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ENDS OF FUNDAMENTAL GROUPS IN SHAPE
AND PROPER HOMOTOPY

MICHAEL L. MIHALIK

The number of topological ends of the universal cover of
a finite complex, K, is either 0, 1, 2, or oo and only depends
upon the fundamental group of K. Call this number e(K). We
wish to define numbers e(X) for compact metric spaces analo-
gous to e(K). To accomplish this we extend the theory of ends
for finitely generated groups to certain inverse sequences of
finitely generated groups and their inverse limits. Classifica-
tions for these inverse sequences and their inverse limits
analogous to those for finitely generated groups are derived.
Whenever the fundamental pro-group of a compact metric
space, X, satisfies certain properties, we obtain a shape in-
variant number e(X) (either 0, 1, 2 or oo) and analyze what
e(X) describes geometrically.

1* Introduction* The number of ends of a topological space
was introduced by Freudenthal in [8]. Let X be a locally compact
separable metric space. Let {CjΓ=i be a collection of compact sub-
sets of X such that Ci(zint(Ci+1) (the interior of Ci+1) and UΓ=i Ct = X.
The cardinality of lim {πo(X — C*)} (where the bonds are induced by

inclusions) is the number of ends of X. This number is independ-
ent of the choice of the C*.

In [10] Hopf proves:
( i ) The universal cover, K, of a compact polyhedron has either

0, 1, 2, or oo-ends.
Call this number e(K).
(ii) If Kx and K2 are compact polyhedra and πx{Kx) — πx(K^)

then e{Kx) = e(K2).
This paper is motivated by the desire to extend Hopf's theorem

to compacta i.e., if X is a compact connected metric space we would
like numbers e{X) analogous to Hopf's e(K). In §5 we accomplish
this for a large class of compacta, with e(X) a shape invariant of
X. Geometrically e(X) is counting the number of ends of the uni-
versal covers of certain compact polyhedra associated with X. We
also derive sufficient conditions to obtain a space, X, associate with
X (analogous to the universal cover of K) so that the number of
ends of X is e{X). This X will reduce to the universal cover
whenever X is LC° and semi-locally 1-connected. With mild re-
strictions we show if X and Y are pointed homotopy equivalent
then X and Ϋ are pointed proper homotopy equivalent.

Let Y be a locally compact separable metric space with one
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end, and {CJ a collection of compact subsets such that Ci(zmt(Ci+L)
and \JT=ίCi= Y. If the inverse sequence {πx(Y — CJ} (with bond-
ing homomorphisms induced by inclusions and proper attention to
the base points) satisfies conditions described in § 3 then a theory for
the number of ends of the fundamental group of the end of Y can
be derived. It is a well-known conjecture that these conditions are
satisfied whenever Y is the universal cover of a finite complex. We
do not explore this avenue in this paper although the basic tools
are implicitly evident. This is one reason for the words "and pro-
per homotopy" in the title of the paper.

The results of Freudenthal [8] and Hopf [10] led to the follow-
ing group theory:

If G is a finitely generated group there is a number, e(G),
called the number of ends of G such that:

( i ) e(G) is either 0, 1, 2, or oo.
(ii) If K is a compact polyhedron and πλ(K) = G then e(G) =

e(K).
(iii) e(G) = 0 if and only if G is finite.
(iv) e{G) = 2 if and only if G has an infinite cyclic subgroup

finite index.
(v) (Stallings) e(G) = oo if and only if G is an amalgamated

free product or HNN extension of a certain type (see § 3).
(vi) e(G) = 1 otherwise.
Our methods naturally lead us to generalize these results about

ends of groups in two ways: to suitable inverse sequences of groups
(objects in the category of pro-groups) in § 3, and to suitable
topological groups in § 4. [All this is carefully explained in those
sections, but a reader familiar with the shape theory of compacta
will not be surprised that we approach the desired geometrical
theorems about e{X) through inverse sequences of groups and/or
their topological inverse limits.] The geometrical theorems, describ-
ed above, are in § 5.

Finally, there are several unexpected features, two of which
are:

1. The compacta for which e(X) is defined are pointed 1-mov-
able (the fundamental pro-group is Mittag-Leffler (M-L)), and the
bonding homomorphisms (of the fundamental pro-group) have finite
kernel. Although the pointed 1-movable condition is a frequently
used concept the finite kernel condition has not previously been
used. We call this condition Mittag-Leffler finite (MLP).

2. 2-ended finitely generated groups can be classified as those
with a normal infinite cyclic subgroup of finite index. In § 4 we
describe a 2-ended topological group with no normal infinite cyclic
subgroup of any sort.
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3. The condition MLF is not an ad hoc condition. The class of
compacta with MLF fundamental pro-groups appears to be the na-
tural class for a theory of ends.

The content of this paper is taken from the author's disserta-
tion written at the State University of New York at Binghamton
under the direction of Ross Geoghegan.

2* Ends and homomorphisms with finite kernel* All groups
considered in § 2 will be finitely generated.

Let G be a finitely generated group with specified generators
(91, m",9n}' Construct a 1-complex L(gl9 ••-,</„) with one vertex
for each element of G and one edge joining verticies a and b if agt = b
for some i e {1, 2, , n). The number of ends of L(glf , gn) (see
§ 1 for the meaning of this) does not depend on the choice of
<7i, •• ,flr. [10].

DEFINITION. The jiumber of ends of G is the number of ends
of L(gί9 , gn) in the topological sense.

Proofs of the following two theorems can be found in Stallings
[14] (p. 54 and p. 38 respectively).

THEOREM 2.1. A finitely generated group has either 0, 1, 2 or
cv-ends.

THEOREM 2.2. A finitely generated group has 2-ends if and
only if it has an infinite cyclic subgroup of finite index.

As a companion to these two theorems we state the trivial:

PROPOSITION 2.3. A finitely generated group has 0-ends if and
only if it is finite.

The main result of this section is the following:

PROPOSITION 2.4. If G and H are finitely generated groups and
f:G—>His an epimorphism with finite kernel then G and H have
the same number of ends.

The proof will be done as a sequence of lemmas.

LEMMA 2.5. If f is as in 2.4 then G is 0-ended if and only if
H is 0-ended.

This is trivial.
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LEMMA 2.6. Let G be 2-ended and letf: G —> Hbean epimorphism
whose image H, is infinite then H is 2-ended and f has finite
kernel.

Proof. Let a be a generator of Za> an infinite cyclic subgroup
of finite index in G. Let [&J, •••, [xn] be the right cosets of G/Za.
(p e [%i] if and only if p = akXi for some integer k.) f(a) has infinite
order in H, since if not H would be finite, contrary to assumption.
It suffices to observe that if b and c are in the same right coset of
G/Za then f(b) and f{c) are in the same right coset of H/Zfia) i.e.,
there are at most n right cosets in H/Zfla).

To see / has finite kernel, one need only observe that / is 1-1
on the elements of a right coset [xt]. I.e., for k Φ m f{akx^) =
(f(a))kf(Xi) Φ (f(a))mf(Xi) = f(am%i) since f(a) has infinite order in H.

LEMMA 2.7. Let H be 2-ended and let f: G —> H be an epimor-
phism with finite kernel then G is 2-ended.

Proof. Say x generates Zx an infinite cyclic subgroup of finite
index in H. If y e f~\x) then y has infinite order in G and / maps
each right coset of G/Zy bijectively to one of G/Zz. Thus if G/Zy

were infinite / would not be finite-to-one i.e., / would have infinite
kernel, contrary to assumption.

LEMMA 2.8. // /: G -* H is an epimorphism with finite kernel
then G is po-ended if and only if H is ^-ended.

Proof of "only if". Let {gu •• , ^ J generate G. Then
{/(&), , fifft)} generates H. Let Lx = L(glf , gt), and L2 =
L{f{gd9 , f(9t)) f induces f: L t -> L2 which is a covering projec-
tion with fiber of the same cardinality as ker(/). Hence f is pro-
per. Choose C a compact subset of Lx such that Lλ — C has ^-in-
finite components, where n> |ker(/)|. f^fiiP) * s a compact set con-
taining C and Lγ — fϊιf(P) has m-infinite components with m ^ n.
The infinite components of Lx — fϊxfx(β) cover the infinite compo-
nents of L2—f{C). But at most |ker(/)| infinite components of
Lλ — f^fiC) can cover any particular infinite component of L2 —
fι(C). Hence L2 — f(C) must have at least two infinite components,
and L2 has at least two ends. By Lemma 2.7, L2 is not 2-ended,
and therefore L2 is <>o -ended.

