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AN APPLICATION OF GROUPOID COHOMOLOGY

CAROLINE SERIES

We study the structure of analytic measured groupoids
as denned by Mackey. It has been observed by Ramsay that
an arbitrary groupoid can be thought of as an equivalence
relation on its unit space together with a field of isotropy
subgroups.

We construct a cohomology theory for equivalence rela-
tions with coefficients in a field of abelian groups, and show
that two possible definitions using strict cochains or almost
everywhere cochains coincide, and show how using this to
reconstruct a groupoid from an equivalence relation and a
field of groups,

Introduction* We study the structure of analytic measured
groupoids as defined by Mackey [4]. It has been observed by Ramsay
[8], Theorem 6.9 that an arbitrary groupoid can be thought of as an
equivalence relation on its unit space together with a field of isotropy
subgroups. A groupoid homomorphism consists of an orbit preserving
mapping of the unit spaces together with a homomorphism of the
fields of isotropy subgroups. We formalize this correspondence in
the language of group extensions. The discussion is motivated by
the observation that if & is any groupoid we can associate to it
iϋί^, the corresponding equivalence relation, and Γ ^ , the field of
isotropy subgroups, and there are natural maps Γgf —> <& —> R&.
This is a short exact sequence of groupoids, in a sense explained
in §1, so that gf may be thought of as an extension of the field
Γ& by the equivalence relation R&.

In §2 we construct a cohomology theory for equivalence relations
with coefficients in a field of abelian groups, and show that two
possible definitions using strict cochains or almost everywhere cochains
coincide. In §3 we consider how to reconstruct a groupoid from an
equivalence relation and a field of groups. More precisely, an abstract
kernel will consist of an equivalence relation and a field of groups
together with suitable connecting isomorphisms. Any groupoid gives
rise to an abstract kernel and conversely any abstract kernel gives
rise to a groupoid provided that a certain obstruction in ΈP vanishes.
The methods we use are algebraically an exact analogue of the usual
theory of group extensions [5]. It is the author's hope that the
language of abstract kernels may prove a more useful viewpoint for
the study of groupoids.

Cohomology for groupoids with coefficients in a single abelian
group has been discussed by Westman [12], and for the special case
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416 CAROLINE SERIES

of an equivalence relation with countable orbits by Feldman and
Moore [2]. The methods we use in §2 follow Moore [6] very closely.
L. Brown obtained the equivalence of the two cohomology theories
for an equivalence relation generated by a freely acting group with
coefficients in a single abelian group. Presumably our results extend
to a cohomology theory for an arbitrary groupoid with coefficients
in a field of abelian groups.

If X and Y are standard Borel spaces, J^iX, Y) is the space of
Borel functions f:X—>Y, and Ĵ 7<(X, Y) is the space of functions
measurable with respect to some measure μ on X, with identification
of functions agreeing a.e. on X. If v is a measure on Y and Z is
another Borel space, and / e J^(X, Z), g e^(Yy Z)> then X*,gY is
the fiber product {(x, y) e Xx Y: f(x) = g(y)} and μ*v is the fiber
product measure (c.f. [7] p. 265).

1* Preliminaries* We will assume the reader is familiar with
the theory of ergodic groupoids, as expounded in [4] and [7]. To
fix our notation, we recall some definitions.

Let gf, h be a measured analytic groupoid (not necessarily ergodic).
The unit space of gf will be written S& or simply S. The right and
left projections to the units will be written d, g respectively (for droite
and gauche: this is an attempt to reconcile the notation of Ramsay
who uses d, r for domain and range and the author's prejudices in
favor of right and left). We write ξ = d(ξ), ξ = g(ξ); 57{2) = S?*d,gS?,
and more generally g^(Λ) = gf*d>lϊ(Λ-ngΓ<Λ-1) where g{n~1]: %?{n-l)-> S is
βiςif ''', f J — ίi a n d d{n~ι) is defined similarly. h{n) is the fiber product
measure h*h{n~1], and h = d*h. Fs = g~\s), Fs = d~\s), with measures
h% hs respectively. Tξ: F1 —> FL

9 Tξ(Ύ]) = ξη. <& acts on a space X, v
if there is a Borel map P: X-> S and a Borel map m: X*Ptg$s -> X,
such that

mix, s) = x and m(m(xf ξ), rj) = m(x> ξη) ,

and such that P*v = fe and if v = [ vsdh(s) and Jξ: P'\ξ) -+ P~ι(ξ),
Jξ(x) = χξ9 then J^Pj ~ vjVf in an i.e. of &. (c.f. [9] Definition 1.2).

Ramsay [9] has discussed the kernel and range closure of a
groupoid homomorphism π: & —> έ/ϊf. For our purposes it suffices to
consider only the case S^ = S&-, π = id, in which case the construction
simplifies considerably. Ker π is the g^ space §ίf with P: £ίf -> S,
P(f) = | , m(f, ̂ 7) = π(η)-ιξ. Sίf is also an ̂ ^ space with d: 3ίf -> S**
and m(f, ̂ ) = ξη. By [9] Theorem 3.2 there is an <§%f space 3f and
an equivariant map j(π): £ίf -+ S4f such that each fiber of j(π) is an
ergodic groupoid. The action of Sίf on S^ is called the range closure
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of π, written &(π). π is an embedding if each fiber of j(π) is the
trivial groupoid, i.e., if it is principal and transitive, π is surjective
if each fiber of j(π) is transitive and we may take S&f — S, with
the natural έ%f action, and j(π) = d. A sequence 3ίΓ —» & —> έ%f of
groupoids is a short exact sequence if i is an embedding, j is sur-
jective, and Ker j — &{%).

