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ENDS OF FUNDAMENTAL GROUPS IN SHAPE
AND PROPER HOMOTOPY

MicHAEL L. MIHALIK

The number of topological ends of the universal cover of
a finite complex, K, is either 0, 1, 2, or oo and only depends
upon the fundamental group of K. Call this number ¢(K). We
wish to define numbers ¢(X) for compact metric spaces analo-
gous to ¢(K). To accomplish this we extend the theory of ends
for finitely generated groups to certain inverse sequences of
finitely generated groups and their inverse limits. Classifica-
tions for these inverse sequences and their inverse limits
analogous to those for finitely generated groups are derived.
Whenever the fundamental pro-group of a compact metric
space, X, satisfies certain properties, we obtain a shape in-
variant number ¢(X) (either 0, 1, 2 or ) and analyze what
¢(X) describes geometrically.

1. Introduction. The number of ends of a topological space
was introduced by Freudenthal in [8]. Let X be a locally compact
separable metric space. Let {C,}, be a collection of compact sub-
sets of X such that C,cint(C,+,) (the interior of C,;,) and U, C, = X.
The cardinality of li£1 {m(X — C,)} (where the bonds are induced by

inclusions) is the number of ends of X. This number is independ-
ent of the choice of the C..

In [10] Hopf proves:

(i) The universal cover, K, of a compact polyhedron has either
0, 1, 2, or <-ends.

Call this number ¢(K).

(ii) If K, and K, are compact polyhedra and =,(K,) = 7,(K,)
then e(K,) = e(K,).

This paper is motivated by the desire to extend Hopf’s theorem
to compaeta i.e., if X is a compact connected metric space we would
like numbers e¢(X) analogous to Hopf’s ¢(K). In §5 we accomplish
this for a large class of compacta, with ¢(X) a shape invariant of
X. Geometrically ¢(X) is counting the number of ends of the uni-
versal covers of certain compact polyhedra associated with X. We
also derive sufficient conditions to obtain a space, X, associate with
X (analogous to the universal cover of K) so that the number of
ends of X is e(X). This X will reduce to the universal cover
whenever X is LC° and semi-locally 1l-connected. With mild re-
strictions we show if X and Y are pointed homotopy equivalent
then X and Y are pointed proper homotopy equivalent.

Let Y be a locally compact separable metric space with one

431



432 MICHAEL L. MIHALIK

end, and {C;} a collection of compact subsets such that C,cint(C,.)
and Uz, C, =Y. If the inverse sequence {x,(Y — C;)} (with bond-
ing homomorphisms induced by inclusions and proper attention to
the base points) satisfies conditions described in §8 then a theory for
the number of ends of the fundamental group of the end of Y can
be derived. It is a well-known conjecture that these conditions are
satisfied whenever Y is the universal cover of a finite complex. We
do not explore this avenue in this paper although the basic tools
are implicitly evident. This is one reason for the words “and pro-
per homotopy” in the title of the paper.

The results of Freudenthal [8] and Hopf [10] led to the follow-
ing group theory:

If G is a finitely generated group there is a number, ¢(G),
called the number of ends of G such that:

(i) e(G@) is either 0, 1, 2, or .

(ii) If K is a compact polyhedron and z,(K) = G then e(G)=
e(K).

(iii) e(G@) = 0 if and only if G is finite.

(iv) e(@) = 2 if and only if G has an infinite cyclic subgroup
finite index.

(v) (Stallings) ¢(G) = o if and only if G is an amalgamated
free product or HNN extension of a certain type (see § 3).

(vi) e(@) =1 otherwise.

Our methods naturally lead us to generalize these results about
ends of groups in two ways: to suitable inverse sequences of groups
(objects in the category of pro-groups) in §38, and to suitable
topological groups in §4. [All this is carefully explained in those
sections, but a reader familiar with the shape theory of compacta
will not be surprised that we approach the desired geometrical
theorems about e(X) through inverse sequences of groups and/or
their topological inverse limits.] The geometrical theorems, describ-
ed above, are in §5.

Finally, there are several unexpected features, two of which

are:
1. The compacta for which ¢(X) is defined are pointed 1l-mov-

able (the fundamental pro-group is Mittag-Leffler (M-L)), and the
bonding homomorphisms (of the fundamental pro-group) have finite
kernel. Although the pointed l-movable condition is a frequently
used concept the finite kernel condition has not previously been
used. We call this condition Mittag-Leffler finite (MLF).

2. 2-ended finitely generated groups can be classified as those
with a normal infinite cyclic subgroup of finite index. In §4 we
describe a 2-ended topological group with no normal infinite cyelic
subgroup of any sort.
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3. The condition MLF is not an ad hoc condition. The class of
compacta with MLF fundamental pro-groups appears to be the na-
tural class for a theory of ends.

The content of this paper is taken from the author’s disserta-
tion written at the State University of New York at Binghamton
under the direction of Ross Geoghegan.

2. Ends and homomorphisms with finite kernel. All groups
considered in §2 will be finitely generated.

Let G be a finitely generated group with specified generators
{gy ***, 9ny. Construct a l-complex L(g, ---, g,) with one vertex
for each element of G and one edge joining verticies a and b if ag,=b
for some 1€{1,2, ---, n}. The number of ends of L(g,, ---, ¢.) (see
§1 for the meaning of this) does not depend on the choice of

gl’ ) gu [10]'

DEFINITION. The :number of ends of G is the number of ends
of L(g, -, ¢.) in the topological sense.

Proofs of the following two theorems can be found in Stallings
[14] (p. 54 and p. 38 respectively).

THEOREM 2.1. A finitely generated group has either 0, 1, 2 or
oo-emds.

THEOREM 2.2. A finitely generated group has 2-ends if and
only if it has an infinite cyclic subgroup of finite index.

As a companion to these two theorems we state the trivial:

PROPOSITION 2.3. A finitely generated group has 0-ends if and
only if it is finite.

The main result of this section is the following:

PROPOSITION 2.4. If G and H are finitely generated groups and
f: G— H 18 an epimorphism with finite kernel then G and H have
the same number of ends.

The proof will be done as a sequence of lemmas.

LeMMA 2.5. If f is as in 2.4 then G is 0-ended if and only if
H is 0-ended.

This is trivial.
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LEMMA 2.6. Let G be 2-ended and let f: G — H be an epimorphism
whose image H, is infinite then H 1is 2-ended and f has finite
kernel.

Proof. Let a be a generator of Z,, an infinite cyclic subgroup
of finite index in G. Let [z,], ---, [z,] be the right cosets of G/Z,.
(p €[zx;] if and only if p = a*x, for some integer k.) f(a) has infinite
order in H, since if not H would be finite, contrary to assumption.
It suffices to observe that if b and ¢ are in the same right coset of
G/Z, then f(b) and f(c) are in the same right coset of H/Z;, i.e.,
there are at most n right cosets in H/Z;,.

To see f has finite kernel, one need only observe that fis 1-1
on the elements of a right coset [x;]. l.e., for k= m fla*z,) =
(f(@)f(x) = (f(a)"fx;) = fla™x;) since f(a) has infinite order in H.

LEMMA 2.7. Let H be 2-ended and let f: G — H be an epimor-
phism with finite kernel then G is 2-ended.

Proof. Say x generates Z, an infinite cyclic subgroup of finite
index in H. If ye f~'(x) then y has infinite order in G and f maps
each right coset of G/Z, bijectively to one of G/Z,. Thus if G/Z,
were infinite f would not be finite-to-one i.e., f would have infinite
kernel, contrary to assumption.

LeEMMA 2.8. If f:G— H is an epimorphism with finite kernel
then G 1s cc-ended if and only if H is co-ended.

Proof of “only if”. Let {g, ---, 9. generate G. Then
{f(9), ---, f(9)} generates H. Let L, = L(g,---,9:), and L, =
L(f(g), ---, f(gy) f induces fi: L, — L, which is a covering projec-
tion with fiber of the same cardinality as ker(f). Hence f; is pro-
per. Choose C a compact subset of L, such that L, — C has #n-in-
finite components, where n > |ker(f)|. fi'fi(C) is a compact set con-
taining C and L, — f7'f.(C) has m-infinite components with m = u.
The infinite components of L, — f;'fy(C) cover the infinite compo-
nents of L, — f(C). But at most |ker(f)| infinite components of
L, — f7'fi(C) can cover any particular infinite component of L, —
fi(C). Hence L, — f(C) must have at least two infinite components,
and L, has at least two ends. By Lemma 2.7, L, is not 2-ended,
and therefore L, is co-ended.