Proof of "if". Choose D a compact subset of L2 such that
L2 — D has three or more infinite components. If Dίf D2 and D3 are
such components, then fϊ\D^ for i 6 {1, 2, 3} contains an infinite
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components of Lx — fϊ\D) i.e., Lι has at least three ends and there-
fore G is) oo-ended.

Lemma 2.5 is the 0-ended case of Proposition 2.4, Lemmas 2.6
and 2.7 the 2-ended case and Lemma 2.8 the oo-ended case. Thus
the only remaining case, the 1-ended case also holds, completing the
proof of Proposition 2.4.

f f

3* Inverse sequences of groups* Let Gι^-G2^- ••• be an in-
verse sequence of groups and homomorphisms. The sequence is
Mittag-Leffler (M-L) [9] if given n > 0, there is m(n) i> n such
that im(Gm{n)+k -> Gn) = im(Gm{n) -> GJ for all A? ̂  0. If every bond
is onto or each Gn is finite, then clearly {Gn, fn] is M-L. The
sequences {(?„, fn} and {iϊΛ, kn} are pro-isomorphic if there exists
cofinal subsequences {Gβti,}".! and [Hm{j)}J=ι and homomorphisms py

and qό making diagram (A) commute for all j .

(A)

where the horizontal homomorphisms are compositions of bonds.
(This and related notions were introduced in [2].) Clearly pro-iso-
morphism is an equivalence relation. It is easy to see that any
M-L system is pro-isomorphic to one with epimorphic bonds. We
are interested in M-L inverse sequences of finitely generated groups
in which the bonding homomorphisms have finite kernels. We
call such sequences Mittag-Leffler-finite (M-L-F). By Proposition
2.4, if {Giy fi} is an M-L-F sequence of finitely generated groups and
each f is an epimorphism then the Gt all have the same number
of ends.

PROPOSITION 3.1. // {Hiy fcj and {Giy /<} are pro-isomorphic
M-L-F sequences with epimorphic bonds then all groups Giy ie
{1, 2, •} and Hiy i e {1, 2, •} have the same number of ends.

Proof. By Proposition 2.4 it suffices to show the number of
ends of Gt equals the number of ends of H3 for some i and j .
Assume p{ and gt are homomorphisms making diagram (B) commute
for all i.

( β ) ί>*| \ |p<+1

TT Si . TT



436 MICHAEL L. MIHALIK

rt and st are the appropriate compositions of bonds, and thus are
epimorphisms with finite kernels. k e r Q ^ c k e r ^ - ^ ) = kerfo^), and
ker(^i) is finite. pt is an epimorphism since pt o qi = s£ is. By Pro-
position 2.4 Gm{i) and iϊΛ(i) have the same number of ends.

DEFINITION. The number of ends of the M-L-P sequence {Gif /,}
of finitely generated groups is the number of ends of the Gί where
{Gi9 /I} is any M-L-F sequence pro-isomorphic to {Gif /*} and each
fi is an epimorphism. This definition is unambiguous by Propo-
sition 3.1.

PROPOSITION 3.2. // {£?„/,} is M-L-P and each /< is an
morphism then (•?! finite implies {Gt, /J is 0-ended, and Gx having
an infinite cyclic subgroup of finite index implies {Gu /J is 2-
ended.

Proof. The first part is trivial and the second follows from
Theorem 2.2.

Let G be a group, A and B subgroups of G and let θ: A-* B
be an isomorphism. The HNN extension of G relative to A, B and
θ is the group G^AΘ = (G, x\x"xax = 0(α), α e A>, i.e., the generators
and relations of (some presentation of) G, together with an addi-
tional generator, x, and additional relations x~ιax = θ(a). (See [12]
p. 179.) An alternative description of HNN extensions can be found
in [14] (3.A.5.5) in terms of pre-groups. We avoid pre-groups in
this paper.

By [14] (p. 57) the finitely generated group G has an infinite
number of ends if and only if either

(1) G = GL*FG2, a free product with finite amalgamated sub-
group F, properly contained in both factors, and of index> 2 in at
least one factor, or

(2) G = H*^FΘ an HNN extension, where F is a finite sub-
group properly embedded in if. Thus,

PROPOSITION 3.3. If {Gt,/<} is M-L-F, each /< is an epimor-
phism and Gx is a free product with finite amalgamated sub-
group as in (1) or an HNN extension as in (2) then {Gif f} is
oo-ended.

PROPOSITION 3.4. If {(?*, ft} is 0-ended and each ft is an epi-
morphism then all Gt are finite.

This is trivial.
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PROPOSITION 3.5. If {Gi9 ft} is 2-ended and each f is an epi-
morphism then there is xn 6 Gn for each n such that fn{xn+d — %n

and xn generates an infinite cyclic subgroup of finite index in Gn.

Proof In a group with infinite cyclic subgroup of finite index
any element of infinite order generates an infinite cyclic subgroup
of finite index. By Theorem 2.2, each Gn has an infinite cyclic sub-
group of finite index thus if xλ has infinite order in Gλ and xn is
selected such that /»_i(ίθ — xn-λ for each n ^ 2 then xn has infinite
order in Gn and generates in infinite cyclic subgroup of finite index
in Gn.

Finitely generated groups with 2-ends have normal infinite
cyclic subgroups of finite index. The following example shows that
in a 2-ended M-L-F sequence with epimorphic bounds it may not
be possible to choose compatible normal infinite cyclic subgroups
i.e., there need not exist xneGn such that xn generates a normal
infinite cyclic subgroup in Gn and /w(#n4i) = %n for all n.

EXAMPLE 3.6. Denote the permutation group on n symbols as
Sn. The following are easily checked in S2«.

( i ) [1, 2, , 2 ][α, α + 1] = [1, 2, , α, α + 2, , T\ = [α + 1,
a + 2][1, 2, - , 2n] for a e {1, 2, , 2n - 2}

(ii) [1, 2, , 2 ][2 , 1] = [2, 3, • •, 2 ] = [1, 2][1, 2, , 2 ]
(iii) [1, 2, - , 2 ][2 - 1, 2 ] = [1, 2, -, 2 - 1] = [2 , 1]

[1,2, -. f 2 ]
(iv) [1, 2, - -, 2w]2[α, a + 1] - [a + 2, a + 3][1, 2, . - -, 2^]2 for a e

{1,2, ...,2-3}
( v) [1, 2, , 2«]2[2» - 1, 21 = [1, 2][1, 2, • , 2^]2.

LEMMA 3.6.1. If x generates Zx, a normal infinite cyclic sub-
group of G, then gxg~ι — x or x~ι for any g eG.

Proof. Say gxg"1 = xn and g~ιxg = xm for some integers m and
7i. Then x = g~ιgxg~ιg = flf-'a flr = O T = ccwm. Thus n m = 1 and

n = m — 1 or n — m— — 1 .
Now we define our M-L-F sequence. Let Gx be the infinite

cyclic group with generator xΣ. For n7>2, Gn — (xn;aUn; •;
a2n-ijxnaί,n = α1+1,na;n for i e {1, , 2ίl-1l}; a;nα2Λ. l fβ = aUnxn; a\tn = 1 for
all ΐ; α ΐ ι Λ α i j Λ = α i t Λα ί > n for all i and i>. Define f: G2 -> Gx by x2 -> «!
and α i f 2 -> 1 for i = 1 or 2. For % ̂  2, define fn: Gw + 1 ~> GΛ by
xn+i->Xnf a^n+i-xii,* for i e { l , 2, •• ,2%-1} and αa Λ_1 + < t i l + ι -> α i t n for
i e { l , 2 , . . . , 2 - 1 } .

(vi) Since /xo - ©/^(ccj = ^1? xn has infinite order.
(vii) The relations of Gn easily imply any word in Gn can be
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written as a[(X α*i?-Γ,«#£ where t{i) e {0,1} and k is an integer.
(viii) The words of Gn that are mapped to x\ are exactly those

of the form in (vii).
From (vii) the infinite cyclic subgroup of Gn generated by xn

has finite index in Gn, and Gn is 2-ended fn has finite kernel by
Lemma 2.6 and is an epimorphism by definition. Thus {Gi9 /J is
M-L-i*7. For n^2, define gn:Gn-*S2n by xn -> [1, 2, , 2*]2 and
α<tn.-> [2i - 1, 2i] for i e {1, 2, , 2ίt~1}. By (iv) and (v) gn is a
homomorphism. In particular,

(ix) aitn Φ ajtn for i Φ j .

LEMMA 3.6.2. // Gn has a normal infinite cyclic subgroup,
then a generator of it must have the form αJJ? α^Γ^cc*2*"1 for
K a nonzero integer and tt e {0, 1}.