Associated to any groupoid gf are two other groupoids R&, Γ&.
R<& = {(s, t) G S x S: 3«f e &, ξ = t, 1= s} is the associated principal
groupoid (equivalence relation). This is shown to be a groupoid in
[7]. Γgf = Uses Γϊ?s, where Γ%?8 = {ς e gf: J = | = *}. By [7], each
J Γ ^ S is a l.c.s.c. group and Γ& is a measured field of groups in the
sense of the definition of §2. Γ^ inherits its algebraic structure
from 5f we remark that it is not ergodic unless ^ is a group.

THEOREM 1.1. There is a natural short exact sequence

Proof. The definitions of i and R are clear. Ker i is the
space gf, with f i? = "̂'f, ^ € Γgf, f 6 gf. We may take & =
with j(ΐ) = i2. i?g^ is in a natural manner a ^ space, with ^
acting on the left, and each fiber of j(i) is the trivial groupoid.
KerJS is the gf space R&, with the natural left action of 5̂ ", and
hence Ker R = ^?(ί). R& -+ S, uv-> ϋ, is the ergodic decomposition
of Keriϋ and is an J? equivariant map with the natural action of

on S. Each fiber is transitive, hence R is surjective.

2* Cohomology of equivalence relations* We extend the
cohomology theories of [3] and [12] by showing how to define cohomo-
logy groups for equivalence relations taking values in a field of abelian
groups. The main result, obtained following methods of Moore, [6],
is that two possible definitions of the cohomology groups, using strict
Borel cochains or cochains of functions identified almost everywhere,
coincide.

Throughout R, h is a principal groupoid, with unit space S; μ is
the induced measure measure on S, and hin) the induced measure on
R{%) = {{vίf , vn) e Λ : v< - vi±1, ί = 1, , n - 1}.

A Polish field of groups on S is an assignment s h^ As of a Polish
group (c.f. [6] p. 3) to each s e S, such that

( i ) A — \JSesAs has a standard Borel structure &.
(ii) &\A8 is the natural Borel structure on A8.
(iii) a: A —> S, 6κ(As) ~ s, is Borel.
A measured field of l.c.s.c. groups is a Polish field of groups such

that As is l.c.s.c for each s, and such that there is a choice of vs in
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the Haar class on As with s^*vs(E) Borel for each
Such a field is an i?-module if we are given, for each v e R, z,

topological isomorphism J(v): A^ —> Av such that J{v^J{v^) = J(v1v2)yv19

v2 e R{2) and such that the map

R*d,aA > A , (v, a) i • J{v)a , is Borel .

If B, K is an i?-module, an i?-module map T: A —> B consists
of continuous homomorphisms T(s):As—> Bs such that K{v)T{v) ~
T(v)J(v) VveR and such that

T: A > B , T{a) - Γ(α(α))(α) , is Borel .

Given an i?-module A, we can construct another i?-module I(A),
analogous to the regular representation of a group.

KA)S = {/ 6 ̂ hs(d-\s\ A): f(v) e Av]

I(A)S may be identified with J^hs{d~\s), As) by the map

/ι >/, f{v) = J(v)-ιf(v) .

/(A)s is topologised as follows (c.f. [6] p. 5):

(2.1) L-~>f<=>J(vyifM >J(v)-1f(v) Λsa.e.

By [6] p. β, this makes I(A)8 a Polish group. Since J(v) is a topological
isomorphism, 2.1 is equivalent to

(2.2) fn >f—fn(v) >f(v) M e

We define the Borel structure on I(A) = Use,sI(A)s to be the smallest
such that the projection ί(a): I(A)—> S and all functions I(A)—> R of
the form

G(Y, Φ)(h) = \ φ(h(v))dh-(v) , Ye^(R) , φejr(A, R) ,

are Borel. This makes I(A) into a standard Borel space and by [6]
Proposition 8 the given Borel structure is induced on I(A)S for each

s. Notice that all functions ft i—> \ p(v)φ(h(v))dh^(v), p ej^(A, R),
J Y

are automatically Borel.

PROPOSITION 2.1. I(A) is an R-module.

Proof. R acts on I(A) by

T(v): I(A)~ > I(A)V_ , [T(v)f](w) - f(wv) .
Using 2.2 and the quasi-invariance of the measures hs it is clear that
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Tiv) is a topological isomorphism. R*I(A) —> I(A) is Borel provided
the maps

( i ) v,h^a(T(y)h)
(ii) v,h\-»G(Y, φ)(T(v)h), Ye.^'(R), φeJϊ~(A, R), are Borel. (i)

is clear and (ii) follows since

G(Y, φ)(T(v)(h)) =

= \ φ{h{w))pv{w)dh-υ(w)

where pv is the Radon-Nikodym derivative of Tv,(hv) with respect to

PROPOSITION 2.2. There is a natural embedding of R-modules

Proof. Define I(s): As -^ I(A)89 I(s)(a)(v) = J(v)a. It is routine to
check that I(s) is algebraically an i2-module map. That I(s) is a
homeomorphism onto its image follows as in [6] Proposition 13.