Proof of “if”. Choose D a compact subset of L, such that
L, — D has three or more infinite components. If D,, D, and D, are
such components, then f7'(D;) for 7€{l, 2,3} contains an infinite
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component:of L, — f7Y(D) i.e., L, has at least three ends and there-
fore @ is -ended.

Lemma 2.5 is the 0-ended case of Proposition 2.4, Lemmas 2.6
and 2.7 the 2-ended case and Lemma 2.8 the oo-ended case. Thus
the only remaining case, the l-ended case also holds, completing the
proof of Proposition 2.4.

3. Inverse sequences of groups. Let Glé—Gzzi -+« be an in-
verse sequence of groups and homomorphisms. The sequence is
Mittag-Leffler (M-L) [9] if given n > 0, there is m(n) = n such
that im(Gupm+r — Gn) = iIM(Gp — G,) for all k = 0. If every bond
is onto or each G, is finite, then clearly {G,, f.} is M-L. The
sequences {@,, f.} and {H,, k,} are pro-isomorphic if there exists
cofinal subsequences {Gn.»}i-, and {H,;};=, and homomorphisms p,
and ¢; making diagram (A) commute for all j.

Gm(i) o Gm(i'ﬂ)

(A) ol N o
H,(7) «— H,

where the horizontal homomorphisms are compositions of bonds.
(This and related notions were introduced in [2].) Clearly pro-iso-
morphism is an equivalence relation. It is easy to see that any
M-L system is pro-isomorphic to one with epimorphic bonds. We
are interested in M-L inverse sequences of finitely generated groups
in which the bonding homomorphisms have finite kernels. We
call such sequences Mittag-Leffler-finite (M-L-F). By Proposition
2.4, if {G,, f;} is an M-L-F sequence of finitely generated groups and
each f; is an epimorphism then the G, all have the same number

of ends.

ProposiTION 3.1. If {H, k;} and {G, f;} are pro-isomorphic
M-L-F sequences with epimorphic bonds then all groups G, i€
1,2, ---} and H;, i€{1,2, ---} have the same number of ends.

Proof. By Proposition 2.4 it suffices to show the number of
ends of G, equals the number of ends of H, for some 7 and j.
Assume p, and ¢; are homomorphisms making diagram (B) commute
for all <.

rs
Gm(i) A Gm(H—l)

(B) pil \%\ 12’%1

83

Hn(i) Hn(i—H)
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r, and s, are the appropriate compositions of bonds, and thus are
epimorphisms with finite kernels. ker(p,)Cker(g;-,p,) = ker(r,-,), and
ker(p,) is finite. p; is an epimorphism since p;oq, = s; is. By Pro-
position 2.4 G, and H,, have the same number of ends.

DEFINITION. The number of ends of the M-L-F sequence {G,, f}
of finitely generated groups is the number of ends of the G; where
{Gi, fi} is any M-L-F sequence pro-isomorphic to {G,, f;} and each

{ is an epimorphism. This definition is unambiguous by Propo-
sition 3.1.

ProrosiTION 3.2. If {G,, fi} is M-L-F and each f; is an epi-
morphism then G, finite implies {G,, fi} is 0-ended, and G, having
an infinite cyclic subgroup of finite index implies {Gi, fi} is 2-
ended.

Proof. The first part is trivial and the second follows from
Theorem 2.2.

Let G be a group, A and B subgroups of G and let : A — B
be an isomorphism. The HNN extension of G relative to A, B and
0 is the group G —= .0 = (G, x|z~ 'ax = 6(a), a € A), i.e., the generators
and relations of (some presentation of) G, together with an addi-
tional generator, x, and additional relations z~‘ax = 6(a). (See [12]
p.179.) An alternative description of HNN extensions can be found
in [14] (3.A.5.5) in terms of pre-groups. We avoid pre-groups in
this paper.

By [14] (p. 57) the finitely generated group G has an infinite
number of ends if and only if either

(1) G = GGy, a free product with finite amalgamated sub-
group F, properly contained in both factors, and of index> 2 in at
least one factor, or

(2) G = H<<=z0 an HNN extension, where F is a finite sub-
group properly embedded in H. Thus,

ProrosiTioN 3.3. If (G, f} is M-L-F, each f; is an epimor-
phism and G, is a free product with finite amalgamated sub-
group as in (1) or an HNN extension as in (2) then {G, f.} s
co-gnded.

PRrROPOSITION 3.4. If {G,, fi} is O-ended and each f; is an epi-
morphism then all G, are finite.

This is trivial.
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PrOPOSITION 3.5. If {G,, fi} is 2-emnded and each f, is an epi-
morphism then there 1is x,€G, for each n such that f,(r,..) =z,
and z, generates an imfinite cyclic subgroup of finite index in G,.

Proof. In a group with infinite cyclic subgroup of finite index
any element of infinite order generates an infinite cyclic subgroup
of finite index. By Theorem 2.2, each G, has an infinite cyclic sub-
group of finite index thus if 2, has infinite order in G, and z, is
selected such that f,_ ,(x,) = z,_, for each n =2 then z, has infinite
order in G, and generates in infinite eyclic subgroup of finite index
in G,.

Finitely generated groups with 2-ends have mormal infinite
cyclic subgroups of finite index. The following example shows that
in a 2-ended M-L-F sequence with epimorphic bounds it may not
be possible to choose compatible normal infinite cyclic subgroups
i.e., there need not exist x,e€@G, such that x, generates a normal
infinite cyclic subgroup in G, and f,(x,:,) = z, for all =.

ExAMPLE 3.6. Denote the permutation group on » symbols as
S,. The following are easily checked in S,..
(i) [1,2, ---,2"[a,e +1]1=1[1,2, ---,a,a + 2, --+, 2] =[a + 1,
a+2][1,2 ---,2"] for ae{l,2, .-+, 2" — 2}
(ii) [ly 2, 2%][2"7 1] = [2r 3, -, 2%] = [1’ 2][1; 2, -0y, 2"]
i) [1,2,---,2"[2"—-1,2"] =11, 2, ---,2" — 1] = [2", 1]

[17 27 "',2”]
(iv) [1; 2,y 2”]2[(1” a + 1] = [a + 2,0+ 3][1, 2, -, 2”]2 forae
1,2 .-, 2m%}

(V) [1: 2, -, 27»]2[27» -1, ?‘n] = [17 2][17 2, .- %y 2n]2'

LEMMA 3.6.1. If x generates Z,, a normal infinite cyclic sub-
group of G, then gxg™ = x or 7' for any gE@q.

Proof. Say gxg™ =z and g~'zg = 2™ for some integers m and
n. Then x = g-'gxg~g = g7'2"g = (x)” = 2. Thus n-m =1 and
n=m=1o0rn=m=—1

Now we define our M-L-F sequence. Let G, be the infinite
cyclic group with generator z,, For n=2, G, =<2, a5, ***;
Ayro1 [T aGiyn = Qi@ fOr 1€ {1, -+, 271 @000y, = @125 af,, = L for
all 7; @;n0;,, = Q;,.0,, for all 2 and 7). Define f;: G,— G, by z, — =,
and a,,—1 for =1 or 2. For = =2, define f,:G,+,— G, by
Fnir = Tny Aguir — g, for 1€{1,2, ---,2"7"} and a —a;, for
1€{l,2, .-, 2"},

(vi) Since fio---of,-,(x,) = x,, x, has infinite order.

(vii) The relations of G, easily imply any word in G, can be

2= ligindi1
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written as al% --- al®"Vxk where t(i) €{0, 1} and %k is an integer.

(viii) The words of G, that are mapped to «* are exactly those
of the form in (vii).

From (vii) the infinite cyclic subgroup of G, generated by T,
has finite index in G,, and G, is 2-ended f, has finite kernel by
Lemma 2.6 and is an epimorphism by definition. Thus {G,, f;} is
M-L-F. For n =2, define ¢,:G,—S,» by z,—[L,2, ---, 2] and
a,,— 20 —1,2¢] for 7€{l,2, ---,2*%. By (iv) and (v) g, is a
homomorphism. In particular,

(ix) a;, # a;, for i # j.