Proof. x^~γaUφt = α^ccΓ"1 for all i, thus ίPί2*"1*^,* = α*,^ 2 "" 1 and
for any integer K, aUnxT~x = a;?2w~2αί>Λ for all i. If L e {1, 2,
2 - 1 - 1} then xίaltn = a1+L,nx

Γ

n. Thus if W - αί,(ϊ a[S^xξ2n'1+L

for ί(i) 6{0, 1}, L 6{1, 2, , 2*-1 - 1} and i ί is an integer, it suf-
fices to show aUnWaUn ΦW or W~\ By Lemma 3.6.1 αt,Λ Wau% is
mapped to ccf2W~1+L under bonding homomorphisms, and W~ι —
x-1^-^ α'ΓΓj is mapped to ^ " u i.e., al)nWaUnΦW-\
alιnWaun - α 1 ) Λ + L,wT7 ^ W by (ix).

Assume δw generates a normal infinite cyclic subgroup in Gn,
and /»(6»+i) = ί>w for all w. Say bx = αΓ> ^ ^.0, then by (viii)6p =
α*ϊ al{^xZ for t{i) G{0, 1}. But for 2*-1>|m|, m is not a multi-
ple of 2P~1 and Lemma 3.6.2 implies bp does not generate a normal
infinite cyclic subgroup in Gp.

An alternative characterization of 2-ended groups is as follows:
G is 2-ended if and only if G has a finite normal subgroup F such
that G/F is infinite cyclic or is the infinite dihedral group Z2*Z2

[15] (p. 38). This motivates the following:

LEMMA 3.7. // {Gif /J is a 2-eήded M-L-F sequence, and each
fi is an epimorphism then there is a compatible sequence of finite
normal subgroups Ft a Gt {compatible in the sense fή\Fn) = Fn+ι)
such that GJFi is infinite cyclic for all i, or Z2*Z2 for all i.

Proof Since Gx is 2-ended there is Flf a normal finite sub-
group of Glf such that G1jFι is the integers, Z, or Z2*Z2. Let
fo Gi-*Z o r Z2*Z2 be the quotient homomorphism. /oo/i: Gy—»Z or
Z2*Z2 is an epimorphism with kernel fΐ\F2). Thus GJfϊXFJ = Z
or Z2*Z2. Inductively define Fn = /-^(i^-J,. for n ^ 2. The kernel
of /o° :°/»-i is Fn and since each• ft has finite kernel, Fn is finite
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and normal and GJFn = Z or Z2*Z2 for all n.
It remains to characterize oo -ended M-L-F sequences.
A bipolar structure on a group G, as defined in Stallings [14]

is a partition of G into six disjoint sets, termed F, S, EE, EE*,
E*E, E*E* satisfying the axioms below. We let X, Y, Z be
symbols standing for the letters E or E*, and if X = E or E* then
X* = E* or E respectively.

Axioms.
1. F is a finite subgroup of G.
2. FΌS is a subgroup of G in which JP has index 1 or 2.
3. If feF, geXY, then / ^ e l Y .
4. lΐ seS, geXY then gseXY*.
5. If ( / e I 7 , then g^eYX.
6. If £ e 1 7 , Λ e Γ*^ then gh e XZ.
7. If g e G, there exists a minimal integer, iV(#) such that

whenever gu , gneG and there exists Xo, , XΛ such that g€ e
Xi-iXi and g = gλ -•- gn then ^ ^ N(g).

8. E'E'* ^ 0 .
If G is a group with bipolar structure then P 6 G is irreducible

if Axiom 7 holds with iSΓ(P) = 1. Thus P is irreducible if P e F U S
or if P cannot be written as g-h with geXY and fee Y*Z. If G
has a bipolar structure, then (xlf x2, , a?J is a reduced word if
each #< is irreducible, a ^ F l ! S, and ^ e l Γ implies « ί f l e Y*Z for
i e {1, 2, , w — 1}, or ^ e F U S and n = 1.

LEMMA 3.8. If f:H—>G is an epimorphism with finite kernel
and G has bipolar structure with partition F, S, EE, EE*, E*E,
E*E*, then H has bipolar structure with partition f~\F), f'XS),
f~\EE), f-XEE*), f-\E*E), f~\E*E*).

The proof is immediate since (in Axiom 7) N(h) is bounded above
by N(f(h)) for any h e H.

LEMMA 3.9. If f:H—>G is an epimorphism with finite kernel
and G has bipolar structure, then N(h) — N(f(h)) for any heH.

Proof If (xlf - ", xn) is reduced and h = xx - xn then N(h) = n
by [14] (p. 32). To see N(f(h)) = n it remains to show (fix,), •••,
f(xn)) is reduced. Since H obtains its bipolar structure from /- 1 ,
we need only show: If x e H — f~%F U S) is irreducible then f(x) is
irredwible, and f(x)e G - F U S. Certainly f(x)eβ - ί7 U S. If
/(#) == aft with α e l Γ and 6e Y*Z, choose cef-\a) md def~ι(b).
Ίhen cef-\XY)9 and def-\Y*Z) implying cd is not irreducible.
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But f{χ-1cd) = l, so x-'cdef-'iF). By [14] (3.B.2.5) x{χ-'cd) must
be irreducible giving the desired contradiction.

The following theorems, 3.10-3.14, are in [14] for G a finitely
generated group. (With bipolar structure in 3.11-3.14.)

THEOREM 3.10. If G is ©o-ended, then G has a bipolar struc-
ture (5.A.9).

PROPOSITION 3.11. Gλ = F U {Irreducible elements of EE) and
G2 = FI) {Irreducible elements of E*E*} are subgroups of G. (3.B.4.1).

THEOREM 3.12. If S = 0, then G = {FΌ S}*FG, = {F\JS}*FG29

the free amalgamated product, (3.B.4.2) and G is oo-ended if and
only if F has index >2 in Gλ or equivalently G2 (5.A.9).

THEOREM 3.13. If S = 0 and there is no irreducible element
of EE*, then G = G^FG2 (3.B.4.3). F is properly contained in Gx

and G2 (3.B.5) and G is oo-ended if and only if F has index >2
in either G1 or G2 (5.A.9).

THEOREM 3.14. IfS=0 and there is an irreducible element t
of EE* then tFt-'czG, and if φiF-^G, is defined by f->tft-\
then G is the HNN extension Glp^=>Φ (3.B.4.4) and G is oo-ended if
and only if F is properly embedded in Gx (5.A.9).

REMARK 3.15. The hypothesis S = 0 and t irreducible in EE*
also give G = G2p^Φ where φ:F-+G2 by f-^t^ft and since F is
finite it can easily be shown F is properly embedded in Gx if and
only if it is embedded properly in G2 (t^Gjb = G2).

THEOREM 3.16. If G is a finitely generated oo-ended group and
f:H—>G is an epimorphism with finite kernel then H is oo-ended
and naturally inherits either the free product with finite amalga-
mation structure of Theorem 3.12 or Theorem 3.13, or the HNN
structure of Theorem 3.14.

Proof. By Lemma 2.8 H is oo-ended. By Lemma 3.8 and
Theorem 3.10, f~ι imposes a bipolar structure on JET, determined by
the one on G. By Lemma 3.9 h e H is irreducible if and only if
f{h) is irreducible. Thus f~\Gλ) = f~\F) U {Irreducible elements of
f-\EE)}. If SΦ 0 , then f~\S) Φ 0 and by Theorem 3.12 H=
(f-KFUS^f-^J-XG,) and f-\F) has index >2 in f~\Gd. By
Theorem 3.13, if S = 0 and there is no irreducible element of EE*,
then H = /-'(GiW-W^CGt), f~\F) is properly contained in f~
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and f-\G2), and f~\F) has index >2 in either G, or G2. If S = 0
and there is an irreducible element t of EE*, let uef~\t). Then
by Theorem 3.14, uf-1(F)u-1c:f'-1(G1) and if ψ: f'\F)-* f-XGJ is
defined by a? —> uxu~\ then i ϊ = f'XGJ <-^f-i{F) ψ and f~\F) is pro-
perly embedded in f

COROLLARY 3.17. // {Gi9 /J is αw oo-ended M-L-F sequence each
ft is an epίmorphism then either all Gt have compatible free
product with finite amalgamation structures as in Theorem 3.12 or
Theorem 3.13, or compatible HNN extension structures as in
Theorem 3.14.

