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ASYMPTOTIC PROPERTIES OF NONOSCILLATORY
SOLUTIONS OF HIGHER ORDER
DIFFERENTIAL EQUATIONS

W. J. Kim

A classification of the nonoscillatory solutions based
on their asymptotic properties of the differential equation
y™ 4+ py =0 is discussed. In particular, the number of
solutions belonging to the Kiguradze class A, is deter-
mined.

We investigate asymptotic properties of the nonoscillatory solu-
tions of the differential equation

E) y" +py =0,

where p is a continuous function of one sign on an interval [a, ).
Various aspects of Eq. (E) have been investigated by a number of
authors [1-15]; in most cases, under the condition that the integral

(1) 1) = | "o (o) do

is either finite or infinite for some constant ». For instance, Eq. (E)
is oscillatory on [a, o) if the integral (1) is infinite with r=n—1—¢
for some ¢ >0 [4, 8]. On the other hand, if I(n — 1) is finite, (E)
is nonoscillatory; in fact, it is eventually disconjugate [9, 14, 15].
Under the same condition, results on the existence of a fundamental
system of solutions possessing certain asymptotic properties have
also been obtained [5, 13]. Of particular interest to the present
work, however, is the notion of class A, introduced by Kiguradze
[4] with the help of inequalities in Lemma 1.

A solution of (E) is said to be nonoscillatory on [a, ) if it does
not have an infinite number of zeros on [a, o). (Unless the contrary
is stated, the word “solution” is used as an abbreviation for “non-
trivial solution.”) Eq. (E) is said to be nonoscillatory on [a, <) if
every solution of (E) is nonoscillatory on [a, ). If there exists a
point b = a such that no solution of (E) has more than n — 1 zeros
on [b, ), Eq. (E) is said to be eventually disconjugate on [a, ).

As previous studies of Eq. (E) indicate, asymptotic properties of
the solutions strongly depend on the parity of # and the sign of .
For this reason, it is convenient to classify Eq. (E) into the following
four distinet classes:

(i) n even, p=0,
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(ii) n odd, »p=0,
(iii) n even, p=0,
(iv) n odd, p=0.

Eq. (E) satisfying condition (i), for example, is denoted by (E)); (E.),
(Eii), and (BE;;) are similarly defined.

We state important inequalities which will be used in defining
the class 4, and also in some proofs.

LeMMA 1. Let y be a monoscillatory solution of (E) such that
=0 on [b, ) for some b= a, and let p = 0 on [b, =) for every
.= a. Define [C] to be the greatest integer less than or equal to C.

If y is a solution of (E;) or (E,,), there exists an integer j,
0=<j=[(n—1)/2], such that

(2) y(i)>0’ i:Oylv"':zj’
on [b, o) for some b, = b, and
(27 (=*y® >0, +=2j+1,---,n—1,

on [b, ).
If y is a solution of (E;) or (E;;), there exists an integer j,
0 < j =< [n/2], such that

(3) Yy >0, 1=0,1,---,25 -1,
on [b,, o) for some b, = b, and
(8" (=Dy“ >0, =23, ,m—1,

on [b, o).

Various versions of Lemma 1 appear in the literature [2, 5, 6,
12]. However, the important features of the present version are
that the inequalities in Lemma 1 are strict and that the inequalities
(2") and (3") hold on [b, o)—rather than on [b, «) for some b, = b—
if y=0 on [b, ). Following Kiguradze [4], we shall say that a
nonoscillatory solution y of (E;) or (E;;) belongs to class A4; if y or
—1y satisfies the inequalities (2) and (2) for 0= 7= [(» — 1)/2].
Similarly, a nonoscillatory solution y of (E;) or (E;;) is said to belong
to class A; if y or —y satisfies the inequalities (3) and (8’) for 0 <
j =[n/2]. In view of the above definition, we may restate Lemma
1 as follows: The family {4, A, -+, Aju_n} forms a partition of
the nonoscillatory solutions of (E;) and (E,), and the family
{4, A, -+, AL, m} forms a partition of the nonoscillatory solutions of
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E:) and (Ej;).