LemMmaA 3.6.2. If G, has a mnormal infinite cyclic subgroup,
then a gemerator of it must have the form ai® ---ai& Dk for
K a monzero integer and t,€{0, 1}.

Proof. % 'a;, = a2 " for all 4, thus ;> 'a,, = a;.2;> " and
for any integer K, a,,xX"' = X" ’q,, for all 4. If Le{l, 2,
2! — 1} then za,, = @ip,.xi Thus if W=alQ .- al®) l’x’”” e

for t(i)e{0,1}, Lef1,2, ---, 2" — 1} and K is an integer, it suf-
fices to show a,,Wa,,#W or W-*. By Lemma 3.6.1 a,, Wa,, is
mapped to 2" under bonding homomorphisms, and W' =
x5 T gD L @@ is mapped to @ TE e, ay.Wa,, =W
a/l,nwal,u = al,ﬂa1+L,nW * W by (lX)

Assume b, generates a normal infinite eyclic subgroup in G,,
and f,(b,+;) = b, for all n. Say b, = 27, m = 0, then by (viii)b,=
aly -+ al® ap for ¢(7) €{0, 1}. But for 2°~'>|m|, m is not a multi-
ple of 2! and Lemma 3.6.2 implies b, does not generate a normal
infinite cyclic subgroup in G,.

An alternative characterization of 2-ended groups is as follows:
G is 2-ended if and only if G has a finite normal subgroup F such
that G/F' is infinite cyclic or is the -infinite dihedral group Z,+xZ,
[15] (p. 88). This motivates the following:

LemMmA 3.7, If {G,, fi} is a 2-ended M-L-F sequence, and each
fi 18 an epimorphism them there is a compatible sequence of finite
normal subgroups F;,C G, (compatible in the semse f,*(F,)= F,.)
such that G;/F; is infinite cyclic for all i, or Z,xZ, for all 1.

Proof. Since G, is 2-ended there is F,, a normal finite “sub-
group of G,, such that G,/F, is the integers, Z, or Z*Z Let
fooG,— Z or Z,xZ, be the quotient homomorphism. fyof;: G —»Z or
Zz*Z2 is an epimorphism with kernel fi'(F,). Thus G,/ f(l(Fl) =Z
or Z,xZ, Inductively define F, = f.,(F,-,), for n = 2. The kernel
of fyo---of,_, is F, and since each fi bas finite kernel, F, is finite
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and normal and G,/F, = Z or Z,xZ, for all n.

It remains to characterize c-ended M-L-F sequences.

A bipolar structure on a group G, as defined in Stallings [14]
is a partition of G into six disjoint sets, termed F, S, EE, EE*,
E*E, E*E* satisfying the axioms below. We let X, Y, Z be
symbols standing for the letters £ or E*, and if X = E or E* then
X* = E* or E respectively.

Axioms.

1.. F is a finite subgroup of G.

2. FUS is a subgroup of G in which ¥ has index 1 or 2.

3. If feF, ge XY, then fge XY.

4. If se8, ge XY then gse XY*.

5. If ge XY, then g'e YX.

6. If ge XY, he Y*Z then ghe XZ.

7. If ge(@, there exists a minimal integer, N(g) such that
whenever g, -+, g, €G and there exists X,, ---, X, such that g, ¢
Xr X, and g =g9,---g, then n < N(g).

8. EE* #+ .

If G is a group with bipolar structure then Pe G is irreducible
if Axiom 7 holds with N(P) = 1. Thus P is irreducible if Pe FUS
or if P cannot be written as g-h with ge XY and he Y*Z. If G
has a bipolar structure, then (x,, x,, ---, z,) is a reduced word if
each z, is irreducible, , ¢ F U S, and z,€ XY implies «,., € Y*Z for
1€{,2,.--,m —1}, or x,€ FUS and n = 1.

Lemma 3.8. If f: H— G is an epimorphism with finite kernel
and G has bipolar structure with partition F, S, EE, EE*, E*EH,
E*E*, then H has bipolar structure with partition f~(F), f~%S),
SER), fT(EE*), f(E*E), f7(E*E").

The proof is immediate since (in Axiom T7) N(h) is bourided above
by N(f(h)) for any he H.

LEMMA 3.9. If f: H— G is an epimorphism with finite kernel
and G has bipolar structure, then N(h) = N(f(h)) for any he H.

Proof, If (x, ---,x,) is reduced and h = x,---x, then N(k) =n
by [14] (p.32). To see N(f(h)) = m it remains to show (f(z,), ---,
f(z,)) is reduced. Since H obtains its bipolar structure from f-,
we need only show: If xe H — f(F US) is irreducible then f(x) is
irreducible, and f(x)eG — FUS. | Certainly flz)eG —FUS. If
flx) = ab with a € XY and be Y*Z, choose cc f*(a) and de f~'(b).
Then ce€ f~(XY), and de f~(Y*Z) implying cd is not irreducible.
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But f(x7'¢d) =1, so z7'ed e f~(F'). By [14] (3.B.2.5) x(x~'cd) must
be irreducible giving the desired contradiction.

The following theorems, 3.10-3.14, are in [14] for G a finitely
generated group. (With bipolar structure in 3.11-3.14.)

THEOREM 3.10. If G is co-ended, then G has a bipolar struc-
ture (5.A.9).

ProPOSITION 3.11. G, = F U {Irreducible elements of KEE} and
G, = FU{Irreducible elements of E*E*}are subgroups of G.(3.B.4.1).

THEOREM 3.12. If S = @, then G = {F U S}*;G, = {F U S},G,,
the free amalgamated product, (8.B.4.2) and G is oo-ended if and
only if F has index >2 in G, or equivalently G, (5.A.9).

THEOREM 3.13. If S= @ and there is mo irreducible element
of EE*, then G = G,*,G, (8.B.4.3). F is properly contained in G,
and G, (83.B.5) and G is «-ended if and only if F has index >2
in either G, or G, (5.A.9).

THEOREM 3.14. If S = @ and there is an irreducible element t
of EE* then tFt'C G, and if ¢: F— G, is defined by f—tft™,
then G 18 the HNN extension G, <, (3.B.4.4) and G is cc-ended if
and only if F is properly embedded in G, (5.A.9).

REMARK 3.15. The hypothesis S = @ and ¢ irreducible in EE*
also give G = G,,<>, where ¢: F— G, by f—t"'ft and since F is
finite it can easily be shown F' is properly embedded in G, if and
only if it is embedded properly in G, (t7'G,t = G,).

THEOREM 3.16. If G is a finitely generated «~-ended group and
f: H— G 18 an epimorphism with finite kernel then H is co-ended
and naturally inherits either the free product with finite amalga-
mation structure of Theorem 3.12 or Theorem 3.13, or the HNN
structure of Theorem 3.14.

Proof. By Lemma 2.8 H is «-ended. By Lemma 3.8 and
Theorem 3.10, f~' imposes a bipolar structure on H, determined by
the one on G. By Lemma 3.9 he H is irreducible if and only if
f(h) is irreducible. Thus f(G,) = f~(F) U {Irreducible elements of
f(EE)}. If S# @, then f~%(S)+ @ and by Theorem 3.12 H=
(F(FUS)*s~1mfXG,) and f~(F) has index >2 in fY(G). By
Theorem 3.13, if S = @ and there is no irreducible element of EE*,
then H = f~G)*s-1nf(G,), f(F) is properly contained in f-(G"
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and f%G,), and f~'(F) has index >2 in either G, or G,. If S = @
and there is an irreducible element ¢ of EE*, let we f~(t). Then
by Theorem 3.14, wf - (F)u'Cf G, and if : f(F)— f(G) is
defined by 2 — wau™’, then H = fYG,) <;-14p+ and f~(F) is pro-
perly embedded in f%(G,).

COROLLARY 3.17. If {G,, fi} is an co-ended M-L-F sequence each
fi s an epimorphism then either all G, have compatible free
product with finite amalgamation structures as in Theorem 3.12 or
Theorem 3.13, or compatible HNN extension structures as in
Theorem 3.14.