Introduction to § 4* As explained in § 1 we are building the
algebraic machinery necessary to extend the theorems by Hopf and
Stallings from compact polyhedra K to compacta X. If XΞlim{XΛ, fn)

is a suitable compactum (this will be made precise in § 5), we would
like the Cech fundamental group πλ(X, *) = lim^CX*, *), fn} to play

the role of πx{K9 *). π1{X9 *) is not, in general, finitely generated,
but in our situation πx(X, *) considered as a topological group will
be compactly generated. When thus interpreted, it plays the cor-
rect role.

That is one reason for the theory of ends of M-L-F topological
groups which follows.

Another is that an alternative theory of ends for compactly
generated, locally compact topological groups exists, at least in part
(C. Pugh and M. Shub: Axiom A actions. Inventions Math., 29
(1975), 18-31). Although we do not prove this alternative definition
agrees with our "number of ends" for M-L-F topological groups a
reader familiar with Pugh and Shub can check the details.

4* Applications to topological groups*

DEFINITION. An M-L-F topological group is a locally compact,
compactly generated, complete, metrizable topological group with
countable neighborhood-basis of the identity consisting of closed and
open normal subgroups.

A group can be regarded as a discrete topological group. If
{Gn, fn} is an inverse sequence of discrete topological groups, then
lim {Gn, fn) in the category of topological groups is obtained by tak-
ing inverse limits separately in the category of groups to get the
group structure, and in the category of spaces to get the topology.
Throughout this section we will regard lim{Gw, /„} as a topological
group.
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PROPOSITION 4.1. G is an M-L-F topologίcal group if and only
ifG = lim {Gn, /„}, where {Gn, fn} is an M-L-F sequence of finitely
generated discrete groups.

REMARK 4.1.1. For the analogous proposition for M-L groups
see [1] p. 4 and [6] p. 117-8.

Proof of "only in". Let {ZJ be a neighborhood-basis of the
identity consisting of closed and open normal subgroups. We may
assume that the In are compact since G is locally compact and that
the In are nested. Let πn: G —> G/In be the quotient homomorphism
taking g to its right coset [g]. For UaG/In, π~\U) = U{Inx\xe
πn\U)}. Since Inx is open for any xeG, π~\U) is open in G; the-
refore πn is continuous when GJIn has the discrete topology. Since
In is compact the obvious epimorphism fn: G/In+1 —> G/In has kernel
πw+i(/J a compact and therefore a finite group. If K is a compact
set which generates G, then πn(K) is a finite generating set in G/In.
{GIIn, fn} is M-L-F and lim {GJIn, /„} is isomorphic to G.

Proof of "if". First we need the following:

LEMMA 4.1.2. // {Gif /,} is M-L-F and G = lim {Gi9 /,} then the
projection πn:G->Gn is proper i.e., if C is compact in Gn then
π~\C) is compact in G.

Proof. Since Gn is discrete, its compact subsets are precisely
its finite subsets. Discreteness also implies that G is closed in
IlUGi. πn(C) = (/ l O . . . 0 / ^ ( 0 x / 2 o . . . o / ^ O x xCxf~\C)x
fnlιfn\C)x )ΠG. Since each ft has finite kernel each term in
this product is finite and π~\C) is compact, proving 4.1.2.

Now assume G and {Gn, fn} as in Lemma 4.1.2. Since inverse
limits of pro-isomorphic sequences of discrete groups are isomorphic
topological groups, we may assume each fn is onto. If K is a finite
generating set of Gu containing the identity, then by Lemma 4.1.2.
πϊ\K) is compact. We show πϊ\K) generates G. If (gl9 g2, •) eG
and gt = kjc2 kn with each kiβK then since each /« is an epi-
morphism there is an ht e G such that π^ht) = ki for each i. hλ — hn

is in the subgroup of G generated by πϊ\K). Since ^{{glf g2, •)•
hn1- - -hT1) = identity e K, (glf g2, •) is in the subgroup of G gener-
ated by πϊ\K).

In = {(x.) e lim {Gn, fn}\ xn = identity} forms a countable neigh-
<—

borhood-basis of t h e ident i ty consisting of closed and open normal
subgroups. By Lemma 4.1.2 each In is compact and t h u s G is locally
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compact. Each Gt is discrete so G is metrizable and as an easy
exercise G is complete.

DEFINITION. If G is an M-L-F group the number of ends of
G is the number of ends of any M-L-F sequence {Gn, fn) where

This definition is unambiguous: M-L sequences which have iso-
morphic (topological group) inverse limits are pro-isomorphic, see
[1] and [6]; combine this with 3.1.

Many of the theorems on ends for finitely generated groups can
be generalized to theorems for M-L-F groups if the word finite is
replaced by compact. The following is merely an exercise in the
definitions.

PROPOSITION 4.2. An M-L-F group is Q-ended if and only if it
is compact.

DEFINITION. A closed subgroup, H, of a topological group G
has compact index in G if the space of right cosets, G/H, with
quotient topology is compact.

PROPOSITION 4.3. An M-L-F group G is 2-ended if and only
if G has a closed infinite cyclic subgroup of compact index.

The proof of "only if" will be done as a sequence of lemmas.
Let {Gif fi) be an M-L-F sequence with each Gt 2-ended and each
/, an epimorphism such that G = lim {Gif /«}. By Proposition 3.5
there are xn e Gn generating infinite cyclic subgroups of finite index
in Gn such that fn(xn+1) = xn x = (xlf x2, •) e {Gif /<} = G.

LEMMA 4.3.1. Zx = {x?, α£, -)\n is an integer) is a closed dis-
crete subgroup of ΠΓ=i G>

Proof. Say Zx accumulated at y — (ylf y2, •). Since G* is dis-
crete {τ/J xG 2xG 3x is open in Π?=i Gt and thus must contain an
infinite number of the xn. Each must have first coordinate y2, but
at most one can.

A similar argument shows;

LEMMA 4.3.2. G is closed in ϊ]Xi Gt.

Lemmas 4.3.1 and 4.3.2 imply

LEMMA 4.3.3. Zx is a closed discrete subgroup of G.
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Let Zi be the infinite cyclic subgroup of Gt generated by x^
Say GJZi = [wi}1], [wi>2], , [wi)m{i)]. ft maps the elements of the right
coset [wi+ltk\ bijectively onto [fi(wi+lίl)]. Here [wi+uk] = {wi+ltkx?+1\n
is an integer}, and wi+uk is callled a representative of [wi+ltk\. By
first selecting wltl, •• ,w1;m(1) and then w2tl, w2>2, ---,w2im{2) etc. we
may assume without loss of generality that the above selected re-
presentatives of right cosets are mapped by the appropriate bonds
to other selected representatives of right cosets. I.e., fn(wn+1>k)e
{wn>ι, wn>2, , wn,m{n)} for all k. W = Π*U {wktlf wk,2, , wk,m(k)} is

compact in Π?=i Gk. By Lemma 4.3.2 WΓ\ G is compact.

LEMMA 4.3.4. G/Zx is compact.

Proof. It suffices to show π(WΓ) G) = G/Zx where π:G-^G/Z,
is projection. If [a] eG/Zx9 a = (alf α2, •) eG, then let aλ = Wi,fc(D#ί
Because of how we selected representatives we have an — wn>kin)xί
where fa... of^w*,^) = wlfjfc(1). Also, since / x o. . of^aj = αt we
have/iO o/w_1(χί

ίι) = ̂  and thereforeί = s. Thus, 7r((w1)M1), w2,fe(2), •••)) —
^ α ( i ) , w2>Λ(2), •) (a?;, αj, •••)) = π(α) = [α].

For the "if" part assume G = lim {GΛ, /„} where {Gn, /»} is

M-L-F and each fn is an epimorphism. Let x = (αjj, x2,
 ## ) gener-

ate Zx a closed infinite cyclic subgroup of compact index in G.
Let π^. G -^>Gι be the projection morphism: Yt the subgroup of G€

generated by av, and let θi:G/Zx-+GJYi be defined by [w]-»[wj,
where w = (wlf w2, •••)• To see 0* is a well-defided function, let
ze[w] i.e., z = ^x%. Then sΛ = w^? and ^ e ^ ] . Since each ft is
onto, πt and ^ are onto. Topologize GJYt and G/Z^ with the
quotient topologies of the projections α*: Ĝ  -> G</Y"< and ax: G
respectively. Diagram (C) commutes on the level of functions.

