form Tf = fop for fe A, where pc A and @ maps D into D. It
was shown in [3] that if @ is not a constant function, then 7T is
compact if, and only if, |@(z)] <1 for all zeD. Moreover, for
such @, if @, denotes its nth iterate, then N @,(D) = {z,} for some
z,€ D, and further the spectrum o(T') of T satisfies o(T)={(®'(z,))"|n
is a positive integer} U {0,1}. When ¢ is a constant function, the
range of T is one-dimensional and 7 is compact with o(T) = {0, 1}.

We will now consider compact endomorphisms of other Banach
algebras and study to what extent the properties of compact
endomorphisms of the disc algebra can be generalized. Our princi-
pal results will describe the behavior of the adjoint T* of T on
the maximal ideal space of the algebra.

We first introduce some notation and terminology. Let B be a
commutative semi-simple Banach algebra with unit 1 and maximal
ideal space X and, in addition, let 6 denote the zero functional on
B. If 0% T is a (necessarily) bounded endomorphism of B, then
the adjoint 7* induces a continuous function ¢ from X' = X U {6}
into itself in the following way. For xzeX, let ¢, B* satisfy
e.(f) = f(x), where f— f is the Gelfand transformation of B. It
is easy to verify that 7 *e, is multiplicative. There are two possi-
bilities. If T*e, # 0, then T%*e, = ¢, for some y€ X and we let
@(x) = y. For the second case, if T*e, =0, we let p(x) =0. We
also define () = 0. Since @ is essentially equal to T™* restricted
to the set of multiplicative linear functionals on B, @ is a continu-
ous funetion from X’ to X'; ¢ will be called the map on X or X’
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induced by T.

It is useful to note that if T1 =1, then T*e, = 0 for all xe X
since (T%*e,)(1) = ¢,(T1) = ¢,(1) = 1. Consequently, when T1 =1, ¢
maps X into X. On the other hand, if 71 s 1, then o(z) = 6 for
some x € X.

If »n is a positive integer, we let @, denote the nth iterate of
P, i.e., p(x) = ¢ and @,(x) = ¢(p,_,(x)) for x € X’. A routine topo-
logical argument shows that N®,(X’) is a nonempty compact subset
of X' and N ,(X’) is mapped onto itself by . Further, when X
is connected and T # 0, then T1 =1, whence » maps X into X,
N @,(X) is connected and @ maps N ¢,(X) onto itself.

In the first section we will prove some structure theorems
leading to the following theorem.

THEOREM 1.7. Suppose B i3 a commutative semi-simple Banach
algebra with unit 1 and maximal ideal space X and T is a mon-
zero compact endomorphism of B. If ¢ is the map on X' induced
by T, then N@.(X') 1s finite. If X is connected, then N@,(X) is a
singleton.

We recall that we have already characterized the compact
endomorphisms of the disc algebra. Moreover, it is easy to verify
that for any commutative semi-simple Banach algebra with unit 1
and maximal ideal space X, and any a ¢ X, the endomorphism 7': f—
F(a)1 is compact. Using Theorem 1.7, we will prove that if X is a
compact connected Hausdorff space, then every nonzero compact
endomorphism 7' on C(X) has the form 7Tf = f(a)l for some ac X.
Finally we will discuss some relations between the range ¢(X) of
the induced map @ of a compact endomorphism and the strong and
Silov boundaries of other funection algebras on X.

1. We begin with the following lemma dealing with the
spectral radius ||T||,, of a compact endomorphism.

LEMMA 1.1. Suppose B is a commutative semi-simple Banach
algebra with unit 1. If T 4is a compact endomorphism of B and
T is mot nilpotent, then ||T|,, = 1.

Proof. If B is semi-simple and )\ is an eigenvalue of any
endomorphism 7T of B, then for each positive integer =, A" is also
an eigenvalue. For, if 0% fe B and Tf =\f, then T(f*)=(Tf)"=
A f" # 0. On the other hand, when T is a compact operator, every
nonzero element in the spectrum o(T) is an eigenvalue [4]. Since
o(T) is a compact subset of the plane, it follows that if 7 is a
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compact endomorphism of B, then o(T)c {\||n] = 1).