To see that / is Borel, one checks that A h^ R, a κ-> \ φ(J(v)a)dhv(v)

is Borel for Ye.^(R), φ e^{A, R). This follows since (v, a) ̂  J{v)a
is Borel.

We define another field U(A), U(A)S = I(A)JAS. It is clear that
with the induced Borel structure and induced inaction, U(A) is an
jβ-module.

We now turn to the construction of the cohomology groups.
Following [6] and [2] we axiomatise a cohomology functor as follows:

Let R be a principal groupoid. A cohomological functor on the
category of i?-modules (in the sense discussed above) is a sequence
of contra variant functors Hn(R, A), for each n ^ 0, to the category
of abelian groups, such that to each short exact sequence of R-
modules there corresponds a long exact sequence of cohomology in
the usual way, and such that

H\R, A) = AR; H\R, I{A)) - 0

where

AR - {/ G Ĵ 7'(<S, A): f(s) e As , J(v)f(v) - f(v) a.a. v e R) .

As in [6] one verifies the uniqueness of a cohomological functor
satisfying these axioms.

Just as in [6] we have two possible candidates for the cochain
groups:
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*\ A): c{nu • • • , « . ) € AΆ)

dC(ult •••, un+1) = JiuMu* '••, ίt.+i)

( a ) + Σ i-WUu . MiWi+i, «.+i)

+ (-ir+ ic(u 1, •• , w j ,

where we identify functions which agree on saturated conull sets.

(b) C*(R, A) = {c e JT^R^, A): c(ul9 , un) e AJ

and d is given by the same formula as 3. One verifies that d is
well-defined on Cn.

It is clear that there is a natural map Hn->Hn, induced by
identifying functions which agree a.e. It is also clear that from a
short exact sequence of iϋ-modules one obtains a long exact sequence
of cohomology.

Our aim is to show that the two definitions of cohomology groups
satisfy the axioms and that H* —> H* is an isomorphism.

PROPOSITION 2.3. H\R, A) = H°(R, A) = AB.

Proof. Suppose / e Z\ Then df = 0 is precisely the condition
feA*.

Let / e Z\R9 A). Then J(v)f(v) = f(v) on a saturated conull set

in R. Therefore / gives a well-defined element feAR. Suppose

f = f in AR. Then f(s) = f\s) a.a.s, and J(v)f(v) - f(v), J(v)f'(v) =

f'(v), on a saturated conull set in R. Consider {seS: f(s) Φ f{s)}.

This is null and saturated under R, hence / = / ' in Z°. Conversely,

suppose / is a representative for f eAB. Then J(v)f(v) = f(v) a.a.v.

We need a function in ZQ agreeing with / a.e.
Define, for seS, F(s) e^{dr\s)9 A), F{s){v) = JO)- 1 /^). For

μ a.a. s, F(s) is constant hs a.e. Let this constant value be a(s), so
that F(s)(v) = α(s) a.a. s e S. Let T = {s e S: F(s) is constant hs a.e.}.
Suppose w eR, id eΓ. Then

F(w)(x) = J(x)-ιf{x) = J{w)J{xw)~ιf{xw) = J(w)F(w)(xw)

which is constant hE a.e. Therefore w e T, T is saturated, moreover

α(w) = J(w)a{w) for w eT. It is clear that α(s) = /(s) a.a.s, and a

is Borel since

φ(a(s)) = ^(JivrVil^dh-M is Borel VφeJ^(A, R)

a is therefore the required function.
The next step is a modified version of [6] Theorem 1:
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PROPOSITION 2.4 (Modified Fubini Theorem).

C\R, A) = C*-\R, I(A)) , C\R, A) = C*~\R, I(A» .

Proof. We have an obvious map L: Cn —> Cn~\ L{f){y2, , vn) =
* , vn) and similarly for C\ One checks that L, L are well-defined.

It is clear that L is an isomorphism. It is also straightforward to check
L is injective and Borel. To see that L is surjective we follow [6]
p. 8. A is Polish and may therefore be embedded in an infinite cube
I°°. Let Pi denote projection to the ith coordinate. For
Ne ^{R'n~1]), f e Cn~\R, I(A)), set

vlM, N) = i f pj(v2f , ̂ JWdi-WA^-11^, , vn)
JM)N

The inner integral is Borel by definition of the Borel structure on
Cn~\R, I(A)). ι>t(M, N) extends to a measure vt on R{n) which is
absolutely continuous with respect to h{n). Let pt be the Radon-
Nikodym derivative of vt with respect to h{n). Define p: Rw -»A,
p = (plf p2f . . . ) . It is straightforward to check that L{p) — f.

Just as we formed I(A)S and gave I(A) the structure of a Polish
field of groups, we may form

I{2)(A)S = {fe ^hf{d^-\s\ A): f(vlf v2) e AVJ

and give Γ2){A) — \JseS I(2)(A)s the structure of a Polish field of groups.
R acts on Γ2\A) by

(vlf v2) = F(vu v2v3) vu v2, v3 e Λ(3) .

This action makes I{2)(A) an i?-module.