Introduction to §4. As explained in §1 we are building the
algebraic machinery necessary to extend the theorems by Hopf and
Stallings from compact polyhedra K to compacta X. If X=lim{X,, 1.}

is a suitavble compactum (this will be made precise in §5), we would
like the Cech fundamental group 7,(X, =) = lim{zx,(X,, *), f.} to play

the role of =,(K, *). 7,(X, *) is not, in general, finitely generated,
but in our situation 7,(X, *) considered as a topological group will
be compactly generated. When thus interpreted, it plays the cor-
rect role.

That is one reason for the theory of ends of M-L-F topological
groups which follows.

Another is that an alternative theory of ends for compactly
generated, locally compact topological groups exists, at least in part
(C. Pugh and M. Shub: Axiom A actions. Inventions Math., 29
(1975), 18-31). Although we do not prove this alternative definition
agrees with our “number of ends” for M-L-F topoJogical groups a
reader familiar with Pugh and Shub can check the details.

4. Applications to topological groups.

DEFINITION. An M-L-F topological group is a locally compact,
compactly generated, complete, metrizable topological group with
countable neighborhood-basis of the identity consisting of closed and
open normal subgroups.

A group can be regarded as a discrete topological group. If
{G,, f.} is an inverse sequence of discrete topological groups, then
1i£1 {G., f.} in the category of topological groups is obtained by tak-

ing inverse limits separately in the category of groups to get the
group struecture, and in the category of spaces to get the topology.
Throughout this section we will regard lim{G,, f,} as a topological

group.
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ProroSITION 4.1. G is an M-L-F topological group if and only
of G =lim{G,, f.}, where {G,, f.} is an M-L-F sequence of finitely

generated discrete groups.

REMARK 4.1.1. For the analogous proposition for M-L groups
see [1] p. 4 and [6] p.117-8.

Proof of “only in”. Let {I,} be a neighborhood-basis of the
identity consisting of closed and open normal subgroups. We may
assume that the I, are compact since G is locally compact and that
the I, are nested. Let z,: G — G/I, be the quotient homomorphism
taking g to its right coset [¢]. For Uc G/I,, =, (U) = U{l,x|re
;' (U)}. Since IL,x is open for any xe€G, n;'(U) is open in G; the-
refore =, is continuous when G/I, has the discrete topology. Since
I, is compact the obvious epimorphism f,:G/I,.,— G/I, has kernel
T.+:.(l,) a compact and therefore a finite group. If K is a compact
set which generates G, then =,(K) is a finite generating set in G/I,.
{(G/1,, f,} is M-L-F and lim {G,/1,, f.} is isomorphic to G.

Proof of “if”. First we need the following:

LemmA 4.1.2. If {G,, fi} is M-L-F and G = lim {G,, f;} then the
projection w,.G— G, is proper i.e., if C is compact in G, then
7;%(C) is compact in G.

Proof. Since G, is discrete, its compact subsets are precisely

its finite subsets. Discreteness also implies that G is closed in

2:Gi (C) = (fiorrofui(C) X frovofra(C)X -+« XCXfH(C) X

L fRAC)X+-)NG. Since each f; has finite kernel each term in
this product is finite and =,*(C) is compact, proving 4.1.2.

Now assume G and {G,, f,} as in Lemma 4.1.2. Since inverse
limits of pro-isomorphic sequences of discrete groups are isomorphic
topological groups, we may assume each f, is onto. If K is a finite
generating set of G, containing the identity, then by Lemma 4.1.2.
n7(K) is compact. We show 7 '(K) generates G. If (g, 9, ---)€G
and g, = kk, --- k, with each k,€ K then since each f;, is an epi-
morphism there is an %k, € G such that =,(k;) = k, for each 4. h, ---h,
is in the subgroup of G generated by #7%(K). Since 7, (9, g., --*)-
h;t---h') = identity e K, (g, ¢, - ++) is in the subgroup of G gener-
ated by n7Y(K).

I, = {(x,) €lim {G,, f,}| x, = identity} forms a countable neigh-
borhood-basis o(f— the identity consisting of closed and open normal
subgroups. By Lemma 4.1.2 each I, is compact and thus G is locally
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compact. Each G, is discrete so G is metrizable and as an easy
exercise G is complete.

DerFINITION. If G is an M-L-F group the number of ends of
G is the number of ends of any M-L-F sequence {G,, f.} where
G =lim {G., f.}.

This definition is unambiguous: M-L sequences which have iso-
morphic (topological group) inverse limits are pro-isomorphic, see
{1] and [6]; combine this with 3.1.

Many of the theorems on ends for finitely generated groups can
be generalized to theorems for M-L-F groups if the word finite is
replaced by compact. The following is merely an exercise in the
definitions.

ProrosiTiON 4.2. An M-L-F group is 0-ended if and only if it
is compact.

DEFINITION. A closed subgroup, H, of a topological group G
has compact index in G if the space of right cosets, G/H, with
quotient topology is compact.

PROPOSITION 4.3. An M-L-F group G is 2-ended if and only
if G has a closed infinite cyclic subgroup of compact index.

The proof of “only if” will be done as a sequence of lemmas.
Let {G,, f;} be an M-L-F sequence with each G, 2-ended and each
f; an epimorphism such that G =lim{G,, f;}. By Proposition 3.5
there are z, € (G, generating infinite cyclic subgroups of finite index
in G, such that f.(x,+) = 2,-x = (2, ,, --+) €{Gy, fi} = G.

LemmA 4.3.1. Z, = {«}, a7, ---)|n s an integer} is a closed dis-
crete subgroup of Tle, G,.

Proof. Say Z, accumulated at y = (y,, ¥,, ---). Since G, is dis-
crete {y,} xG,XG;x -+ is open in [], G, and thus must contain an
infinite number of the x". Each must have first coordinate ¥,, but
at most one can.

A similar argument shows;

LEMMA 4.3.2. G s closed in [, G,.
Lemmas 4.3.1 and 4.3.2 imply

LEMMA 4.3.3. Z, is a closed discrete subgroup of G.
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. Let Z, be the infinite cyclic subgroup of G; generated by «,.

Say Gi/Z; = [w;,.], [Wi.], « -+, [Wimw]- f: maps the elements of the right
coset [w;4,,] bijectively onto [fi(w;s:,,)]. Here [wii,:] = {wiry, 20, |0
is an integer}, and w,,,, is callled a representative of [w,:,,]. By
first selecting w,,, *++, W, .y and then w,, w,, -+, Wyne ete. we
may assume without loss of generality that the above selected re-
presentatives of right cosets are mapped by the appropriate bonds
to other selected representatives of right cosets. I.e., fo(W,+.1) €
{Wayy Wagy ***y Wamew} for all k. W =TI {we,, Wi« 0y Weemwo} 18
compact in [[;-, G,. By Lemma 4.3.2 WN G is compact.

LeEMMA 4.8.4. G/Z, is compact.

Proof. It suffices to show #(WNG) =G/Z, where n: G — G/Z,
is projection. If [aleG/Z,, a = (a, a,, ---) €G, then let a, = w, 3.
Because of how we selected representatives we have a, = w, e,
where fio---ofy (W pm) = Wipw. Also, since fio---of,_(a,) = a, we
have fio---of,_(2})=u] and therefore t =s. Thus, 7((W, k), W rw, * )=
T(Wirwy Worw, =+ *) (&, 23, -+ +)) = n(a) = [a].

For the “if” part assume G = lim{G,, f,} where {G,, f.} is
M-L-F and each f, is an epimorphism.(_ Let » = (x, »,, --+) gener-
ate Z, a closed infinite cyclic subgroup of compact index in G.
Let 7#,;: G — G; be the projection morphism: Y, the subgroup of G,
generated by x;; and let 6,: G/Z, — G,/Y,; be defined by [w]— [w,],
where w = (w,, w,, +--). To see 6, is a well-defided funection, let
ze[w] i.e., z = wx". Then 2z, = w,x? and z,€[w;]. Since each f; is
onto, 7, and 6, are onto. Topologize G,/ Y; and G/Z, with the
quotient topologies of the projections «,;: G, — G,/Y; and a,: G — G/Z,,
respectively. Diagram (C) commutes on the level of funections.