It is easy to see that an endomorphism S of B is zero if, and
only if, S1 = 0. Thus an endomorphism 7T is nilpotent if, and only
if, T™1=0 for some positive integer m. Assume T is an endomor-
phism of B which is not nilpotent and set F, = T™1. Then for
each m, F, is a nonzero idempotent in B and so

L= [[Fulle = (T ]l S I T"L S N TI1IL]] -

Since this holds for all positive integers m, it follows that 1 =
lim, ., || T™||™ = || T||,,. Combining this with the first paragraph
gives that if 7 is a compact endomorphism of a commutative semi-
simple Banach algebra with unit, then ||T||,, = 1 if, and only if, T
is not nilpotent.

REMARKS. (1) Every quasinilpotent compact endomorphism of
a commutative semi-simple Banach algebra with unit is nilpotent.

(2) The hypothesis in Lemma 1.1 that B be semi-simple was
needed to indure that 0 # f € B implied 0 % f* € B for every positive
integer .

(8) If B is not assumed to be semi-simple, then any denumer-
able plane set ¢ with zero as its only limit point can be the
spectrum of a compact endomorphism of B. For, it is well known
that for each such ¢ there exists a compact linear operator T on
Hilbert space H with o(T) = 6. If multiplication is defined on H
by fg = 0 for all f, g€ H, then H is a commutative Banach algebra,
T is a compact endomorphism on H and o(T) = o.

The proof of the next lemma is straightforward.

LemMMA 1.2. Let B be a commutative semi-simple Banach algebra
with unit 1 and maximal ideal space X. If E is a monzero idem-
potent in B, then BE and Bl — E) are closed subalgebras of B
with units E and 1 — E, respectively, and B = BE @ B(l — E).
If Z = {x e X|E(x) = 1}, then the maximal ideal spaces of BE and
B(l — E) are Z and X\Z, respectively. Further, if T is an endo-
morphism of B with TE = E, then BE and Bl — E) are invariant
under T in the semse that T: BE — BE and T:B(1 — F)— B(1 — E).

LEMMA 1.3. Assume T is a momzero compact endomorphism of
a commutative semi-simple Banach algebra B with unit 1. Then
there exists a smallest nonnegative integer M such that TY1=T¥+1,
If T is mot wmilpotent, then E = T"1 is a nonzero idempotent in B,
TE=FE and B=BE@BQ1 — E) where BE and B(l — E) are
wmvariant under T and T is nilpotent on Bl — E).
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Proof. The lemma is trivial if T1 = 1. Also if T is nilpotent,
then T%1 =0 for some positive integer M and there is nothing
further to prove.

Assume T is not nilpotent and 71+ 1. Let X denote the
maximal ideal space of B and @ the continuous function on X’ =
X U {6} induced by T. For each positive integer =, let Z, = {xe
X|p,(x) =0}. (Since T1 # 1, Z, + ¢.) For each =, Z, is both open
and closed in X, 9(Z,) = Z,, and Z,C Z,,,. Also, o %(Z\Z,) =
P NZ)\P™Z)=Z:\Z, and, in general, p~"(Z,\Z,)=Zy+s\Zn+, for each n.

We assert that Z, = Z,,, for some positive integer M. To
show this, assume Z, = Z, and let G be the element in B such that
G is the characteristic function of Z\Z,. Such an element exists
by Silov’s Idempotent Theorem [1, p. 88] since Z,\Z, is a subset of
X which is both open and closed. By the definition of G, Gx) =1
if 2zeZ\Z, and G(z) =0 for all other zeX; therefore for each
positive integer k, T*G"(z) = G(p(x)) =1 if x e ™M Z\Z)) = Z,+,\Z,+,
and T*G"(x) = 0 otherwise. We will now show that if Z,.,\Z,,# ¢
for all positive integers %, then o(T) D {\||A] = 1} which will be a
contradiction since T is a compact operator. Thus assume Z,.,\Z,.,#
¢ for all positive integers k& and choose N with |[A|=1. Let =
be a positive integer and consider [[(A» + T)*G] (xz)| for some
X € Zpi\Dys, = 6. Then