PROPOSITION 2.5. There is a canonical isomorphism of R-modules

Proof. The map is given by K(s): J(/(A)).-> Γ2)(A)S,
i), î> v2ed{2)~1(s). It is a routine check that this is a well-

defined injective i2-module map.
The surjectivity is essentially Proposition 2.4, after making the

following identifications:

/(A). = &iμ-\*\ As) f(v) i
-\8), /(A).) , F(w) i > T(w)-ιF(w)
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and hence

WA))S ί jrhμ-\8\ jrhμ-\s\ A.))
(AF)(w)(v) = J(v)-ι[F(w)(vw-1)] w,ve d~\s) x d~L(

also

I SThf^-\s\ A.)
BG(x, y) = J(xy)~ιG(x, y) x, y e R{2)

and d{2)-\s), h{2) = d'^s) x d~\s), hs x h8, p, q > pq, q (observe the
last isomorphism preserves measure class by quasi-invariance of the
measures hs).

Define C: ̂ <jr\s\ jThμ-\s), A.)) -> ̂ hsXhs{d~\s) x d'\s\ A.) by
C(f)(Vu VΪ) — Fiy^v^. C is an isomorphism by [6] Theorem 1. Then
for FeI(I(A))8,

CAF = BKF .

PROPOSTIION 2.6 (c./. [6] Proposition 15). There is a canonical
isomorphism of R-modules U(I(A)) ~ I(U(A)).

Proof. Both modules are quotients of /(/(A)) which by Proposition
2.5 may be identified with I[2\A). Under this identification, to obtain
Z7(/(A)) we factor by functions

) = /(VM): f e I{A)1V (vu v2) e R^} .

To obtain I(U(A)), we factor by

B2 - {F(vl9 v2) = J(vMv2): a(v2) e AJ .

It is straightforward to check that K: /(2)(A) -> /(2)(A), KF(vl9 v2) =
Jiv^Ftyϊ1, vλv2) is an isomorphism of i2-modules which carries Bλ

onto B2.
We are now able to prove the vanishing axiom for n > 0:

PROPOSITION 2.7 (c.f. [6] Proposition 22). For any A, and any
n > 0, the map Hn(R, A) -> Hn(R, I (A)) induced by the inclusion
A —> I(A) is the zero map, and similarly for H.

Proof. We prove the result for H". It will be seen that the
same proof works for Hn with the omission of a.e. considerations.
By Proposition 2.4, L: Cn(R, A) -> Cn-\R, /(A)), is an isomorphism. We
also have an involution of

Cn{R, A), h i > h*, h*(vlf >-,vn) = J(vlt vjh(v~\ , vrι)
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which preserves Bn and Zn; and a map

T: Q*-\Rf I(A)) > Cn-χR, /(A)) ,

Let i: C%(ϋ?, A) -> Cn(R, I{A)) be the map induced by the inclusion
map. One may check that if feZ*(R, A), then dTLf* = i(/).

An inductive argument using the long exact sequence of coho-
mology derived from 0 -> /(A) -» /(/(A)) -> U(I(A)) -> 0 together with
Propositions 2.6 and 2.7 now reduces the question of the vanishing
of Hn(R, /(A)), Hn(R, /(A)) to the case w = 1. (c.f. [6] p. 22). This
we check directly:

PROPOSITION 2.8. H\R, /(A)) = H\R, /(A)) - 0.

Proo/. First consider H\ Choose FeZ\R, /(A)). Then

0 = T{vλ)F{v2) ~ F(v^2) + F(^) a.a. (^, v2) ei2(2) .

Therefore, a.a. (vlfv2)eR{2)

( 1 ) l7^)(W>!) + F(Vι)(Vo) = ^(^^(Vo) a.a. v0 6 d " 1 ^ ) ,

hence

( 2 ) FfaXVoVj + F(^)(^o) - (̂ViV2)(Vo) a.a. t;0> vlf ^2 e R(3) .

Setting x = ^o î, y — v2 we obtain

( 3 ) F(i/)(a?) = F(v^ιxy)(v,) - F(v^ιx){v0) a.a. Vo"1, x, y e i?(3) .

Therefore, for a.a. s e S, 3^0 e g~\s) such that (3) holds a.a. x, y e
g{2)~\s). We may choose vo(s) such that s \-+ vo(s) is Borel. Define
G e C\R, /(A)),

G(s)(w) =

3G(v)(w) = T(v)G(v)(w) - G{v)(w) - F(vo(w)-ιwv)(VQ(w))

- F(v,(w)~ιw)(v,(w)) = F(v)(w) a.a. (w, v) e R{2) .

Hence F = 3G in (?(#, /(A)), so ^ : (Λ, /(A)) = 0.
It is clear that a similar argument, with the omission of a.e.

qualifications, shows that Hι(Rf /(A)) = 0.

In conclusion we have

THEOREM 2.9. The natural maps Hn(R, A) -»H n(R, A) are iso-
morphisms in all dimensions.
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3* Groupoid extensions* Let R be a principal groupoid with
unit space S and let Γ be a measured field of l.c.s.c. groups on S.
A groupoid gf is an extension of R by Γ if iZ5^ = R and Γgf = Γ.
This terminology is of course motivated by Theorem 1.1.