By Dugundji [4] (p. 126) ^ is continuous. Since Gt has the discrete
topology and G/Zx is compact, GJYt has the discrete topology and
is compact i.e., GJYt is finite. If xt has finite order, then since
each fn has finite kernel each xn would have finite order. This im-
plies Zx accumulates at the identity, contrary to the assumption Zx

is a closed infinite cyclic subgroup of G. Thus each xt generates an
infinite cyclic subgroup of finite index in G>

As we remarked in § 3, every finitely generated group with two
ends has a normal infinite cyclic subgroup of finite index. One
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might expect a normal infinite cyclic subgroup of compact index in
our 2-ended M-L-F groups. But this is not the case.

EXAMPLE 4.3. The 2-ended M-L-F group, G, determined by Ex-
ample 3.6 contains no normal infinite cyclic subgroup.

Recall that Gx was infinite cyclic with generator xlm The closing
argument of Example 3.6 shows that (6^ &2, •) eG cannot generate
a normal infinite cyclic subgroup if bι = xT for m Φ 0. But if
m = 0 then (blf 62, •••) has order two. Thus G has no normal in-
finite cyclic subgroup.

PROPOSITION 4.4. If G is a 2-ended M-L-F group, then G con-
tains a compact open normal subgroup F such that G/F is Z or

Proof. By Proposition 4.1 G is the inverse limit of an M-L-F
sequence {Gn, fn) of 2-ended groups. Choose Fλ a finite normal sub-
group of G, such that GJF, is Z or Z^Z2 ([14] p. 38). If πλ: G ->GX

and π:G1-^> GJF1 are projections then ker(ττo7r1) = πϊ\F^). By Lemma
4.1.2 π^(Fλ) is compact and open. Since πz\F^ = kerfa©^), πi\F^)
is normal in G. Finally GJF, = G/ker(ττ ° πt) = G/πr\Fλ).

Next we classify the ©o-ended M-L-F groups.

REMARK 4.5. In a bipolar structure the requirement that F and
S be finite is strictly a requirement to prove theorems about ends.
Nowhere is the finiteness of F and S used in Stallings [14] p. 31-34.
In particular it is not used in the first parts of our Theorems 3.12-
3.14, nor is it used in Lemmas 3.8 and 3.9, and Proposition 3.11.
Thus if H is a group with bipolar structure (not necessarily a
finiteness condition on F and S) and f:G—>H is an epimorphism
then f~ι induces a bipolar structure (possibly without finiteness
condition) on G, and thus the corresponding amalgamated free
product or HNN extension structure on G.

THEOREM 4.6. The M-L-F group G is °o-ended if and only if
G has subgroups A, B and C such that G is (in the obvious
manner) isomorphic, in the category of groups, to A*CB where C is
compact and open in G, properly contained in A and B and of
index ^ 3 in either A or B) or G is isomorphic, in the category of
groups, to H^=>cφ where C is compact and open in G and the in-
finite cyclic subgroup of H^=>cφ generated by the extra generator x
is closed in G.
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Proof of "only if". Assume G = lim {Gt, /,} where each Gt is
oo -ended and each ft is an epimorphism. If Gλ = A1^ClBι as in
Theorem 3.12 or 3.13 then by Remark 4.5 G = π^A^π^B)^1^,)
where π1:G-^>G1 is projection. If Gx = H1^-^Clφι as in Theorem 3.1,
with t irreducible in EE* then by Remark 4.5 G = πΓX H i ) ^ ^ ^ ) ^
where q e πϊ\t) and 0: TΓΓ^CJ -» TΓΓX HI) by # -* ffi/ff"1. By Lemma
4.1.2 π Γ 1 ^ ) is compact in both cases and is open since πλ is conti-
nuous. The infinite cyclic subgroup of G generated by q is closed
in G by Lemma 4.3.1.

Proof of "if".

Case 1. G — A*CB as above.
Assume G = lim {Gif f%) with each f an epimorphism. Let

πn:G—>Gn be projection. By Lemma 4.1.2 ker(ττj is compact.
ΠT=i ker(τΓi) = (e, e, •••)> the identity of G. Since C is open and G
is metrizable, k e r ( π J c C for some JV. We show for this JV that Gn

is the free product with finite amalgamation An*CnBn9 where An —
πn(A), Bn = πJJS) and Cn = πn(C). Since Gn is discrete, πn is conti-
nuous and C is compact, Cn is finite.

Define φn: An*cJBn —> G% to be the homomorphism which is an
inclusion on An U Bn. Define ψn: A*CB -> An*CnB% to be the epimor-
phism which is projection into the %th coordinate on A U B.

The following diagram (D) commutes:

A*CB

n*Cn
G.

τrw is an epimorphism since each ft is an epimorphism. Thus φn

is an epimorphism. It remains to show φn is a monomorphism. If
φn(x) = e, choose yeψ~\x). y 6 ker(π w )cC, and thus x e C w . By the
definition of 0Λ, cc = e.

We have proved Gm = Am*CmBm for all m ^ N. Choose k^ N
large enough to ensure Ck has index ^ 2 in Ak and Bfc and index
^ 3 in either Ak or Bk. Then Gfc = Ak*C]Bk is oo-ended and by Pro-
position 2.4 all Gi are oo-ended.

Case 2. G = H^cφ as above.
Recall H<^=>cφ = (H, xlx-'cx = φ(c)VceC). As in Case 1,

ker(τr jcC for some N. Let Hn = πn(jBΓ), CΛ = ττn(C) and xw = 7rΛ(x).
For a and & in C if πn(α) = πw(6), then πn{x~ιax) = πn(x~ιbx) and
πn(φ(a)) = πn(φφ)). T h u s ζ3%: Cn -+ Hn b y cw -> πn(φ(c)) w h e r e τru(c) = cn
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is well-defined. In forming Hn^=>Cnφn we identify x^c^x* with φn{cn)
for all cn e Cn. If we define ψn: H U {x} —> Hn^>Cnφn by α/rw = π w then
ψv extends to an epimorphism of H*^>cφ since ψv(3-1ca0 = x»1cnxn =
Φ*(c*) — ̂ Λ ( ^ ) ) = Ψ»(0(<O) (^(c) 6 IT). Define αw: Hn<-^CnΦn -* ^ Λ to be
the homomorphism which extends the inclusion of jHΓΛU{ίcΛ} into (τ%.

The following diagram (E) commutes:

(E) y \

The same closing argument as that of Case 1 works here to
complete the proof.

THEOREM 4.7. If G = A*CB as in Theorem 4.6, then in the fol-
lowing diagram the outer square commutes; furthermore, given any
topological group H and continuous homomorphisms f: A—>H and
g: B —> H making the north-west triangle commute the resulting
homomorphism of groups, h, {which exists and is unique by the
universal property for amalgamated free products in groups) is
continuous. {Unlabeled maps are inclusions.)

C >B

A
(F)

X
*G = A*0B

Proof. Let W be a neighborhood of x in H. Let y 6 h~\x) c
h-1(W)'h~\W) = h'XWx-^y. Since C is open in G, A is open in G.
Hence f~\Wx~ι) is a neighborhood of e lying in h~~\Wx~ι). Thus
f~\Wx~ι)y is a neighborhood of y lying in h~ι(W). So hr\W) is
open.

REMARK 4.8. If G = H^=>cφ as in Theorem 4.6 a similar result
is true.

5* Geometric applications* As explained in § 1, we will now
use the theorems of § 3 to derive a new shape invariant for a
large class of compacta (those with M-L-F "fundamental pro-group"),
and a natural geometric interpretation of this invariant, (namely
the number of ends of universal covers of compact polyhedra in
an associated inverse sequence). For a somewhat smaller class of
compacta (those with stable "fundamental pro-group") an added na-
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tural geometric interpretation arises. We will use [5] as our re-
ference for shape theory.

We deal throughout with a pointed connected compactum (X, *),
[Convention: "compactum means compact metric space. * is used
for all base points.] We will call a compactum, X, an M-L-F
compactum if X is connected and if for some (hence any) * e X,
pro-7^ (X, *) is M-L-F.

The shape invariant for M-L-F compacta X mentioned above can
now be defined. It is e(X) = the number of ends of pro-^ (X, *);
see §3 e{X) is one of the numbers 0, 1, 2 or oo.

THEOREM 5.1. If X is an M-L-F compactum then (X, *) =
lim {(Xw, *), /„} where each Xn is a compact polyhedron and the uni-
versal cover of Xn has e{X) ends for all n.

Proof By a trick of Krasinciewicz [11] (or see Theorem 4 of
[7]) one can arrange (X, *) = lim {(Xn, *), /»} where each Xn is a
compact polyhedron and fn% is an epimorphism. By Hopf 's theorem
(see § 1) and Proposition 2.4 the universal cover of Xn has e(X) ends
for all n.