G = G,
©) azj l

/2.2 G Y,

By Dugundji [4] (p.126) 6, is continuous. Since G, has the discrete
topology and G/Z, is compact, G,/Y; has the discrete topology and
is compact i.e., G,/Y; is finite. If x, has finite order, then since
each f, has finite kernel each x, would have finite order. This im-
plies Z, accumulates at the identity, contrary to the assumption Z,
is a closed infinite cyclic subgroup of G. Thus each x; generates an
infinite cyclic subgroup of finite index in G,.

As we remarked in § 3, every finitely generated group with two
ends has a normal infinite eyclic subgroup of finite index. One
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might expect a normal infinite cyclic subgroup of compact index in
our 2-ended M-L-F groups. But this is not the case.

ExAMPLE 4.3. The 2-ended M-L-F group, G, determined by Ex-
ample 3.6 contains no normal infinite cyclic subgroup.

Recall that G, was infinite cyclic with generator x,. The closing
argument of Example 3.6 shows that (b, b,, ---) € G cannot generate
a normal infinite cyelic subgroup if b, = 2™ for m = 0. But if
m =0 then (b, b,, ---) has order two. Thus G has no normal in-
finite cyclic subgroup.

PROPOSITION 4.4. If G is a 2-ended M-L-F group, then G con-
tains a compact open mormal subgroup F such that G|F is Z or
Ziyx .

Proof. By Proposition 4.1 G is the inverse limit of an M-L-F
sequence {G,, f.} of 2-ended groups. Choose F, a finite normal sub-
group of G, such that G /F, is Z or Z,xZ, ([14] p.38). If n:G —@G,
and 7: G, — G ,/F, are projections then ker(wox,) = 7% ¥,). By Lemma
4.1.2 z7Y(F) is compact and open. Since z;'(F,) = ker(zox,), w7 (F)
is normal in G. Finally G/F, = G/ker(zwox,) = G/z7}(F).

Next we classify the oo-ended M-L-F groups.

REMARK 4.5. In a bipolar structure the requirement that F and
S be finite is strictly a requirement to prove theorems about ends.
Nowhere is the finiteness of F and S used in Stallings [14] p. 31-34.
In particular it is not used in the first parts of our Theorems 3.12-
3.14, nor is it used in Lemmas 3.8 and 3.9, and Proposition 3.11.
Thus if H is a group with bipolar structure (not necessarily a
finiteness condition on F and S) and f:G — H is an epimorphism
then f~' induces a bipolar structure (possibly without finiteness
condition) on G, and thus the corresponding amalgamated free
product or HNN extension structure on G.

THEOREM 4.6. The M-L-F group G is co-ended if and only if
G has subgroups A, B and C such that G s (in the obvious
manner) isomorphic, in the category of groups, to A=;B where C is
compact and open in G, properly contained in A and B and of
index =3 in either A or B; or G is isomorphic, in the category of
groups, to H—y¢ where C is compact and open in G and the in-
finite cyclic subgroup of H<=q¢ generated by the extra gemerator x
1s closed in G.
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Proof of “only if”. Assume G = lim {G,, f;} where each G, is
w-ended and each f; is an epimorphigzn. If G,=A*B, as in
Theorem 3.12 or 3.13 then by Remark 4.5 G = n'(A)+wr(B)z(C))
where 7,;: G — G, is projection. If G, = H,<;¢, as in Theorem 3.1,
with ¢ irreducible in EE* then by Remark 4.5 G = nr'(H) =109
where gern;'(t) and ¢: 77Y(C) — n7(H,) by ¥y —qyqg~*. By Lemma
4.1.2 n7Y(C) is compact in both cases and is open since 7, is conti-
nuous. The infinite cyclic subgroup of G generated by ¢ is closed
in G by Lemma 4.3.1.

Proof of “if”.

Case 1. G = Ax,B as above.

Assume G =lim{G,, f;} with each f; an epimorphism. Let
T..G— G, be pro(j—ection. By Lemma 4.1.2 ker(x,) is compact.
N, ker(z,) = (¢, e, ---), the identity of G. Since C is open and G
is metrizable, ker(z,)cC for some N. We show for this N that G,
is the free product with finite amalgamation A,* B,, where A,=
7, (4), B, = n,(B) and C, = z,(C). Since G, is discrete, x, is conti-
nuous and C is compact, C, is finite.

Define ¢,: A,*¢, B, — G, to be the homomorphism which is an
inclusion on A, U B,. Define +,: Ax;B — A,*;, B, to be the epimor-
phism which is projection into the nth eoordinate on A U B.

The following diagram (D) commutes:

A+*;B
RN
v N

An*C”B'n —SEL G'n

D)

7, is an epimorphism since each f; is an epimorphism. Thus ¢,
is an epimorphism. It remains to show ¢, is a monomorphism. If
é.(x) = e, choose y €, (x). yeker(r,)cC, and thus x€C,. By the
definition of ¢,, x = e.

We have proved G, = A,* B, for all m = N. Choose k= N
large enough to ensure C, has index =2 in A, and B, and index
=38 in either A, or B,. Then G, = A% B, is c«-ended and by Pro-
position 2.4 all G, are co-ended.

Case 2. G = H<=,¢ as above.

Recall H<spp = (H, x|2x7'ex = ¢(c)Ve e C). As in Case 1,
ker(z,)cC for some N. Let H, = n,(H), C, = x,(C) and z, = ,(x).
For a and b in C if =x,(a) = z,(b), then =x,(x 'ax) = m,(x'bx) and
Tu($(a)) = 7, (). Thus ¢,: C, — H, by ¢, — 7,(4(c)) where w,(c) = ¢,
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is well-defined. In forming H,< ¢, we identify x,'c,x, with ¢,(c,)

for all ¢,€C,. If we define 4,: HU{x} — H,<>¢,8, by ¥, = 7, then

v, extends to an epimorphism of H «gp since (T 7'cx) = x,%¢,2, =

Su(Ca) = T (8(c)) = Yu(g(c)) (¢(c) € H). Define a,: H,<>¢, ¢, — G, to be

the homomorphism which extends the inclusion of H,Uf{x,} into G,.
The following diagram (E) commutes:

H——¢9

(B) ?/ \’f\"

Qn
Hn = C,,¢n Gn

The same closing argument as that of Case 1 works here to
complete the proof.

THEOREM 4.7. If G = A*;B as in Theorem 4.6, then in the fol-
lowing diagram the outer square commutes; furthermore, given any
topological group H and continuous homomorphisms f: A— H and
g: B— H making the north-west triangle commute the resulting
homomorphism of groups, h, (which exists and s unique by the
universal property for amalgamated free products in groups) is
continuous. (Unlabeled maps are inclusions.)

C——B

/

(F) l Y
AN

A~ —G = AxB

Proof. Let W be a neighborhood of = in H. Let yeh(x)C
A (W)-h (W) = h(Wx~")y. Since C is open in G, A is open in G.
Hence f~(Wx™) is a neighborhood of e lying in A~ (Wz~'). Thus
F Y Wz Yy is a neighborhood of % lying in A*(W). So A~ Y (W) is
open.

REMARK 4.8. If G = H—¢¢ as in Theorem 4.6 a similar result
is true.

5. Geometric applications. As explained in §1, we will now
use the theorems of §3 to derive a new shape invariant for a
large class of compacta (those with M-L-F “fundamental pro-group”),
and a natural geometric interpretation of this invariant, (namely
the number of ends of universal covers of compact polyhedra in
an associated inverse sequence). For a somewhat smaller class of
compacta (those with stable “fundamental pro-group”) an added na-
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tural geometric interpretation arises. We will use [5] as our re-
ference for shape theory.

We deal throughout with a pointed connected compactum (X, *),
[Convention: “compactum means compact metric space. * is used
for all base points.] We will call a compactum, X, an M-L-F
compactum if X is connected and if for some (hence any) * € X,
pro-z, (X, %) is M-L-F.

The shape invariant for M-L-F compacta X mentioned above can
now be defined. It is ¢(X) = the number of ends of pro-z, (X, *);
see §8 ¢(X) is one of the numbers 0, 1, 2 or co.

THEOREM b5.1. If X is an M-L-F compactum then (X, *) =
lim {(X,, =), f.} where each X, is a compact polyhedron and the uni-

versal cover of X, has e(X) ends for all m.