An abstract kernel is a triple (R, Γ9 J) where R, Γ are as above
and, for a.a. veR, J(v): Γ- —»/\ is a topological isomorphism such
that a.e. (u, v) e R{2), J{nv)"ιJ{u)J{v) e Int />, and such that the map
RlP Γ —> Γ9 (v, ξ) —> J(v)£, is Borel. A morphism of abstract kernels
t: (R, Γ, J) -> (i?', /", J') consists of

( i ) A groupoid homomorphism τ: R—>R'.
(ii) A Borel homomorphism T\ Γ -* Γ' over r, i.e., a field of maps

Ts: Γs -+ Γ'τa, such that

TJ(u) = Adβ(u)J'(τ(u))Tΰ a.e. u G i? ,

where β(u)eΓτ{^)9 and Adx(?/) = x^yx.

Morphisms t, t' are conjugate if Ts e T's Int Γ s Vs e S.

PROPOSITION 3.1. There is a functor 81 /rom ίfce category of
groupoids and homomorphisms to the category of abstract kernels
and morphisms.

Proof Let gf be a groupoid. Set R = R<& and Γ = Γ%?. Let
v h-> α(v) be a Borel map J? —> ^ such that P(a(v)) = v a.a. vei?.
Define J(v): / \ —> ,Γ£, J(v)(ξ) = a{v)ξa{v)~ι. It is straightforward to
check that Sϊ(S^) = (iZ, Λ J) is an abstract kernel and that different
choices a', J ' give isomorphic kernels. Let π: & —• ^ ' be a homo-
morphism. 7Γ induces τπ: R<& —• J B ^ ' and a homomorphism T*: Γ^ 7 —>
Γ ^ " by restriction, T; being Borel and hence continuous by [1] p.
23. Also

' TiJ(u) = Ad (α(τ(^))ττ(αM)-1)J\τu) Tl VueR

and

so that we have a morphism Sί(τr): Sί(gf)
It is clear that this correspondence is functorial.
If gf is a groupoid and 8ί(5f) = (R, Γ, J) then clearly 5f is an

extension of Γ by i2. We now investigate the extent to which an
abstract kernel (iZ, Γ, J) determines all groupoid extensions of Γ by R.

By von Neumann's selection lemma, an abstract kernel gives a
function / 6^I(2)(iZ(2), Γ), /(w, v) e ΓUJ such that

(A) J(u)J(v) = -4d/(w, v)/(^) a.a. w,veiZ(2) .
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Hence a.a. u, v, w eR{3):

J(uvw) = Aάf(uv, w)~ιJ(uv)J(w) = Adf(uv, w)~ιAdf{u, v)~ιJ{u)J{v)J{w)

J(uvw) — Adf(u, vw)~ιJ(u)J(vw)

= Ad/fa, vw)-1J(w)Ad/(v, wy'JiuY^^J^Jiw)'

so that

(B) /(iw, w)/(u, v) = &(w, v, w)/(w, vw)J{u)f{y, w)

where k(u, v, w) eZ(Γu), the center of Γ±9 a.a. u, v, w eR{3).

LEMMA 3.2 (c.f. [5], Lemma 8.4, Ch. IV). JceZ3(R, Z{Γ)) where
Z(Γ) is the field given by Z(Γ)S = Z(ΓS).

Proof. Pick t, u, v, weR(i). Set L = J(t)[f(u, vw)J(u)f(v, w)].
For a.a. t, u, v, w eRiA), we may expand L in two ways using (A)
and (B) repeatedly:

L = J(t)f(u, vw)J(t)J{u)f(v, w)

= f(t, uvw^fitu, vw)f{t, u)k(t, u, vw)~ιAdf(t, u)[J(tu)f(v, w)]

= f(t, uvw)~ιf{tu, vw)f(tu, vw)~ιf{tuv9 w)f(tu, v)f(t, u)k(tu, v, w)~ι

x k(t, u, vw)'1

and

L = J(t)[f(uv, w)f(u, v)k{u, v, w)-1]

= f(t, uvw)~ιf(tuv, w)f(t, uv)f(t, uv)~ιf(tu, v)f(t, u)k(t, uv, w)-1

x k(t, u, v)-1J{t)k{u9 v, w)-1 .

Comparing these expressions one sees k e Z3.

LEMMA 3.3. The image of k in IP is independent of the choice
of f and every k' in the class of k is obtained for some choice of /.

Proof. This is routine to check following the lines of [5] Lemma
8.5, Chapter IV.

We write obs{R, Γ, J) for the image of k in IP. This is further
justified by

LEMMA 3.4. The image of k in H3(R, Z(Γ)) depends only on the
isomorphism class of (R, Γ, J).

Proof. First observe that an isomorphism (22, Γ, J) —> (R\ Γ'f J')
induces an isomorphism H*(R, Z(Γ))—>H*(R', Z{Γr)) in an obvious way.
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Since TΆJ(u)T^ = Ad β(u)J'(u), β(u) e f i , a.a. ueR, we obtain
using (A)

• ( 2 )J\u)J\v) = Ad f'(u, v)J\uv) a.a. u, v e R

where f'(u, v) = β(uv)(TuJ(u, v)){TJ{u)T^β{v)-ι)β{u)-\ Thus /', J'
satisfy (A).