2n 2 ~
0+ 6T @ = | § v ()16 | @

But if x€Z,,,\Z,+,, then T*G"(x) = 0 unless k¥ = n, and G, (@) =
(T"G) (x) = 1. Therefore

(2”> = l(zz)ém(w))

n

=[x+ TG @) =[x + T |G|

and so
2 1/2n
(*) ( :’) < [0+ Ty G .

If Z,., % Z,., for all n, we can find such an = for each positive
integer % and so (*) holds for all . Also lim,.. (i")lm =2. [2,
LemMA 1.2]. Then letting n — < in (*) gives

2,n 1/2n
= lim< " > < lm |0+ Ty = ||n + Tlls,

n—>00

for all A, |A] =1. However, from Lemma 1.1, ||T||,, = 1. There-
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fore if |n| =1, then aneo(T) and, as a result, every point in
{MIn] =1} is in o(T), a contradiction. Therefore the assumption
that Z,.,\Z,+, # ¢ for all positive integers %k is false and so there
is a least positive integer M for which Z, = Z,...

Now let EF = T¥1. Since T is not nilpotent, F is a nonzero
idempotent in B. Also {weX|E(@) =1} = {zeX|(T"1) () =1} =
{x e X|py(x) # 0} = X\Z, = X\Zy, = {we X|Pun(®) # 6} = {x e
X[(T" 1) (x) =1} = {xe X|(TE) (x) = 1}. Therefore TE = E.

From Lemma 1.2, we have that BE and B(1 — E) are commuta-
tive semi-simple Banach algebras which are invariant under 7'. The
final assertion in the lemma that T is nilpotent on B(1 — E) follows
from the fact that (1 — E) is the multiplicative identity in B(1—E)
and T"1 - E)=T"1 - T"E=FE—FE=0.

REMARK. Lemma 1.3 shows that £ = T%1 is an eigenvector of
T in B and so 1€0(T) unless T is nilpotent.

Next suppose S is a nonempty closed subset of the maximal
ideal space X of a commutative semi-simple Banach algebra B with
unit 1. Then the kernel of S, ker (S) = {f € B| f(t) = 0 for all teS}
is a closed ideal in B and B, = B/ker (S) is a commutative semi-
simple Banach algebra with unit. If X, denotes the maximal ideal
space of B,, then X, is the hull of ker(S), ie., X, ={xecX|fe
ker (S) implies f(x) =0}. X, is a closed subset of X and Sc X,C X.
Further, if ze€ X, and f = f + ker (S) € B/ker (S), then f (x) = f(w)
[1, p. 12].

Now let T be an endomorphism of B with 71 =1 and ¢ the
map of X — X induced by 7. Clearly, if ©(S)c S, then ker (S) is
invariant under 7. Also if o(S)c S, then o(X,)c X,. For, if
P(S)c S, feker(S) and xze X,, then Tfeker(S), which implies
(Tf)(z) =0 and this, in turn, implies f(p(x)) =0, i.e., if xe X,
then @(x)e X,. Thus ¢(X,)cC X, if o(S)cS.

Furthermore, if ker (S) is invariant under 7, then T induces
an endomorphism 7 of B, into B, defined by Tf = Tf for fe B,
Let @ be the map on X, induced by 7. Then by definition,
(TF) (x) = f(P®)) for all x € X,. We claim that @ = @[,. To this
end, let ze X,. Then o)< X,, and so £ (d@))=(Tf) (@)= (Tf) (x)=
(TF)(x) = f(@(x)) = F(p(x)). Since this holds for all fe B,, it follows
that @(x) = @(x) for each x € X,, as claimed. We remark, too, that
if T is a compact endomorphism, so is 7 [4].

With these observations we now prove the following.