Proof. By a trick of Krasinciewicz [11] (or see Theorem 4 of
[7]) one can arrange (X, *) = lim {(X,, ), f.} where each X, is a

compact polyhedron and f,, is a; epimorphism. By Hopf’s theorem
(see §1) and Proposition 2.4 the universal cover of X, has e(X) ends
for all .

Note that if (Y, %) is an M-L-F compactum then by a theorem
of Krasinciewicz (see [7]) (Y, =) is pointed shape equivalent to some
(X, *) where X is compact connected and LC°. We permanently
assume (X, *) = l(iin {(X., *), fu} to have these properties and we

assume each f,. is an epimorphism on w,.

It remains to investigate when e(X) can be interpreted geomet-
rically as the number of topological ends of a locally compact space
X (which reduces to the universal cover when X is LC° and semi-
locally 1-connected). The X we have in mind is lim {X,, f.}. More

—
precisely ~denotes the “pointed universal cover functor” and in the
following commutative diagram (G) the limit » of covering projec-
tions, p,, is a fibration with unique path lifting:

(&, Lo (&, M) — - (X, )

bk

(X, ) e— (X, He—- (X, )

Since X is M-L-F, X is locally compact. To prove this we
need:

PROPOSITION 5.2. Let X and Y be finite compléxes. Iy
f: X— Y induces fy: w(X, *) > (Y, *) a homomorphism with finite

~

Lernel then f: X — Y is proper.
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Proof. Diagram (H) commutes.
(&, -1 (7,
(H) » Ja
(X, )L (v, %)

Let [g]l e (X, *), then the covering transformation of X deter-
mined by [g] is defined as follows:

If xcX and A is a path from « to *, then p(\)-g-p(\") forms
a loop at p(x). [g](x) is the endpoint of the lift of this loop to x.
By [3] (p.12) we have:

(1) Flgl@) = fillgD(F(@)) .

Let C be a compact subset of Y. For each cell ¢, in X choose
a cell &, in X over e,, Then each of the cells of X over ¢, is (&)
for some hexw (X, *). It suffices to show only finitely many cells of
X over any cell, e;,, of X touch f“(C’). Suppose {g,, ¢», - -}C
(X, *) and g¢.(&,) intersects f~(C) for all i. Then by (1)
“ fg(gi)(f(é,,)) intersects C for each 1. f(é,,) meets only finitely many
cells of Y since the closure of &, is compact. Thus since f, is finite-
to-one, there is a cell & of Y and infinitely many kex,(Y, *) such
that h(¢) meets C, contradicting the local finiteness of Y.

Let a;: X — X, and @,: X — X, be projections. Then p,o&, = a;op
for all 5. X is closed in [, X, and since each f, is proper, each
@, is proper (see the proof of 4.1.2) and X is loeally compact.

Next we discuss when X is path connected. [Certainly X can
have infinitely many path components when X is not LC°; an ex-
ample is the compact spiral:

We leave it to the reader to check this.]

PROPOSITION 5.3. X is path connected if and only if the na-
tural map j: w(X, *) - lim{z,(X;, *)} is onto.
«—

Proof. We look at the last few terms of the homotopy exact
sequence of the fibration F-> X L x



450 MICHAEL L. MIHALIK

T(X, *) = 1y(F, %)~ (X, ) -2 0
\_
Jl= /

lim {,(X,, )} .

Since F is totally disconnected the above isomorphism of
lim {7 (X;, *)} to w,(F, *) ls induced by the above homeomorphism of

lflﬁn {r(X,, *)} to F. It remains to observe the following are all
«—

equivalent:
(i) j is onto
(ii) o is onto
(iil) 7w (X, *) is trivial
(iv) X is path connected.

PROPOSITION 5.4. Let X be an LC° compactum and let pro-w,
(X, *) be stable. Then j:z,(X, *)— lim (pro-7,(X, *)) is onto.
P

Proof. Let {U,}s-, be a nested sequence of compact @-manifold
neighborhoods of X with N;., U, = X. Let {{W,]} be an element
of lim {z (U,, *)}. (Here there is a common base point * € X.) Then
W,,: is a loop in U,;, which is homotopic rel. {0, 1} to W, in U,.
By [5] (p. 94), for any » > 0 there is a M such that for all m > M
W, is homotopic rel. {0,1} in U, to a loop N\, in X,, and hence
Ao =W, rel. {0,1} in U,. Let {{W,]} €lim {z,(U,, *)} and A be a loop
in X, such .that » = W, rel. {0,1} in I(]_l By stability we may as-
sume the inclusion of U,,, into U, induces an isomorphism on fun-
damental groups and thus » = W, rel. {0, 1} in U, for all =, finish-
ing the proposition.

PrROPOSITION 5.5. If X is an LC° semi-locally l-connected com-
pactum then pro-w, (X, *) is stable.

Proof. Let {U,}):-, be a nested sequence of compact @-manifold
neighborhoods of X with Ny, U, = X. By [6] it suffices to show
lim {z,(U,, *)} is discrete. Assume {{WZ]}, {{W.2]}, -+ are elements
o?lim {=.(U,, *)} converging to {{W,]}. By [5] (p.94) we may as-
sum<e_ W, and W® are loops in X for all » and k. For any N >0
there is a K(N) > 0 such that for all ¥ > K(N),andn > N WH=WwW,
rel. {0, 1} in Uy. Since X is compact and semi-locally 1l-connected
there exist ¢ > 0 such that any loop in X of diameter <e¢ is homo-
topically trivial in X. By [5] (p.94) there is a neighborhood V of
X in U, such that any map f: (L, L,)— (V, X), where L is a
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1-dimensional finite polyhedron and L, is a subpolyhedron, is ¢/3-
homotopie rel. L, in U, to a map ¢g: L — X. Choose N such that
foral n >N U,cV. Let k> K(N) and » > N. Then W =W,
rel. {0,1} in Uy and thus in V. Let H:[0,1]x[0,1]— V be a
homotopy of W[ to W, rel. {0,1} i.e., H|[0,1] x {0} = W/,
Hi[0,1] x {1} = W, and H({0, 1} x[0, 1]) = *. Choose a, =0 < a, <
o <a,=1 and b,=0<b, < --- <b,=1 so that the diameter
H(la;, a;.]x[b;, b;+,])is <e/3foralliand j. Let L = ({a, a,, * -+, @} X
[0, 1D U0, 1] % {b, b, + -, b,}) and L, = ({0, 1} x [0, 1) U [0, 1] x {0, 1}.
Choose g¢: L -» X homotopic rel. L, to H|L. g(({a;, a;+.}x[b;, b;r, U
([a., @i dx{b;, b;1.})) is a loop of diameter <e¢ in X and thus homo-
topically trivial in X. Hence W)” is homotopic to W, rel. {0, 1} in
X for all w > Nand k> K(N)i.e., {{Wl) = {{W,]} for all k£ > K(N)
and l(im {z,(U,, *)} is discrete.

REMARK 5.5.1. If a loop W of a semi-locally-1-connected com-
pactum X, represents the trivial element of pro-z, (X) then W is
trivial in X if X is LC°. Here is the main theorem of §5.

THEOREM 5.6. If X can be written as the union of compact
sets, A,, with A, a subset of the interior of A,-, and any two
points im A, can be joined by a path in A,:, then X has the same
number of ends as l(im {r(X,, )}

The proof will be done as a sequence of lemmas. We assume
*e A

REMARK 5.6.1. For X compact this is trivial.

LeMMA 5.6.2. X contains a compact set C such that p maps
the interior of C, int(C), onto X.

Proof. By the Hahn-Mazurkiewicz theorem X is a Peano curve
i.e., the continuous image of [0, 1]. Lifting this path to X gives
a path whose image under p is X. Choose an A, such that this
path lies in int(4,), then A, is the desired C.

Let F, = p;'(*) and F = p~'(*). The usual bijections 7 ,(X,, *)—>F,
induce a homeomorphism H:lim {z,(X,, *)} — F, where lim {7 (X, *)}

<« <
is topologized as in §4. We will freely identify these fibers. Thus
the left action of =,(X,, *) on X, determined by the correspondigg
covering transformations determines a left action of F, on X,,

hence F' acts on the left of X as fiber preserving homeomorphisms
such that for ae F and x e X @, (a(z)) = &,(a) (z) for all .