Now set Kx = f\uv, w)f\u, v); K2 = f\u, vw)J\u)f\v, w).
Using (A) one computes

K, = β(uvw)(Tuf(uv, w))Tu_(f(u, ^ ^

Xβ(u)-1

K2 = β(uvw)(TJ{u, vw))(TJ(u)f(v,

x{

and so

k\u, v, w) = KγKt = TJc{u, v, w) .

THEOREM 3.5. Let (R, Γ, J) be an abstract kernel and suppose
that obs(R, Γ, J) — 0. Then the extensions of Γ by R are in one-one
correspondence with H\R, Z(Γ)).

Proof. By Lemma 3.4 we may suppose that k = 0 a.e. Set 5T =
Rf,pΓ with the fiber product measure α>. Define, for u, veR{2), ae
ΓΆ, beΓ^ (u, a) = ύ; (u, a) = u; (u, a)(v, b) = (uv, a(J(u)b)f(u, v)-1);
(u, α)"1 = (u~\ f(vrι, ujJiu^a"1). Using (A) and (B), one checks
that these definitions of multiplication and inversion satisfy the
appropriate identities almost everywhere, ω also has appropriate
invariance properties: the fiber measure on Fu'a = Fu x Γ? is ωu>a =
h*x Vΰ, where vs is the measure on Γ,. Tu>a: F^-^FU-^ is Tu>a(v, b) =
(uv, a(J(u)b)f(u9 v)'1). By the quasi-invariance of the measures hs

and the fact that automorphisms of Γs preserve [v8], the measure
ω~a are also quasi-invariant. For veR, set Pv: Γ̂ —> Γ^, Pv(a) =
f(v~\ vWiv-^a-1. Then P , ^ - v7 and

i*ω = ί^l vvdh(v) = \ Pv*vvdh(v) ~ \ v^dh(v) ~ \ vvdh{v) — ft) .
JR ~ JB ~ JR JR ~

& is therefore almost a groupoid, and we wish to conclude the
existence of a groupoid 2^ which is almost equal to ^ , in a suitable
sense. But this is precisely the content of [8], Theorem 3.7; namely,
there is a groupoid & and a map j : & —> S? which is almost a groupoid

homomorphism. We write g^ = Extf(R, Γ), φ = Ext,CR, Γ).
Suppose now that / is replaced by a function /', so that f\u, v) =
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f(u, v)h(u, v) a.a. {u, v)eR{2), where h(u, v)eZ2(R, Z(Γ)). It is clear
that any extension of Γ by R may be obtained in this way. If h e
B2(R, Z(Γ))f h = dg, then P: Extf(R, Γ) -> Ext/, (R, Γ), P(u, a) =
(u, g(u)a), is an almost isomorphism (i.e., it satisfies the appropriate

conditions a.e.) and hence induces an equivalence P: Ext/(22, Γ) —>

Ext>(#, Γ). ([8] Theorem 4.1.)

Conversely suppose that Ext/ϋ?, Γ) and Ext/,(i?, Γ) are equivalent
extensions of Γ by R, via an isomorphism f. Then there is an almost
isomorphism T: Ext/(JB, Γ) -^ Ext/,(i2, Γ), Γ(w, a) = (u, P(u)a) where
P(s) = id and P(u):Γu—>Γ^ is almost a bijection. The condition that
Γ is almost a homomorphism leads to

i (P(u)a)(J(u)P(v)b)f'(u, v)~ι - P(uv)(a(J(u)b)f(u, v)-1)

a.a. u, t; e i2(2), α e Γ ^ δ e Λ .

Setting % = β, (2>)(P(v)&) = P(y)(ab) so that a.a. v, P{v)Tjx commutes
with all left multiplications in 7\, and hence is right multiplication
by an element g(v) e Γr Setting v = v9 (P(u)a)(J(u) Tub) = P(u)(a(J(u)b).
Therefore P(u)T^ is also left multiplication by g(u)eΓΆ, a.a. u.

We conclude g(n) e Z(ΓJ a.a. u, and substituting back in (1) leads
to

g(u)(J(u)g(v))f'(u, v)~ι = g(uv)f{u, v)-1

so'that λ - dgeBXR, Z(Γ)).

From now on we will write Extj(i2, Γ) for Ext/(iί, Γ).
We now return to the special abstract kernels associated to

groupoids.

PROPOSITION 3.6. If (R, Γ, J) = Sl(gf), ί/^e^ o&s(i?, Γ, J ) = 0.

Proof. By the definition of Sί(S^), we have a Borel map α: R—>
, P(α(u)) = ^ a.a. w e i?, and

- α(u)ξα{u)-1 , fe

Now αC^^αCi;)""1^^)"1 e jΓtt a.a. u, v e R{2). Set

It is easy to compute that / satisfies (A) and (B) with k = 0.

PROPOSITION 3.7. Let (R, Γ, J) = Sί(^), α^d let f be such that
(A), (B) hold with k — 0. ΓΛew- Extj(i2, Γ) and <& are equivalent ex-
tensions of Γ by R.
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Proof, The map ζ f-> (P(f), a(P(i))" Ji) is an almost isomorphism.

We have shown that groupoid homomorphisms induce morphisms
of abstract kernels. We now investigate whether a morphism
t: (R, Γ, J) —> (R, Γ, J) determines a homomorphism Extj(ϋJ, Γ) —>
Extj(5, Γ), and discuss the similarity of such morphisms.

