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APPROXIMATION BY RATIONAL MODULES
ON BOUNDARY SETS

JAMES LI-MING WANG

Let X be a compact subset of the complex plane. Let
the module ^{X)^m be the space of all functions of the
form

ro(z)Jrr1(z)z-\ \-rm(z)zm

where each r« is a rational function with poles off X. We
prove that ^(X)^ is dense in Lp(dX) for all 1 ̂  p < oo.

1* Introduction* Let X be a compact subset of the complex
plane. Let the module &{X)&m be the space & + ^?z +

= {ro(z) + r1(z)z+ +rm(z)zm} ,

where each r< is a rational function with poles off X.
The concept of rational modules arises in a natural fashion when

one attempts to study rational approximation in Lipschitz norms.
In [5] and [6], O'Farrell studied the relation of the problems of ap-
proximation by rational modules in different Lipschitz norms, and
in the uniform norms, etc., to one another. Not long ago the author
proved in [9] that ^S{X)^ is dense in LP(X) for all 1 ^ p < oo and
&(X)^2 is dense in C(X) if X has no interior.

It is apparent that if X has interior, then &(X)έ?m can not be
dense in C(X) or LP(X, dm), 1 ^ p < oo 9 where dm denotes the
2-dimensional Lebesgue measure. Also it is clear that if X has
interior, the &(X)έPm can not be dense in C(dX), where dX is the
topological boundary set of X. In this note, however, we prove
that &(X)^ is dense in Lp(dX, dm) for all 1 ^ p < oo.

2* Theorem and corollary* Throughout this note, Lp(dX)
stands for Lp(dX, dm).

Let μ be a (finite Borel) measure on X. The Cauchy transform
μ is defined by

Some basic properties for μ can be found in [4]. If g is a function

on X, we will write g for gdm.

We use the symbol 3 for the operator d/dx + i(d/dy) and write

gl V if \fgdm = 0 for all / in V.
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The following lemmas play important roles in this theory.
Lemma 1 is a special case of the key lemma in [5], and Lemma 2
is used by the author in [9].

LEMMA 1. Let μ be a measure on X. Then μ±^(X)^ if and
any only if

Proof. Because \fdμ=-π-1[(βf)μdm for all / in ^(X)^ (cf.

[4, p. 38]).

LEMMA 2. If geLp(X), then g is continuous when p>2 and g
is continuous when 1 < p ^ 2.

Proof. The Cauchy transform is essentially the convolution of
a function (or a measure) and the function ζ"1 which belongs to Lr

loc

for all 1 <; r < 2. So Lemma 2 is classical when p > 2. An applica-
tion of the Young's inequality [7, p. 271] takes care of the rest.

THEOREM. Let X be a compact set. Then &(X)^ is dense in
for all l<zp<^.

Proof. Let g be any function in Lg(dX), 1 < q ̂  °°, p~x + q~1 = h
such that gl&iX)^. Lemma 1 implies g \_&(X) and therefore
d = 0 off X. Also § is continuous by Lemma 2. It follows that
g = 0 everywhere on dX. Now g eLs for some s > 2, and so it fol-
lows from the theory of singular integrals [2] that g is absolutely
continuous on (almost) every line parallel to each of the coordinate
axes and that the partial derivatives d(g)jdx and d(g)jdy exist almost
everywhere (dm) in the usual sense. By a lemma of Schwartz [8]
(I owe this idea to James Brennan, who has shown me his work in
[1]) these derivatives coincide with the corresponding distribution
derivatives and so

g=-π-ιd(jj)

almost everywhere in the usual sense. By Fubini's theorem, almost
every point of dX is a point of linear density (and hence a point of
accumulation) for dX in the direction of both coordinate axes and so
d(ίj)ldx = d(jj)ldy = 0 almost everywhere on dX. It follows that
g = 0 almost everywhere on dX. Applying a similar argument to
g we conclude that g = 0 almost everywhere on dX and the theorem
is proved.

As a corollary, we have the following results in [9].
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COROLLARY. Let X be a compact set with no interior. Then
( i ) ^{X)^ is dense in LP(X) for all 1 <: p < oo.
(ii) &(X)^2 is dense in C{X).
(iii) ^?(X)^ 2 is dense in lip(α, X) for all 0 < a < 1.
(iv) ^ ( Z ) ^ 3 is dewse m -

Davie's theorem in [3] asserts that for any compact set Y with
boundary X = dY, we have

[&(X) + A(Y)]* = C(X) ,

where A(Y) denotes the algebra of all continuous functions on Y
which are analytic on Y and [ ]u denotes the uniform closure. Corol-
lary obviously strengthens this result, since &(X)έP2 and

have the same closure on X, where
&(X)^<^A(Y). For other extensions of Davie's theorem,

we refer the reader to the paper of OTarrell [5].
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