Note that if (F, *) is an M-L-F compactum then by a theorem
of Krasinciewicz (see [7]) (F, *) is pointed shape equivalent to some
(X, *) where X is compact connected and LC°. We permanently
assume (X, *) = lim {{Xn, *), fn] to have these properties and we
assume each fn% is an epimorphism on πx.

It remains to investigate when e{X) can be interpreted geomet-
rically as the number of topological ends of a locally compact space
X (which reduces to the universal cover when X is LG° and semi-
locally 1-connected). The X we have in mind is lim {Xn, fn}. More

precisely ~ denotes the "pointed universal cover functor" and in the
following commutative diagram (G) the limit p of covering projec-
tions, pn9 is a fibration with unique path lifting:

(Xlf *) — (X2, *) < (X, *)

(G) Li L \P

(X,, *) < (X2, *) < (X, *)

Since X is M-L-F, X is locally compact. To prove this we
need:

PROPOSITION 5.2. Let X and Y be finite complexes. If
/: X-> F induces /#: π^X, *) —> π^Y, *) a homomorphism with finite
kernel then f: X —• Ϋ is proper.
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Proof. Diagram (H) commutes.

(H)

(X,*)-L(Y,*)

Let [g] e πx(X, *), then the covering transformation of X deter-
mined by [g] is defined as follows:

If xeX and λ is a path from x to *, then p(X) - g - PO^"1) forms
a loop at p(x). [g](x) is the endpoint of the lift of this loop to x.
By [3] (p. 12) we have:

(1) /1[Φ))-MΛ)).

Let C be a compact subset of Y. For each cell et in X choose
a cell et in X over e<# Then each of the cells of X over et is /&(̂ )
for some heπx(X, *). It suffices to show only finitely many cells of
X over any cell, eif of X touch f~\C). Suppose {gίy g2, }c
TΓ^X, *) and ^(e J intersects /^(C) for all i. Then by (1)
f*(9i)(f(βn)) intersects C for each i. f(en) meets only finitely many
cells of Ϋ since the closure of en is compact. Thus since ft is finite-
to-one, there is a cell e of Ϋ and infinitely many heπ^Y, *) such
that fe(e') meets C, contradicting the local finiteness of Ϋ,

Let at: X~> Xt and at: X —> Xt be projections. Then px°at = α^p
for all i. X is closed in ΠΓ=i X* and since each /i is proper, each
&i is proper (see the proof of 4.1.2) and X is locally compact.

Next we discuss when X is path connected. [Certainly X can
have infinitely many path components when X is not LC°; an ex-
ample is the compact spiral:

We leave it to the reader to check this.]

PROPOSITION 5.3. X is path connected if and only if the na-
tural map j : πλ(X, *) -—> limfr^Xi, *)} is onto.

Proof We look at the last few terms of the homotopy exact

sequence of the fibration F->X—> X:
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πi(X, *) -?-* πo(F, *) -ΐί-> πo(X, *) - ^ 0

lim {π^Xiy *)} .

Since F is totally disconnected the above isomorphism of
lim {π^Xi, *)} to πo(F, *) Is induced by the above homeomorphism of

lim {π^Xi, *)} to F. It remains to observe the following are all

equivalent:
( i ) j is onto
(ii) d is onto
(iii) πo(X, *) is trivial
(iv) X is path connected.

PROPOSITION 5.4. Let X be an LC° compactum and let pro-;^
(X, *) be stable. Then j : πλ(X, *) -> lim (pro-TΓ^X, *)) is onto.

Proof. Let {Z7Λ}ϊ=1 be a nested sequence of compact Q-manifold
neighborhoods of X with Π~=i U» = X- Let {[ΫPJ} be an element
of limfa^Un, *)}. (Here there is a common base point * e l . ) Then
Wn+1 is a loop in Un+1 which is homotopic rel. {0, 1} to Wn in Un.
By [5] (P 94), for any n > 0 there is a M such that for all m > M
Wm is homotopic rel. {0, 1} in Un to a loop Xn in Xnf and hence
K = Wn rel. {0,1} in Un. Let {[Wn]} e lim {π^U^ *)} and λ be a loop

in X, such that X = Wλ rel. {0, 1} in J7lβ By stability we may as-
sume the inclusion of Un+ι into ?7Λ induces an isomorphism on fun-
damental groups and thus λ ~ Wn rel. {0, 1} in Un for all n, finish-
ing the proposition.

PROPOSITION 5.5. If X is an LC° semi-locally 1-connected com-
pactum then pro-πλ(X, *) is stable.

Proof. Let {J7»}ϊ=1 be a nested sequence of compact Q-manifold
neighborhoods of X with f |ΐ=i Un = X. By [6] it suffices to show
lim {7Γi( Un9 *)} is discrete. Assume {[Wiυ]}, {[ΫFi2)]}, ••• are elements
of lim {TΓiiUn, *)} converging to {[TFJ}. By [5] (p. 94) we may as-
sume Wn and W^ are loops in X for all n and k. For any N > 0
there is a i^AΓ) > 0 such that for all k > K(N), and n > N WLk) = Wn

rel. {0, 1} in UN. Since X is compact and semi-locally 1-connected
there exist ε > 0 such that any loop in X of diameter < ε is homo-
topically trivial in X. By [5] (p. 94) there is a neighborhood V of
X in U1 such that any map /: (L, LQ) —> (V, X), where L is a
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1-dimensional finite polyhedron and Lo is a subpolyhedron, is e/3-
homotopic rel. Lo in Ux to a map g:L —> X Choose N such that
for all n^N Unα V. Let k > K(N) and % > N. Then TΓ* s Wn

rel. {0,1} in UN and thus in F . Let H: [0,1] x [0, 1] -> V be a
homotopy of Wίk) to Wn rel. {0,1} i.e., H|[0, 1] x {0} = W*\
H\[0, 1] x {1} = Wn and H({0, l}x[0, 1]) = *. Choose αo = 0 < αγ <
• < αm = 1 and 60 = 0 < 6j < < δTO = 1 so that the diameter
H(.[αir αi+1] x [6,-, δ ί+1]) is <ε/3 for all % and j . Let L = ({α0, α l f , «,} x
[0, l])U([0, 1] x {60, δ l f , 6.}) and Z,o = ({0, 1} x [0, 1]) U [0, 1] x {0, 1}.
Choose g: L —> X homotopic rel. Lo to H\L. g(({αi9 αi+1}x[6-,-, bj+1]) U
([α,, α i + 1]x{6 i ? 6i+1})) is a loop of diameter < ε in X and thus homo-
topically trivial in X. Hence Wik) is homotopic to Wn rel. {0, 1} in
X for all n > iSΓand k > K(N) i.e., {[Wίk]]} - {[WJ} for all k > K(N)
and limfTΓ^?/,,, *)} is discrete.

<—

REMARK 5.5.1. If a loop I f of a semi-locally-1-connected com-
pactum X, represents the trivial element of pro~τr3 (X) then W is
trivial in X if X is LC°. Here is the main theorem of § 5.

THEOREM 5.6. If X can be written as the union of compact
sets, An, with An a subset of the interior of An-1 and any two
points in An can be joined by a path in An+1 then X has the same
number of ends as lim {π1(Xw, *)}.

The proof will be done as a sequence of lemmas. We assume
* 6 A,.

REMARK 5.6.1. For X compact this is trivial.

LEMMA 5.6.2. X contains a compact set C such that p maps
the interior of C, int(C), onto X.

Proof. By the Hahn-Mazurkiewicz theorem X is a Peano curve
i.e., the continuous image of [0, 1]. Lifting this path to X gives
a path whose image under p is X. Choose an An such that this
path lies in int(An), then An is the desired C.

Let Fi - PTT) and F = p~\*). The usual bisections π^Xi, *)=>Ft

induce a homeomorphism H: lim {K±(Xif *)} ^ F9 where lim {π^X^ *)}

is topologized as in § 4. We will freely identify these fibers. Thus
the left action of πx(X%, *) on X% determined by the corresponding
covering transformations determines a left action of Fn on Xn,
hence F acts on the left of X as fiber preserving homeomorphisms
such that for ae F and xeX &i(a(x)) = «*(α) (%) for all i.
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For A a subset of a simplicial complex Y define St(A) to be the
closure of the union of all cells of Y that touch A. Inductively define
StN(A) to be StiSt^XA)) for N ̂  2. A set B in a topological space
T is said to be bounded if B lies in a compact subset of T, other-
wise B is unbounded.

LEMMA 5.6.3. If C is a compact subset of X, then each un-
bounded path component of X — C contains an unbounded subset of
F.