Suppose that obs(R, Γ, J") = obs (jβ, Γ, J ) = 0 and that /, / are
chosen so that (A), (B) hold with k,k = O. By definition we have a
homomorphism τ: R -> R and a field of homomorphisms Ts over τ such
that

(3.1) TJ(n) - Ad β(u)J(τu)Tΰ , /3(w) 6 ΓτjΆ) .

An almost homomorphism Ext(i?, Γ) —> Ext(β, Γ) consistent with
t must be of the form

(u, a) i > (τu, H{u)a) a.a. (u, a) e Ext(J2, Γ) ,

where H(u): Γ . -> Γr2L and jff(tt) = Tu_.

The condition that this be an almost homomorphism is

(3.2) H(uv){a{J{u)b)f(u, v)~ι) - (H(u)a)J(τu)(T(ύ)b)f(τu, τv)~ι a.e.

Let h(u) — H(u)e. Putting v = v, a = e in (3.2) gives

(3.3) H{u){c) = h(u)β(u)T*cβ(u)-1 , c e f , .

Putting u = ΰ9 b — e gives

(3.4) H(v)(a) = {TΣa)h{v) .

Comparing these equations we see that

(3.5) h(v)β(v) 6Z(TJΓV) a.a. veR

and

(3.6) -fftyXα) = (Tza)h(v) a.a. v 6 R .

Substituting back in (3.2) gives

(3.7) TJ{uy v)~ιh{uv) = h(u)(J(τuMv))f(τu, τv)~x .

Now using (A), (3.1) and (3.5) we obtain

(3.8) Ad(/(rtt, rv)J(r%)Λ(ι;)-1Λ(%)-1)ΓίL= kά(K(uvyιTJ{u, v))TL

so that
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(3.9) f{τu, τv)J(τuMv)-1h(u)-1Tu_f(u, v)~ιh{uv) e Z(TΣ(ΓV)) .

Therefore t induces a homomorphism Extj(i2, JΓ) —>ExtjOR, /*) precisely
when there is a choice of fo(w) 6 Γτu such that

(3.10) Ad h(u) = Ad /S(w)"1 a.e.

and (3.7) holds a.e., moreover (3.9) follows from (3.10).

In special cases these conditions simplify: if Z(TZ(Γ2)) = {e} a.e.

then t always induces a homomorphism Extt; if Tυ has dense range

a.e. one may compute that there is an obstruction to Extt being a

homomorphism which is an element of IP(R, Z{Γ)). If Γ, Γ are fields

of abelian groups all obstructions vanish.

In a similar vein we investigate the similarity of morphisms

t, t': OR, Γ, J) -> OR, Γ, J). Consider the special case (R, Γ, J) = 8l(Sf),

(JB, Γ, J) - «(Sf), Γ - St(π), f = 8l(7rf), where π, πf are similar homo-

morphisms S^ —»ί̂ . Let /, / be functions such that (A), (B) hold a.e.

with k, k = 0. There is a map Φ: S^ —> 2 ,̂

(3.11) Φ(|)π'(ί)Φ(f )-L - π{ξ) a.a. f e ^ .

Let r, τ' and T, Γ' be the maps induced on R, Γ by π and π', and
set θ(s) = (rs, τ's) e 5 . Then

) = Ad ^(sJ-'Ad τ(β) for some

In order to simplify computations we will replace π' by Ί{u)π\u)Ί(ΰ)~ι

which induces τ' and a homomorphism conjugate to T". Thus we
assume τ(s) = e.

Applying (3.11) to Γs gives

(3.12) Ta = J(θ(8))T'a a.e.

Using the relations

(3.13) TJ(u) - Adβ(u)J(τu)Tτ

(3.14) J(w) - Adα(w)"1

we obtain

(3.15) Ad β(u)J(τu)Tΰ = Ad π(α(u))-χTτ

and a similar relation (3.15)' for T\
Apply Ad to both sides of (3.11) and using (3.12), (3.13), (3.15):

(3.16) Ad β(u)J(τu)J{θ(u))Tk - J(θ(u))Ad β\n)J{τru)T'u a.e.

DEFINITION 3.8. Morphisms t, t': (i?, Γf J) -> (5, Γ, /) are similar
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if τ is similar to τf and t' is conjugate to a morphism for which
(3.12) and (3.16) hold.

Suppose now t, t' are similar, chosen such that (3.12) and (3.16)
hold, and that both induce homomorphisms of Ext(i2, Γ). There is
an obstruction to Extt, Extt' being similar, which we outline below.

From (3.1.6) and (A) we obtain

3 17)

= Ad J{θ{u))β\u) Ad f(θ(u), τ'u)J{θ(u)τ'u)Tk

and hence

(3.18) f(τu, θ(u))β(u) = f(θ(u), τ'u)(J(θ(u))βXu))l(u\ I e Z(T_UΓ^ a.e.

A routine computation shows that if there is a function Φ such that
(3.19) Φ(u) Ext t(u, α)Φ(^)-1 = Ext t'(u, a) a.e.

then Φ(u) must be of the form (0(w), e) and that this is a similarity
if we can choose l(u) — e in (3.18).