LEMMA 1.4. Assume B 1s a commutative semi-simple Banach
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algebra with unit 1 and maximal ideal space X and suppose T 1is
a compact endomorphism of B with T1 =1. If @ is the map on
X induced by T and & = N (X), then & is a nonempty compact
subset of X and @ maps . onto itself. Let ker (&) = {f|f(x) =0
Jor all x €.’} and set B, = Blker (&). Then B, is a commutative
semi-simple Banach algebra with unit, and X,, the maximal ideal
space of B, satisfies & c X,c X. If T is defined on B, by Tf =
Tf for feB, then T is a compact endomorphism of B, and o(T)c
(MM =1 U{0). Also, if @ is the map on X, induced by T, then
ﬂé"n(Xl) = .

Proof. The properties of B, were discussed before the state-
ment of the lemma. Also ¢ maps X into X since 71 =1, and we
have already noted in the introduction that ¢ maps . onto &.

To prove that o(T) < {\||n| = 1} U {0}, suppose the contrary that
there exists %, 0 < [n| <1, neo(T) and Tf = rf. For each xe.&
there are two possibilities.

(1) There exists a positive integer N such that @y (x) = . In
this case (T¥f) (&) = f (@y(®) = F(x) and also (T¥f) (x) = N (x).
Therefore f(x) = A (), and since |A| <1, F (&) = 0.

(ii) For all n, p,(x) = x. Since @, and therefore @, maps &
onto itself, we can choose distinet ¢,c.” satisfying &,(,) = «.
Thus if Tf=)F, then (T*f)(t)=F(P.(.))=F"(x), while (T*f) (t,)=
A (), also. Since |||l <co and A* — 0 it follows that f (x) =
A f(t) — 0. Hence if @,(x) # 2 for all n, then f (x) = 0.

Thus we have just shown that if 0 < |\| <1 and Tf=\f, then
7 () =0 for all xe.5”. But this implies f = 0. Therefore all the
nonzero eigenvalues of T lie on the unit circle.

All that remains to be shown is that & = Nn@,.(X). Now,
NP (X) = NP (X,) since » = @|y,. Therefore & = N@,(X)D
N P.(X) = NPL(X)DS which proves that & = N@.(X)).

LEMMA 1.5. Suppose B is a commutative semi-simple Banach
algebra with unit 1 and maximal ideal space X. Let T be a com-
pact ‘endomorphism of B with o(T) ={0,1}. Then there exists a
finite set of idempotents, {E,, ---, E,}, in B with the following pro-
perties.

(i) {#, ---, E,} forms a basis for 4 ={f|Tf=f} and
E.E; = 0,E,;.

(ii) ¥ E=3pr . E, then B=BE, P --- O BE,P Bl — E).

(iii) For each k, k=1, ---, m, BE, is a closed subalgebra of B
with multiplicative identity E,. Also BE, is invariant under 7T and
all the eigenvectors of T in BE, corresponding to 1 have the form
cE,, ¢ complex.
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(iv) If E=3pr, K, then B(1 — E) is a closed subalgebra of
B with multiplicative identity 1 — E. Bl — E) is invariant under
T and T is nilpotent on B(1 — E). Also T*1 = E for some positive
integer M.

(v) If TL=1, then 7, E, =1 and B= BE, &} --- @ BE,,.

Proof. (i) Since o(T)=1{0,1}, " ={f|Tf = f}+ (0). Also
4" is closed under multiplication since T(fg) = (Tf)(Tg) = fg
whenever f,ge._#". Further, since T is a compact operator, _#~
is finite dimensional. Therefore _#" is a finite dimensional commu-
tative semi-simple Banach algebra and hence there exist idempotents
E,-.---,E, in _¢ which form a basis for _#~ and which satisfy
E.E; =6,;E;. We note that since E,e ¢+, i1 =1, ---, m, B, must be
an eigenvector of T with TE, = E,.