Proof. By Lemma 5.6.2 there is an M such that p(AM) — X,
and CaAM. Choose N such that S^AM+^C: StN(*). If Q is an un-
bounded path component of X — AM9 let {αsJΓ=i be an unbounded col-
lection of points in Q — azXSt*N(*)). Let yt e AM such that p(yt) =
p(xt) and let λ< be a path from yt to * in AM+1. The endpoint of
the lift of p°Xi to xt is in F, call it zif thus we have: 3,-λ i has
endpoints zt and &<; and ά^) eάί(ziAM+1) aS^iά^Zi)) = α ^ J Sί^ί*).
By definition α ^ ) ί Sί4ΛΓ(*), so Sί^α^s,)) contains a point of Xt —
SΪ4iV(*) and therefore a(zt) Sί^*) misses S^(*). Since their images
under άx are disjoint, ztΆM+1 and AM+1 are disjoint. zi'Xi(ZZi AM+1(Z
X — AM9 therefore z^Q for all i. {Zt} is unbounded, for if not, say
SitfeOcfl, a compact set. Then ^({xj) c StN(D) a compact set but
«! is proper and {xτ} is unbounded giving the desired contradiction.

LEMMA 5.6.4. // p(mt(AM)) = X, then there is a bounded neigh-
borhood of AM containing all but finitely many of the path compo-
nents of X — AM.

Proof. Choose N such that ά^A^Z) StN(*). We show
αfXSί4^*)) ΞΞ W is the desired neighborhood of A*. TF is bounded
since ά1 is proper. Assume an infinite number of path components
of 1 - AM, say Clf C2, , are not contained in W. Since X is path
connected each of these path components meet bd(W), the boundary
of W. Choose Xi eCi Πbd(W). Say the xi accumulate at xebd(W).
Let yeiτΛ(AM) such that p(y) = p(x). If λ is a path from 2/ to *
in AM+1, then lifting p°λ to cc is a path from x to zeF and 2. AM+1

is a neighborhood of x containing z-X, a path from as to 2. α̂ cc) e
bd(StiNO) and ά& AM+JaSt^Sάz)) = α ^ Sί^*). Thus bd(St4N(*))U
S^ia^z)) is a nonempty subcomplex of X1} and must contain a ver-
tex u. If S^(α(z)) n StN(*) Φ 0 there would be an edge path from
* to u of length ^3N contradicting the fact uebd(St*N(*)). Hence
ά1(z AM+1)na1(AM+1)= 0,and AMΓ\z AM+1= 0. Since zΆM+ιaX~M
and zΆM is a neighborhoood of #, the xi are not all from different
path components of X — AM giving the desired contradiction.
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COROLLARY 5.6.5. // Xx is N-ended then X has at least N ends.
In particular if Xx is co -ended then X is ^ -ended.

Proof. If C is a compact subset of Xx and X1 — C has M un-
bounded path components, then an argument analogous to the proof
of Lemma 5.6.3 shows each unbounded path component, Ci9 of
Xx — C contains an unbounded subset, Siy of Fx. By Lemma 5.6.4
X — άϊXC) has only a finite number of unbounded path components
and άϊ1(Sι)

iis an unbounded subset of F since each fu is an epi-
morphism. One of the unbounded path components of 1 - ocϊ\C)
must contain an unbounded subset of a^\St); but &T\St) does not
meet a path component of 1 - ct~[\C) which contains a point of
ά^XSj) for i Φ j . Thus X — άx\C) must have at least M unbound-
ed path components.

LEMMA 5.6.6, If lim {πx(Xu *)} is 1-ended, then X is 1-ended.

Proof. By Corollary 5.6.5 we need to see X has at most one
end. Assume X — Av has unbounded path components Cx and C2.
Let Kι be a finite set of generators of πx{Xx, *) and assume 1 6 Kx,
then a^\K) is a compact generating set for lim {πx(Xnj *)} (see the
proof of 4.1). Choose W such that KUK^dA^. Let M and N be
such that άγ\Av+1)ciStN(*) and a,{Aw+ι) c StM(*), and hence KLa

Claim. It suffices to show there are elements v^C.^Λ F and
v2 e Co Π F such that v2 = vjcjc2 kn where k€ e K U K~ι and
Vjfc, - - km A , Γ + 1 c ϊ — Av for all m ^ n.

Proof. vJcL - " kme vjc, - kmAw n ̂ A Ajm+1i4 ;̂ so v,kL - •_• feTO can
be joined by a path to v,kv &m+1 in v^i km+1Aw+1 c X — AF.
Thus ^i and v2 are in the same path component of X — Av giving
the desired contradiction.

Let a1(Av)cStN(*) and aλ(Aw+ι) (zStM{*). Choose R such that
any element of F Π StM+N(*) is an R-ίold product with factors in
iί^UiΓ,. In § 2 we define L(Kλ) which by definition has 1-end. The
verticies of L(K^) are identified with πλ(Klf *) and thus with the
elements of Fx. If uλ and u2 are verticies of the unbounded path
component, C, of L{K^) — StR(l), then an edge path in C from uL

to u2 gives %2 = ujcx - kn with ^ e Kλ U ϋΓf1, and for all m ^ ?̂
^fc, •• fcβel1- Sί¥ + Λ r(*). Since ^(A ι Γ + 1) cz SΐM(*), ^fc, •••&»•
^i(^iyfi) ciXi — StN(*) for all m^n. Since αx is proper, Lemma
5.6.3 implies Cx and C2 contain points of F, vx and v2 respectively
such that δc^Vi) and ά^v.) are verticies of C. Assume ax{v^ = wx
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and &x{v^ — u2 as above. We can choose h, e dγι(kj) c K U K~ι since
fi$ is an epimorphism for all i. Since ά1(Av)aStN(*), ^ A •••/&»•
Aw+1 c l - 4 F for all m <̂  n. Let ΛΛ+1 = {vjfix ft*)"1^ then

Xx — St*(*). Thus i;2 \ + 1 c ϊ - 4 F and by the above claim the
proof is finished.

LEMMA 5.6.7. // lim {πx(X%9 *)} is 2-ended then X is 2-ended.

Proof. By Corollary 5.6.5 we need to prove X has at most
2-ends. Let G = \\m.{π1{Xif *)}, then G has a closed infinite cyclic

subgroup, ZΛ9 with generator x, and a compact subset K such that
if β is the quotient map of G to G/Ze then β{K) = G/Zx (see 4.3.4).
Hence G — U{xn-K\n is an integer}, aλ(K) is a compact subset of
the discrete fiber F19 i.e., ά^K) is finite. Thus (1) If V is compact
in X then α?i(Ufceχfc V) is finite.

Let AίΓ be such that p(A^) = X and # if U KczAw. It suffices
to show for Q ^Wf X — AQ has at most two unbounded path com-
ponents. By Lemma 5.6.3 it suffices to show there exists M > 0
and N < 0 such that for all m > M all points of xm K are in the
same path component of X — AQ and for n < N all points of #\ if
are in the same path component of X — AQ. &x{x)9 0Ci(x2)9 • is a
closed discrete subset of Xλ. Choose K and L such that α1(Aρ)e
S£L(*) and α / i ^ J c S f ί * ) . Let Λf be such that for all m>M
άι(xm) misses StL+M(*). Then ά^x™) ax{Aw+1) misses &I(AQ) for all
m>M. Thus ίcm A,F+1 misses AQ for all m>M. (xm K){J(xm+1'K)(Z
xmAw so all points of (xm K)\J(xm+1 K) can be joined by p a t h s in
xmAw+1 czX — AQ for all m > M. A similar a r g u m e n t holds for
negat ive powers of x.

Combining R e m a r k 5.6.1, Corollary 5.6.5 and Lemmas 5.6.6 and
5.6.7 proves Theorem 5.6.

T H E O R E M 5.7. Let Y be a connected compactum with pro-π^Y, *)
stable. Then any LC° compactum X = lim{XΛ} in the shape class

of Y has the property that e(X) is the number of topological ends
of the path connected, locally compact space X = lim{XΛ}. Moreover

<—
when X is semi-locally l-connected} X is the universal cover of X.

R E M A R K 5.8. By [11] t h e r e exist LC° compacta in t h e shape
class of Y.