Again if Z{TJΓ^ = {e} a.e., Φ is necessarily a similarity. If T.
has dense range a.a., then l(u)eZ(Γj. Substituting the expression
for I obtained in (3.18) into the equation (3.7) for t, and using
(3.7)' for t' we find by repeated use of (A) and (B) that
l(u) J{τu)l(v) — l(uv) so that replacing β(u) by β(u)l(u)~ι produces no
change in any of the relations used except that the l(u) term in
(3.18) vanishes, so that Extt and Extt' are indeed similar.

4* Examples and applications*

(A) Theorem 2.9 applied to H\R, A) shows that if π: R -> A is
an almost everywhere cocycle, then there is a saturated conull set
S*£S, and a strict cocycle π': R Π S* x S* -> A, so that π = π' + δg in
CΓCB, A). Since 3βr is automatically a strict cocycle (we may clearly
assume g is Borel and everywhere defined on S), we may include dg
in π' and conclude the existence of a strict cocycle defined on a
saturated conull set of S, equal to π a.e. This is a much stronger
result than [7] Theorem 5.1, in which π' is only asserted to be strict
on an i.e. of R. This fact simplifies the proof of many results on
cocycles on G spaces, for example the construction of the range
closure of π: S x G -* A. It may be seen by following through the
steps of the proof that the result in fact depends neither on the
freeness of the G action nor on the commutativity of A. (This
result was first observed and proved directly by L. Brown, private
communication.)
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(B) Split extensions. An extension Extj(R, Γ) of R by Γ is
said to be split if we can choose / = 0 in (A). In this case J:R->
Aut Γ is a cocycle, where Aut Γ is an algebraic groupoid in an obvious
way. It is not hard to see that Extj-(i2, Γ) depends up to isomorphism
on the cohomology class of J in Aut Γ/Int Γ.

Let τ\R! ' —> i2 be a homomorphism of principal groupoids, and let
T: Γ' -» Γ be a morphism of the fields Γ', Γ on S', S over τ, such that
each Ts is an isomorphism. If J: R -» Aut Γ is a cocycle, then
J Γ ' r O) = T^ιJ(τ{u))Tΰ, ueR', is a cocycle i?'-> Aut Γ'. In particular
if r is a similarity then Ext/iϊ, Γ) and Ext̂ Tv-CR', Γ') are similar.

Conversely let π: ExtΛR', Γf) -> Ext/i?, Γ) be a similarity with
inverse ψ, so that ψ°π is similar to the identity. Then, as in Pro-
position 3.1, τz: R! —> R is a similarity. Moreover applying 3.12 to
T_foTπ we see that each TΓ

S is an isomorphism. By (3.1), Tl_J\u)T~~ι =
Aάk(u)J(τ'u), ueR\ where Jc(u) eΓTz{u). Therefore

J\u) = Ad(TΓ^W)Jz"τ'-τW ,

so that J f = JTZj7~ up to a cocycle in Int Γ'.
Hence the similarity classes of split extensions of R by Γ correspond

to cohomology classes of cocycles J:R —> Aut Γ/Int Γ. In particular,
taking Γ to be a constant field H and i2 to be a hyperfinite relation,
one obtains many dissimilar split extensions of R by H.

(C) Following the methods of [2] Theorem 5, one shows that if
an equivalence relation R is generated by a free action of a l.c.s.c
group G on S, then H*(R, A) = ίf*(G, J ^ S , A)). In particular if i?
is hyperfinite or if G is a free group, then Hn(R, A) = 0 for w ̂  2
(c.f. [2] Theorem 6) and we may construct Ext/(ϋί, Γ) for any field
Γ over S. If Γ is a field of abelian groups we may in addition
choose / = 0 so that the extension splits.

(D) It is natural to ask whether all the extensions we construct
are similar to groupoids coming from group actions. Groupoids are
countably similar if they are similar under mappings which are
countable to one on the units, c.f. [3]. We have the following partial
result:

PROPOSITION 4.1. Let R be a hyperfinite equivalence relation and
let H be a l.c.s.c. group and J: R —> Aut H a Borel cocycle. Then
there is a l.c.s.c. group G and a standard Borel G space X so that
X x G is countably similar to Extj(i?, H).

Proof. It is well known that J may be replaced by a similar
cocycle Jr taking values in a countable subgroup D of Aut H. (This
uses hyperfiniteness of R and the fact that AutH is separable in
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the compact open topology, c.f. e.g. [11] Corollary 9.2). Realize
R as generated by a transformation T on S and form X = S x D.
On X we have the skew action TJ and the translation action of D
on itself. These two actions together generate a relation Rr coun-
tably similar to R. J\s, d; s', d') = d + J(s, s') — d' is a cocycle on
R! similar to J on R. Let G = J2" (g) (Z x D) where the Z x D action
on i ϊ is (%, d)-h = d(h). Let G act on X, i ϊ acting trivially and
Zx D as described above. Then Ext j(R', H) = X x G, and by (B)
Extj(ϋ!', iϊ) is countably similar to Extj(ϋ?, H). For one computes
that J'(x, xg) = p{g), where p: G —> D is projection, so that J(x, xg) —
Adg:H-^H VxeX,geG.

On the other hand, an example of Hahn [3] shows that there is
a field of l.c.s.c. groups Γ on a hyperfinite relation R, and a cocycle
J: R -> Aut Γ, such that Extj(i?, Γ) is not countably similar to any
X x G.

(E) Remark that the groupoid G° described in [10] §7 is a special
case of our constructions.
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