(ii) Suppose E =>p K, Then 1= >7r,E,+ (1 — FE) and so
for each feB, f=3>r.fE,+ fQ1 —E). Thus B=BE, + --- +
BE, + B(1 — E). Further, since E.E; =06,;E; and E(1—E)=0
for all 4, it is easy to verify that f can be uniquely represented in
this form. Therefore B= BE, & --- ® BE, P BQ1 — E).

(iii) In view of Lemma 1.2 all that remains to be demonstrated
here is that all the eigenvectors of T in BE; corresponding to 1
have the form cE;, ¢ complex. Now, if T(fE;) = fE;c BE;, then
fE;e 4" sothat fE;=>", a.F,;. Therefore fE;=fE;=C1", a,E)E;=
a;F; as claimed.

(iv) B — E) is a closed subalgebra of B which is invariant
under T since TE = E. Also, since o(T') = {0, 1}, in order to prove
that T is nilpotent on B1—FE), it suffices to show that T(f(1—F))=
f@ — E) implies f(1 — E)=0. But, if T(f1 — E)) = f1 — E),
then f1—FE)e 4+ NBA—FE)=(0). Hence T is nilpotent on B(1—K)

and so there exists a positive integer M such that T%(1 — E) =0
or, equivalently, T¥1 = T*E = E.

(v) If T1 =1, then 1=T%1=F from (iv). Therefore 1—E=0

and B= BE, & --- P BE,,.

REMARK. The decomposition B= BE, H:--- BE, P B1 — E)
leads to a splitting of the maximal ideal space X of B into disjoint
open and closed subsets Y, ---, Y., ¥, of X where Y, = {z|E,(z) =
1}, k=1, ---,m and Y = X\Upr, Y,. Further, Y, is the maximal
ideal space of BE, and Y is the maximal ideal space of B(1 — E).
If @ is the map on X U {6} induced by T, then (Y, )C Y, k =
1, .-+, m, and o(Y,) = Y,. The last equality holds since TE,=F,.

The next lemma describes the behavior of T* on each Y,.
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LEMMA 1.6. Suppose B is a commutative semi-simple Banach
algebra with unit 1 and maximal ideal space X. Let T be a com-
pact endomorphism of B with the property that o(T) = {0, 1} and
the only eigenvectors corresponding to 1 are the constants. If @ is
the map on X induced by T, then ® maps X into itself and there
exists a unique element Te X such that o(X) =2Z. Furthermore,
lim,_.. f(@.(¥)) = F&) for all ye X and feB, and NP.(X) = (7).

Proof. The map @ takes X into itself since T1 = 1.

Since T is a compact operator and the space of eigenvectors
corresponding to 1 is one-dimensional by hypothesis, B can be
written B=R, @ N, where R, ={(T—I1)f|fe€B} and N,={f|Tf = f}
=(¢). The closed subspaces R, and N, are invariant under T [4].

Further, T is quasinilpotent on R,. For, if geR, and Tg =g,
then ge N,N R, = (0). Therefore 1 is not an eigenvalue of 7 on
R,. Also there are no other eigenvalues of T on R, since each
eigenvalue of T on R, is an eigenvalue of T on B and o(T) = {0, 1}
by hypothesis. Thus T is quasinilpotent on R, and so

; WTYT — DFIN"™ _y; wlltin —
lim (s =gy ) = m Il =0.
Therefore for each ¢>0 there exists P*>0 such that ||T*(T—-1)f||<
P*e*||(T — I)f|| for all positive integers n and all feB. Then
letting P = P*||T — I|| we have ||T™(T — I)f|| < Pe"||f|| for all
positive integers » and all f cB.