452 MICHAEL L. MIHALIK

For A a subset of a simplicial complex Y define St(A4) to be the
closure of the union of all cells of Y that touch A. Inductively define
St¥(A) to be St(St"-'(A4)) for N = 2. A set B in a topological space
T is said to be bounded if B lies in a compact subset of T, other-
wise B is unbounded.

LeMMA 5.6.3. If C is a compact subset of X, then each un-
bounded path component of X — C contains an unbounded subset of
F.

Proof. By Lemma 5.6.2 there is an M such that p(4,) = X,
and Cc A,. Choose N such that & (4,.)cC St"(*). If Q is an un-
bounded path component of X — A, let {x;}2, be an unbounded col-
lection of points in @ — &7 (St**(*)). Let y,€ A, such that »(y,) =
o(x;) and let n; be a path from y, to * in A,,,. The endpoint of
the lift of poX; to x; is in F, call it 2, thus we have: z;-\; has
endpoints 2; and z,; and &, (x,) € &,(2,4,+,) C StY(&,(z,) = a,(z;)- StV (*).
By definition &,(x,) ¢ St*¥(*), so St¥(a,(z,)) contains a point of X, —
St**(*) and therefore @(z,) - St"(*) misses St¥(*). Since their images
under &, are disjoint, z;-A,., and A,., are disjoint. z,-)\,C2;- A, C
X — A, therefore z,€@Q for all 7. {z;} is unbounded, for if not, say
S.({z;))c D, a compact set. Then S,({z;}) < St¥(D) a compact set but
&, is proper and {x;} is unbounded giving the desired contradiction.

LEMMA 5.6.4. If p(int(Ay)) = X, then there is a bounded neigh-
borhood of A, containing all but finitely many of the path compo-
nents of X — A,.

Proof. Choose N such that a,(4,.)>St"(*). We show
a; (St (*)) = W is the desired neighborhood of A,. W is bounded
since &, is proper. Assume an infinite number of path components
of X — A,, say C, C,, ---, arenot contained in W. Since X is path
connected each of these path components meet bd(W), the boundary
of W. Choose z;€C, Nbd(W). Say the x, accumulate at x € bd(W).
Let y €int(4,) such that p(y) = p(x). If )\ is a path from y to *
in 4,.,, then lifting pox to = is a path from x toze F and z. A,
is a neighborhood of 2 containing z-\, a path from x to z. &, (x)e
bd(St*¥(*)) and @, (z- A, ) CStY(@,(2)) = a,(z)-St¥(*). Thus bd(St*¥(*))U
St¥(a,(z)) is a nonempty subcomplex of X,, and must contain a ver-
tex w. If St¥(a(z))N StY(*) == @ there would be an edge path from
* to w of length <3N contradicting the fact u e bd(St**(*)). Hence
&I(Z'AM—H) ﬂavx(AMﬂ) =, and AM nz’A_vﬂ = Q. Since z’AM+1CX - M
and z-A, is a neighborhoood of z, the x;, are not all from different
path components of X — A, giving the desired contradiction.
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COROLLARY 5.6.5. If X, is N-ended then X has at least N ends.
In particular if X, is co-ended then X is co-ended.

Proof. If C is a compact subset of X, and X, — C has M un-
bounded path components, then an argument analogous to the proof
of Lemma 5.6.3 shows each unbounded path component, C;, of
X, — C contains an unbounded subset, S,, of ¥,. By Lemma 5.6.4
X — @& (C) has only a finite number of unbounded path components
and &;'(S,) is an unbounded subset of F since each f;, is an epi-
morphism. One of the unbounded path components of X — @;(C)
must contain an unbounded subset of &;(S,); but &;(S;) does not
meet a path component of X — a;'(C) which contains a point of
a\(S,) for i # j. Thus X — @;(C) must have at least M unbound-
ed path components.

LEMMA 5.6.6. If lim {x,(X,, *)} s 1-ended, then X is l-ended.

Proof. By Corollary 5.6.5 we need to see X has at most one
end. Assume X — A" has unbounded path components C, and C..
Let K, be a finite set of generators of =,(X, *) and assume 1€ K,
then a7'(K) is a compact generating set for lim {7, (X,, *)} (see the

proof of 4.1). Choose W such that KUK“‘CAT,. Let M and N be
such that &;7'(4,.)c St¥(*) and &,(A4,.,) < St"(*), and hence K,C
St (%),

Clatm. It suffices to show there are elements v»,€C, N F and
v,€C,NF such that v,=wvkk,---k%k, where k,eKUK™' and
vk, -k, Ay, X — A, for all m < n.

Proof. vk, ---kyevk -k, AvNvk, - kpo Ay sovk, -k, can
be joined by a path to vk, - -k, in vk, - kpi Ay, C X — Ay.
Thus », and », are in the same path component of X — A, giving
the desired contradiction.

Let a,(A4,)cSt"(*) and a@,(A,.,)cSt"(*). Choose R such that
any element of F' N St”+¥(*) is an R-fold product with factors in
K UK, In §2 we define L(K,) which by definition has 1-end. The
verticies of L(K,) are identified with zn (K, *) and thus with the
elements of F,. If u, and u, are verticies of the unbounded path
component, C, of L(K,) — St*(1), then an edge path in C from u,
to w, gives u, = wk, ---k, with kL, e K, U K, and for all m <n
wke, - ke X, — SETEV(F). Since  a,(Ay.) S, wk, - ky-
a(A,,.)c X, — St"(*) for all m <n. Since &, is proper, Lemma
5.6.3 implies C, and C, contain points of F, v, and v, respectively
such that &,(v,) and &,(v,) are verticies of C. Assume &,(v,) = u,
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and &,(v,) = u, as above. We can choose h; € @;'(k;) C K UK since
fi: is an epimorphism for all 7. Since &,(A,)cC St¥(*), v.h, - - hy-
Ay, <X — A, for all m<n. Let h,,= (wh, - h,) v, then
(b)) =*=1€kK, and a(vh; c o By Aps) = @ (vhy -+ by Ayy) C
X, — St¥(*). Thus v,-A,,,c X — A, and by the above claim the
proof is finished.

LEMMA 5.6.7. If lim {n(X,, *)} is 2-ended then X is 2-ended.

Proof. By Corollary 5.6.5 we need to prove X has at most
2-ends. Let G = lim{z,(X,, *)}, then G has a closed infinite cyclic
<«

subgroup, Z,, with generator x, and a compact subset K such that
if B is the quotient map of G to G/Z, then B(K) = G/Z, (see 4.3.4).
Hence G = U{x"-K|n is an integer}, & (K) is a compact subset of
the discrete fiber F', i.e., &,(K) is finite. Thus (1) If V is compact
in X then @&, (Uicxk- V) is finite.

Let A, be such that p(4,) = X and - KU KC A,,. It suffices
to show for @ =W, X — A, has at most two unbounded path com-
ponents. By Lemma 5.6.3 it suffices to show there exists M > 0
and N < 0 such that for all m > M all points of 2™-K are in the
same path component of X — A4, and for n < N all points of z*. K
are in the same path component of X — A4,. a,(x), &(x?), --- is a
closed discrete subset of X,. Choose K and L such that a,(Ay)c
St*(*) and &,(Ay+) < StE(*). Let M be such that for all m > M
a,(x™) misses St**(*). Then & (x™) -&(Ay+,) misses &,(A4,) for all
m>M. Thus 2™-A,;, misses 4, for all m>M. (2™-K)U(z""-K)C
2™ A" so all points of (x™-K)U (x™t'-K) can be joined by paths in
a"Ay, CX — Ay for all m > M. A similar argument holds for
negative powers of x.

Combining Remark 5.6.1, Corollary 5.6.5 and Lemmas 5.6.6 and
5.6.7 proves Theorem 5.6.

THEOREM 5.7. Let Y be a connected compactum with pro-m,(Y, *)
stable. Then any LC° compactum X = lim{X,} in the shape class
«—

of Y has the property that e(X) is the number of topological ends
of the path comnected, locally compact space X = lim{X,}. Moreover
—

when X 1s semi-locally 1-connected, X is the universal cover of X.

REMARK 5.8. By [11] there exist LC° compacta in the shape
class of Y.