Proof. We prove any compact subset of X is contained in a
p a t h connected compact subset of X. By Proposit ions 5.3 and 5.4
and Theorem 5.6 t h i s will prove t h e first p a r t of our theorem.
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Let β be a p a t h in X whose image covers X (Hahn-Mazurkiewicz

theorem), and let C be a compact subset of X. If β' is a lift of

β to X. Choose N such t h a t for any x in t h e image of ά1 o β', t h e

image of aoβ' is a subset of StN(x). Let D — C{J(\JxeCβx) where

βx is t h e image of a lift of β containing x. If α x(C) c StM(*) then

tfiCD) c St¥ + i v r(*) and D is bounded. Since pro-TΓ^X, *) is stable F is

discrete and F Γ\ D is finite. By Propositions 5.3 and 5.4 X is p a t h

connected. Let E be D union a p a t h containing each point of F Π D.

Then i? is connected and contains C.

For the second half of 5.7, let q: (X, *) —> (X, *) be t h e universal

covering projection. There are unique maps βn: (X} *) -» (Xn, *) such

t h a t 3>Λo/9Λ = α^og α^ogr = fyanoq = fn<^pnoβn = ^ o / ^ o ^ , By

the uniqueness of pointed lifts, /9^-i = / , - j . ° /3Λ and t h e r e is a map

/ 3 : X - > X b y x-* (βάx), βi(x), •••) we prove β is a fiber preserv-

ing homeomorphism. Since αw°<7 = pno βn = pnoάnoβ = anopoβ for

all w, poβ — q and /3 is fiber preserv ing. Thus to see t h a t /3 is

onto and one-to-one i t suffices to show /5 is onto and one-to-one on

fibers. Let xeFaX. Since j : πλ{X, *) -> lim {^(Xn, *)} Ξ i?7 is onto
<—

(see Propositions 5.4 and 5.5) t h e r e is a loop λ in X such t h a t t h e
lift of λ to * 6 Ϊ , call i t λ2, has endpoint x. I.e., λ^O) = * and

λj(l) = x. Call t h e lift of λ to * e l , λ2. Since p°β — q, unique

p a t h lifting in X implies β ° λ2 = λx and t h u s ^ ( ^ ( l ) ) = x so β is

onto.

If β(x) = β(y) let 7 be a p a t h from x to y. βn(x) = /5Λ(τ/) for all

w, t h u s pn°β»°J is a t r iv ia l loop in Xn for all w. By Remark 5.5.1

p°β°7 is a t r iv ial loop in X and hence qy is a t r iv ial loop in X

implying x — y. I.e., β is one-to-one.

T H E O R E M 5.9. Let X and Y be M-L-F compacta such that X

is path connected and X is LC°. Then for any map f: (X, *)—>

(Y, *) there is a unique map f: (X, * ) — > ( ? , *) swcft ίfeαί P°f — f°q.

(Here p and q are projections.)

Proof. Let j : π&X, *) -> lim pro-TΓ^X, *) and j ' : πx( Γ, *) -> lim
pro-π^Y, *) be the natural maps. Let άn: (X, *) -> (Xw, *) be pro-
jection. If λ is a loop at * in X then αw°λ is a trivial loop in
(Xn, *) and thus pn°<$woλ, = anopoχ is a trivial loop in (Xn9 *. Hence
p^π^X, *))cker(i). A similar argument shows ker(j) (zp^π^X, *))
and since p# is a monomorphism (see [13] p. 72), we have:

REMARK 5.9.1. ττ1(X, *) is isomorphic to ker(j).

Claim 1. Λ(ker(i)) c ker(i').
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Proof. Assume X and Y are embedded in the Hubert Cube, Q.
Since Q is an absolute retract / can be extended to a map /' : Q —> Q.
If X is a loop in X at *, representing an element of ker(i) then for
any neighborhood V of X, (in Q) X is trivial rel{0, 1} in V. Thus
by the uniform continuity of /', /oλ is trivial rel{0, 1} in any neigh-
borhood of Y.

Let xeX and λ a path from & to *. Define f{x) to be the end
point of the lift of /© p o x to * e Y. This is a well-defined function
(see [13] p. 76), and it suffices to show / is continuous.

Claim 2. f\p~\x) is continuous for any xe X.

Proof. Let e > 0 be given. There is a δ > 0 such that if
d(xl9 x2) < δ (xλ and #2 in p~\x)) and λ is a path from xι to #2 then
po\ is homotopically trivial rel{0, 1} in an ε-neighborhood of Xa Q.
(Assume X and Y are embedded in ζ> and / ' is as in Claim 1.) By
the uniform continuity of /', f\p-Ux) is continuous.

Claim 3. Let x e X and ε > 0 be given. There is a δ > 0 such
that if λ is a path at x = p{x) and diam.(λ) (The diameter of the
image of λ) is less than δ then the lift of δ to x has diameter less
than ε.

Proof. Define a metric, d, on Xby: d(a, b) = ^T=iO./2y(dt(ai9 bt)f
(1 + dt(aif bt))), where d{ is a metric on X€ and at = α^α). Similarly
define a bounded metric on X (also denoted by d). For an evenly
covered compact neighborhood Un of xn there is a compact neigh-
borhood Un of xn such that p j Un is a uniformly continuous homeo-
morphism, as is its inverse. Thus for any n, paths of "small"
diameter at xn lift (in Xn) to paths of "small" diameter at xn. By
the uniform continuity of at:X-+Xt, for any N>0 and δt > 0
there is a δ2(βlf N) > 0 such that if a path X at α? has diameter less
than δ2(δx, iV) then diam. (anoχ) < ^ for all n <L N. Choose N such
that (1/2)^ < ε/2 and δ, such that if β is a path at xn of diameter
less than δt then the lift of β to ίcw is of diameter less than ε/2.
By our choice of metric if X is a path at x of diameter less than
δz(δl9 N) then the lift of X to x has diameter less than ε.

Now we show / is continuous at xeX. Let ε > 0 be given,
By the uniform continuity of / and Claim 3 applied to Ϋ there is
a δx > 0 such that if X is a path at p{x) of diameter less than δλ

then the lift of /oλ to f(x) has diameter less than ε/2. By Claim 2
there is a δ2 > 0 such that if d(α, a?) < <5? where a e p~\p{x)) then
d(J(a), f(x)) < ε/2. By Claim 3 there exists <53 < δ1 such that £3 > 0
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and if λ is a path at p(x) of diameter less than <53 then the lift of
λ to x has diameter less than δJ2. Since X is LC° there is a <?4 > 0
such that iί beX and d(b, p(x)) < <54 then there is a path of diameter
less than δ3 from 6 to p(x). By the continuity of p there is a
dδ > δ2/2 such that δδ > 0 and _if d(_α, a) < δ5 then d{p{a), p(x)) < δ,.
We show if d(a, x) < δδ then d(f(a), f(x)) < e. d{a, x) < δ* implies there
is a path λ from p(a) to j>(α) of diameter less than <?3. Let z e
P" 1 ^^)) be the end point of λ lifted to α, <Z(z, α) < δJ2 and d(α, &) <
δ,<δJ2 so d(z, αθ><521 Hence d(J{z), f(x))>ε/2. Since diam. (X)<δs<δlf

the lift of /o λ to /(α) has diameter less than ε/2 and has end point
f(z). Hence d(f(x), f(a)) < ε and δδ is the desired bound.

COROLLARY 5.9.2. // /: (X, *)->(Γ, *) is a homeomorphίsm of
LC° M-L-F compacta and X and Y are path connected then the
induced map f: (X, *) —> (F, *) is a homeomorphism.

THEOREM 5.10. Let f: (X, *) -• (Y", *) 6β α pointed homotopy
equivalence of LC° M-L-F compacta. If X and Ϋ are path con-
nected then the induced map f: (X, *)-»(?, *) is a pointed proper
homotopy equivalence.

Proof. By Theorem 5.9 and the homotopy lifting property for
fibrations with unique path lifting / is a pointed homotopy equi-
valence. We prove / is proper and a similar argument shows that
the compositions of /with its pointed homotopy inverse are pointedly
proper homotopic to the appropriate identity map. Let Ul9 U2, , Un

be evenly covered compact neighborhoods covering X19 and let £/*
be a homeomorphic copy of Ut in pϊ\Ul). {x-Ui\xeF1 and ie
{1, 2, , n}} is a locally finite cover of X,. Recall a,: (X, *) -* (Xu *),
is proper. Choose wxear\x) for each xeF1 and let Vi = &z1(Ui)9

{wxIxGFJ is a discrete subset of F and {wx Vi\x&Fι and i6
{1, 2, , }̂} is a locally finite cover of X by compact neighborhoods.
Since / is a pointed homotopy equivalence, / maps p~\*) homeo-
morphically onto q~\*). The rest of the proof is the same as that
of Proposition 5.2 with et replaced by Vt and ^ replaced by wx.
where xieF1.
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