Now fix ze X. For each feB, |f(@.u®) — F(@.@)| = [T —
DT (@u@)| = [ITYT — DfT @) = IT*T — Df|| < Pe|| f]| for all
positive integers m. Therefore {f(p,(x))} is a Cauchy sequence of
complex numbers and so lim, .. f(@.(x)) exists for each feB. Let
I(f) = lim, ... f(®,(x)). Then it is easy to verify that [ is a linear
multiplicative functional on B. Also [ # 6 since T1 =1 implies
(1) =1 0. Consequently there exists Z € X defined by f(a?) = I(f)
for all feB and thus lim,.. (T"f) (z) = lim,_. f(®.(x)) = f(Z) for
all feB. Also TfeB, and so lim,_. (Tf) (p.(x) = (Tf)"(x) for all
f € B; this implies lim, .. f(@(p.(@))=F(®&)). However,

lim f(@(p,(x))) = lim f(P,+.(x)) = /(@)

N-»00

for all feB. Therefore f(¢(z)) = f(® for all fe B which proves
that z is a fixed point of .

We next show that Ne.(X)={z}. To this end, let M; =
{F1f@®) = 0}). Since @) = %, the closed maximal ideal M: is invariant
under 7. Also 1 is not an eigenvalue of T'|,.. For, if there exists
feM; with Tf = f, then f is an eigenvector of 7 which must
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equal a constant ¢, say, by hypothesis. But ¢ = 0 since the only
constant in M; is 0. Since o(T) = {0, 1}, T is quasinilpotent on M;.

Now let y be an arbitrary element in X. Since f — f(Z)l e MZ
and T is quasinilpotent on MZ we have that

lim | f(puw)) — F@) | = lim | T*(f — F@)1) )" = 0.

Using an argument similar to one used in the first part of this
proof, it can be shown that for each ¢ > 0 there exists P, > 0 such
that | f(@.() — f(®@)| < Pe*||f]| for all feB,n >0 and ye X. This
implies that if % is an open subset of X with 7 € %/, then ¢, (X)C %
for large n. Therefore N, (X) = {Z}. It now follows easily that
% is the only fixed point of ¢.

(The uniqueness of T also follows from the fact that the dimen-
sions of {f|7Tf = f} and {{€ B*|T*l=1} are equal. Since {f|Tf=f}
is one dimensional, once we have shown that Z is a fixed point of
@ in X, then it must be unique.)

We now combine these lemmas to prove the following.

THEOREM 1.7. Suppose B is a commutative semi-simple Banach
algebra with unit 1 and maximal ideal space X and T is a mon-
zero compact endomorphism of B. If @ is the map on X' = XU{6}
induced by T, thenm N@,(X') s finite. If X is connected, then
Ne.(X) 18 a singleton.

Proof. If T is nilpotent, then N, (X') ={6} and there is
nothing further to prove.

Assume T is not nilpotent. From Lemma 1.3 there exists a
smallest positive integer M and a nonzero idempotent F = T¥1 with
the property that TE = E, T: BE — BE and B = BE® BQ — E).
Also Zz{xeX]E'(x)-—- 1} is the maximal ideal space of BE, (Z)CZ
and @, X\Z - 1{0}. Let & = N, (Z). Since Ne,(X') = L U{6} it
suffices to prove that & is finite.

Consider T on BE. Since E is a unit in BE and TE = E,
Lemma 1.4 implies that 7 induces a compact endomorphism 7 on
B, = BE/ker (&) which satisfies TE = E and o(T)c{:|[M] = 1}U
{0}. Letting X, denote the maximal ideal space of B, and @ the
map on X, induced by T, Lemma 1.4 also implies .& = N&,.(X)).

Since T is a compact endomorphism on B, and o(T)c{\||n| = 1}
U {0}, each nonzero eigenvalue of 7T is a root of unity and so
there exists a positive integer N for which o(T") = {0, 1}. Also
TE = E implies TYE = E. Therefore TV is a compact endomor-
phism of B, with ¢(T") ={0,1} and by Lemma 1.5, B, can be
written B, = BE, @ --- @ B,E,, where E=3>" FE, E, are idempo-
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tents in B,, T"E,= E, and all the eigenvectors of 7" on B[E,
corresponding to 1 have the form cE,, ¢ complex. We also have
that X, = Y,U---UY, where Y, is the maximal ideal space of
B.E,. It is clear that », is the map on X, induced by T* and
so we have that @y(Y,)cCY,, k=1, .-, m. Thus N@Py,(X) =
N @w( Yl) U---un @’\n( Ym) _ _
Now using the fact that all the eigenvectors of 7% on BE,
have the form c¢E,, ¢ complex, it follows from Lemma 1.6 that
there exist z,e¢ Y, with NPy (Y,) = (&), £ =1, ---, m. Therefore

‘g’ = ng)'n(Z) = n@fm(Xl) = n@an(Xl)
= m q_)Nn( Yl) U e U n (7)4\'7»( Ym)

= {Ely 7‘,7/;m} .