Proof. We prove any compact subset of X is contained in a
path connected compact subset of X. By Propositions 5.8 and 5.4
and Theorem 5.6 this will prove the first part of our theorem.
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Let 8 be a path in X whose image covers X (Hahn-Mazurkiewicz
theorem), and let C be a compact subset of X. If g is a lift of
B to X. Choose N such that for any x in the image of @,-/5’, the
image of @-B is a subset of St¥(x). Let D= CU(U,cc8.) Where
B. is the image of a lift of S8 containing x. If @,(C)c St"(*) then
a,(D) Cc St*+¥(*) and D is bounded. Since pro-m (X, *) is stable F' is
discrete and F N D is finite. By Propositions 5.3 and 5.4 X is path
connected. Let £ be D union a path containing each point of F N D.
Then E is connected and contains C.

For the second half of 5.7, let ¢: (X, *) — (X, *) be the universal
covering projection. There are unique maps 8,: (X, *) — (X,, *) such
that p,oB, = @,°Q Ay 1°¢ = f00,0qQ = froDp° By = Pp-y° fo1°Ba BY
the uniqueness of pointed lifts, 8,-, = f.-.°B3. and there is a map
B: X - X by ¢ — (B.(x), Bs(x), --+) we prove A is a fiber preserv-
ing homeomorphism. Since a,°cq¢ = p,°8, = p,o&,°B8 = a,op-B for
all n, po@=gq and B is fiber preserving. Thus to see that g is
onto and one-to-one it suffices to show B is onto and one-to-one on
fibers. Let re Fc X. Since j:7,(X, *) — lim {r(X,, *)} = F is onto
(see Propositions 5.4 and 5.5) there is a lo:)f) A in X such that the
lift of A to *e€ X, call it A, has endpoint z. Ie., ,(0) = * and
M1) = z.  Call the lift of » to *e X, \,. Since pog = q, unique
path lifting in X implies Bo\, = A, and thus B(\,(1)) =« so 3 is
onto.

If B(x) = B(y) let v be a path from z to y. 8,(x) = B.(y) for all
n, thus p,°B,ov is a trivial loop in X, for all n. By Remark 5.5.1
poRo is a trivial loop in X and hence ¢y is a trivial loop in X
implying x = y. L.e., 8 is one-to-one.

THEOREM 5.9. Let X and Y be M-L-F compacta such that X
is path connected and X is LC°. Then for any map f: (X, *)—
(Y, *) there is a unique map f: (X, *)— (¥, *) such that pof = foq.
(Here p and q are projections.)

Proof. Let j:m(X,*)—limproz(X,*) and j:7z/(Y,*) — lim
pro-z(Y, *) be the natural m(a_i)s. Let &,: (X, *)— (X,, *) be p;';-
jection. If N is a loop at * in X then &,o) is a trivial loop in
(X,, *) and thus p,od,on = a,opo) is a trivial loop in (X,, *. Hence
p(n (X, *)) Cker(j). A similar argument shows ker(j) C p.(z,(X, *))
and since p, is a monomorphism (see [13] p. 72), we have:

REMARK 5.9.1. x,(X, *) is isomorphic to ker(j).

Claim 1. fiker(y)) < ker(s").
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Proof. Assume X and Y are embedded in the Hilbert Cube, Q.
Since Q is an absolute retract f can be extended to a map f": Q — Q.
If » is a loop in X at *, representing an element of ker(j) then for
any neighborhood V of X, (in @) )\ is trivial rel{0, 1} in V. Thus
by the uniform continuity of f’, fo\ is trivial rel{0, 1} in any neigh-
borhood of Y.

Let xe€ X and A a path from z to *. Define f(x) to be the end
point of the lift of fopox to *e Y. T}iis is a well-defined function
(see [13] p. 76), and it suffices to show f is continuous.

Claim 2. f|p~'(x) is continuous for any x e X.

Proof. Let ¢ >0 be given. There is a 6 > 0 such that if
d(x,, x,) <6 (x, and 2z, in p~'(x)) and ) is a path from z, to z, then
poX is homotopically trivial rel{0, 1} in an e-neighborhood of XC Q.
(Assume X and Y are embedded in @ and f’ is as in Claim 1.) By
the uniform continuity of f’, f|,—,. is continuous.

Claim 3. Let ze X and ¢ >0 be given. There is a 6 > 0 such
that if X is a path at z = p(Z) and diam.(\) (The diameter of the
image of \) is less than ¢ then the lift of § to £ has diameter less
than e.

Proof. Define a metrie, d, on X by: d(a, b) = >, (1/2){(d(a;, b,)/
(1 + dy(a;, b)), where d, is a metric on X; and a; = a;(a). Similarly
define a bounded metric on X (also denoted by d). For an evenly
covered compact neighborhood U, of x, there is a compact neigh-
borhood U, of Z, such that p,|U, is a uniformly continuous homeo-
morphism, as is its inverse. Thus for any =, paths of “small”
diameter at x, lift (in X,) to paths of “small” diameter at Z,. By
the uniform continuity of «;; X— X,, for any N> 0 and 6, >0
there is a 0,(6,, N) > 0 such that if a path )\ at x has diameter less
than 6,(6,, N) then diam. (a,°\) < 6, for all < N. Choose N such
that (1/2)¥ < ¢/2 and 6, such that if B is a path at z, of diameter
less than 4, then the lift of B to %, is of diameter less than ¢/2.
By our choice of metric if \ is a path at = of diameter less than
0,(6,, N) then the lift of A to T has diameter less than e.

Now we show f is continuous at x€X. Let > 0 be given,
By the uniform continuity of f and Claim 3 applied to Y there is
a 0, > 0 such that if N\ is a path at p(x) of diameter less than §,
then the lift of fox to f(x) has diameter less than ¢/2. By Claim 2
there is a 0, > 0 such that if d(a, x) <, where a e p~(p(x)) then
d(f(a), f(x)) < /2. By Claim 3 there exists d, < 6, such that d, > 0
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and if ) is a path at p(x) of diameter less than 6, then the lift of
A to « has diameter less than §,/2. Since X is LC° thereis a 6,> 0
such that if be X and d(b, p(x)) < é, then there is a path of diameter
less than 0, from b to p(x). By the continuity of » there is a
05 > 0,/2 such that o, >0 and if d(a, x) < §; then d(p(a), »(x)) < d,.
We show if d(a, «) < d, then d(f(a), f(®)) <e. d(a, z) <. implies there
is a path A from p(a) to p(x) of diameter less than 6, Let ze
»~Y(p(x)) be the end point of N lifted to a, d(z, a) < §,/2 and d(a, x) <
6,<0,/2 s0 d(z, ©)>0,. Hence d(f(z), f(x))>¢/2. Since diam. (\)<8,<d,,
the lift of fox to f(a) has diameter less than ¢/2 and has end point
f(z). Hence d(f(x), fla)) < ¢ and §; is the desired bound.

COROLLARY 5.9.2. If fi (X, *)— (Y, *) is a homeomorphism of
LC° M-L-F compacta and X and Y are path connected then the
induced map f: (X, *)— (Y, *) is a homeomorphism.

THEOREM 5.10. Let f:(X,*)—(Y,*) be a pointed homotopy
equivalence of LC° M-L-F compacta. If X and Y are path con-
nected then the induced map f:(X,*) — (Y, *) is a pointed proper
homotopy equivalence.

Proof. By Theorem 5.9 and the homotopy lifting property for
fibrations with unique path lifting f is a pointed homotopy equi-
valence. We prove f is proper and a similar argument shows that
the compositions of f with its pointed homotopy inverse are pointedly
proper homotopic to the appropriate identity map. Let U, U,, ---, U,
be evenly covered compact neighborhoods covering X,, and let U,
be a homeomorphic copy of U, in »p7XU). {x-U)xeF, and ic
(1,2, ---, n}} is alocally finite cover of X,. Recall @, (X, *)— (X, *),
is proper. Choose w, € d&;'(x) for each xc F, and let V, = a;\(U,),
{w,]xe F} is a discrete subset of F and {w,-V;|xeF, and i¢
{1,2, ---, n}} is a locally finite cover of X by compact neighborhoods.
Since f is a pointed homotopy equivalence, f maps »~'(*) homeo-
morphically onto ¢~'(*). The rest of the proof is the same as that
of Proposition 5.2 with &; replaced by V, and g, replaced by w.,,
where z;€ F',.
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