Thus .&” is finite and hence N, (X’) is finite, as needed.

Finally, if X is connected, then the only nonzero idempotent in
B is 1. In this case T1 =1 and therefore @ maps X into itself.
Hence S = No,(X) is connected and since S is finite, S must be a
singleton.

2. We conclude with several miscellaneous theorems and ex-
amples relating to compact endomorphisms.

It was noted in the introduction that if a is a specific point in
the maximal ideal space of a commutative semi-simple Banach
algebra with unit 1, then the map T:f— f(a)l is a compact endo-
morphism of B. We will show that if X is a compact connected
Hausdorff space, then every nonzero compact endomorphism of C(X)
has this form. We also show that the same is true for C', the
algebra of functions on [0, 1] with continuous first derivatives. We
will begin this section with a theorem about compact endomor-
phisms of function algebras.

Recall that a function algebra is a sup-norm closed subalgebra
of continuous functions on a compact set X which separates points
of X and contains the constants. A peak set of a function algebra
is a closed subset E of X for which there exists a function f in
the algebra with ||fl| = f() =1 for xeE and |f(x)] <1 for xz¢
X\E. A generalized peak point is a point x, in X such that {x,} is
an intersection of peak sets, and the strong boundary of a function
algebra is the collection of generalized peak points. Further, if W
is a G, subset of X containing a generalized peak point 2, then
there exists a peak set £ with x,e EC W [1].

THEOREM 2.1. Let X be a compact connected Hausdorfl space
and suppose B is o function algebra on X whose maximal ideal
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space s X. Further, assume 0+ T is a compact endomorphism
of B with @ the continuous function on X induced by T. If o(x,)
1s a generalized peak point of B for some x,€ X, then Tf = f(p(x,))1
for all feB.

Proof. Assume @(x,) is a generalized peak point of B. The
claim is that o(x) = @(x,) for all xe€ X. Suppose the contrary that
there exists y € X with o(y) # o(x,). Since o(x,) is a generalized
peak point, there exists a peak set E such that ¢(x,) € £ and ¢(y) ¢
E. For this set E, let feB satisfy ||f]|= f(x) =1 for all xeF
and | f(x)| <1 for x ¢ X\E. Further, let f,=@G1+ f))*. Then ||f.|l =
1 and since T is a compact operator, there exist a subsequence {f, }
and a function g € B with Tf, —g¢g uniformly. Clearly lim,..G1 +
f@)*=1if f®) =1 and lim,. .. GAL+ f@)"=0 if f(z)+ 1.
Since g(x) = lim,_., (31 + f(e@))* for xc X, the continuous func-
tion g can assume at most two values, 0 and 1. However, the
domain of ¢ is connected. Hence g must be constant. This leads to a
contradiction since if o(y) ¢ E, then g(y) =lim,.., 31 + f(e®#))"* =0
while g(z,) = lim,_., 31 + f(®(x))))* = 1. Therefore o(x) = @(x,) for
all ¢ X as claimed.

If X is a compact Hausdorff space, then every ze X is a
generalized peak point of C(X). Consequently, we have the follow-
ing immediate corollary of Theorem 2.1.

COROLLARY 2.2. If X is a compact connected Hausdorff space,
then every monzero compact endomorphism T of C(X) has the form
Tf = f(x)1 for some x,€ X.

THEOREM 2.8. Let C* be the algebra of functions on [0, 1] with
continuous first derivatives, pointwise arithmetic operations and

AL = Fflle + 1 f lle. Then every momzero compact endomorphism
T on C*' has the form Tf = f(e)l for some ¢ €[0, 1].

Proof. Let T be a compact endomorphism of C* and @ the map
on [0, 1] induced by 7. Then e C'. We claim that @ is a constant
function. Suppose @ is not constant. Then there exists a (0, 1)
with @'(a) # 0. Let b = @(a). Then bec(0,1). For each positive
integer n, let f,(x)= S e -v"dt,  Then f,€C! SUDocss: | ful®)| =
1 0

et <1 and SuDes.s, [fi(%)| = SuPez.s 7" = 1. Therefore
0
[|fall <2 for all n. Since {f,} is a bounded set in C* and 7T is a
compact endomorphism, there exist geC* and {f,,} with Tf, —g.
In particular ¢’ is continuous and (Tf,,) — ¢’ uniformly. Now
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(Tf,) (@) = f.,(P@)P'(x) = e~=¢"p(z), and hence

g'(a) = lim e+~ "¢'(a) = ¢'(a) .

Since @(a) = b, g’(a) = 0. However, since @'(a) # 0, P(x) # b in some
deleted interval about a, and so it follows that

gl(x) — Ilcim e—nk(b—ﬁ»’(x))2¢’(x) =0

in that deleted interval. This is a contradiction to the continuity
of ¢’ Hence @ =0 and @ is a constant function. Therefore

(TF)x) = f(px) = f(c) for some ¢€[0, 1] and so Tf = f(c)1.

Modifications of the statements and proofs of Theorem 2.1 and
Corollary 2.2 for disconnected X are straightforward. For example,
if X is an arbitrary compact Hausdorff space and T is a compact
endomorphism of C(X), then there exist a finite number of idempo-

tents £, ---, E, in C(X) and points ¢, ---,t,eX with Tf=
S f@GOE., where © is a permutation of the set of integers
{1’ Y m}

There is a similarity between Theorem 2.1 and the example of
the disc algebra, namely, that in both cases the range of a non-
constant @ does not intersect the strong boundary. However, it is
not possible to extend this by replacing strong boundary with
Silov boundary as the following example shows. (C and R denote
the complex and real numbers, respectively.)

ExamprLeE. Let X be the subset of € X R defined by X =
{(z,0)||2] =1} U{(0,t)|]0 =t =<1} and let B = {feC(X)|z— f(z, 0) is
analytic}. Then B is a function algebra whose Silov boundary is
{(z, O)l|z| =1} U{(0, t)|0 < ¢t <1}. The point (0,0) is in the Silov
boundary, but is not a generalized peak point. Define ¢ on X by
P(z, 0) = (2/2, 0) and (0, t) = (0, 0). Then it is easy to verify that
T:Tf = fop is a compact endomorphism of B and @(0, 0) = (0, 0) is
in the Silov boundary. However T does not have the form Tf =
f(0, 0)1. Note, though, that Ne,.(X) = {(0, 0)}.

Another reasonable conjecture from the example of the dise
algebra might be that if 7T is an endomorphism of a function
algebra B on X for which @(X) does not intersect the Silov
boundary, then T is compact. This, too, is not true.

ExampLE. Let X ={(0)||2]=1 and 0<¢t<1} and let B=
{feC(X)|z— f(z, t) is analytic for each ¢}. The Silov boundary of
B is {(z t)]]z] =1,0<t <1}. Define @ by @z, t) = (2/2,t). Then
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(X)) ={#0]|z] £1/2, 0t <1} does not intersect the Silov
boundary, yet Tf=fo® is not compact since, for instance, N@,(X)=
{0, t)|0 =t < 1} is not a singleton.

As a final example along these lines, we note that even if
N, (X) is a singleton, the endomorphism 7'f = fop need not be
compact. For, let B = C(D), the algebra of continuous functions
on the closed unit disc D and let @(z) = 2/2. Then No,(D) = {0},
while Tf = fop is not compact because, as we have seen, each
compact endomorphism on C(D) has the form Tf = f(a)l for some
acD.
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