LEMMA 2. Ifthe class A, contains three solutions v, v, and v,
of which every montrivial linear combination again belongs to A,
where 0 < k < [(n — 2)/2] for (E) and (E,) and 1=k = [(n — 1)/2]
for (Ey) and (B,), them A, contains three solutions ¥y, ¥, and s,
each a linear combination of v,, v,, and v, such that

1i5n-?y;%:oo, 1<i<j=<3.

Proof. Without loss of generality, we may assume that v, >
v,>v,>0 on [e, <) for some ¢=a. The quotient v;/v, 1<1<j<3,
cannot assume a fixed value v an infinite number of times on [¢, =),
for otherwise v; — yv, would be an oscillatory solution contrary to
the hypothesis. Therefore,

lim sup i@ _ lim inf:')"(—w) = limv—j(@ =K,;,
v 0(4) e (@) mme 0(2)

K3

1=K;< o, 1<i<j=3. At first there appear to be eight
different possibilities we must consider, depending on K;; = o or
K,;< »,1=<i<j=3. But note that if two of the constants K,
1 <1< j <38, are finite, the third also must be finite. Furthermore,
it is impossible to have K,, = K,; = o and K,; < . Hence we need
only to consider the following four cases.

@) Kj;=>,15t<j=38 Puty =v,1=123.

b)) K,< o, K; = K,;, = co. In this case

lim 2®) = Kuti®) _ g e, lim (@)
g v,() ao | 0y(®) — Kyy0,(2)

= o0

Put y, = v, — Ky, ¥, = vy, and Ys = Vs.
(¢) K,=K,;= o, K;; < . Here we have

lim V(%) — Kpuy(%) =0.
o0 ?)2(11:‘)

Suppose that

lim V(%) — Kyu0y(2) =K.
Fmreo v,()

If |K| = co, put 4, = v,, ¥, = v; — Kyyv,, and y; = v,. On the other
hand, if |K| < <, then

lim 2s(®) — Kuvi(@) — Kvi(2) _ ¢
P v,(2)
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and we put y, = v, — K,;v, — Kv,, ¥, = v, and y, = v,.
(d) K;< o, 1=<i<j=8. For this case

lim V(%) — Kio0,(%) = lim vs() — Kiy0, (%) =0.
a0 v,(x) aoo v,()

Suppose that

lim V(%) — K,,v,(%) =K
#e0 ’Ug(x) - K1a'v1(x)

If IKI = oo, let yy=v,— Ky, ¥,=v— K,v, and y,=v,. If
| K| < oo, then

lim 2,(2) — Kppv,() — K(vy(x) — Kyy0,(%)) =0
#e v5(2) — Ki50,()

and we put y, = v, — (K, — KKy;;))v, — Kvg, ¥, = v, — K0, and y; = v,.
The solutions y;, 2 =1,2, 3, defined in (a)-(d) belong to A, and
satisfies

¥i®@) | _ 1£i<j=<3.

lim ,
yq()

Z—ro0

Since we may take —y, if ¥y, is eventually negative as x — o, the
proof is complete.

LeMMA 3. Suppose that Eq. (E) has there nonoscillatory solu-
tions Y., Y., and Yy, such that

(4) im %@ — o, 1<i<j=<3,

a0 Y, ()
and Yy, > Y, > Y, > 0o0n [&, ). Ifnis an arbitrary point on [&, o),
there exists a solution v = D3, a,y, such that v =0 on [£ =) and
(&) = v'() = 0 for some point L on [n, «).

Proof. Choose a constant K>0 such that u=y,— Ky, <0 on [, 7].
Sinece u < 0 on [£, %] and eventually u(x) > 0 as & — oo, u vanishes
at some point of (), ). Let o be the first zero of u on (3, ).
Define K, = sup G, where G is the set of real numbers g = 1 such
that ¥, — Bu = 0 on [0, ). Evidently, G is bounded above and it
is nonempty because y, — u >0, i.e.,, 1eG. Let BeG and r €0, «).
If u(z) £0, then y,(z) — Ku(r) = ys(r) > 0. On the other hand, if
w(z) > 0, then y,(z)/u(r) = 8 for all Be @G, and thus y,(7r)/u(r) = K.
Since 7 is arbitrary, the solution v = y, — Ku = 0 on [0, ). There-
fore, if v({) = 0 for some { € (g, =), then v'({) = 0. Hence, the proof
is complete if we can show that ¥({) = 0 for some { e (o, ). Assume
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to the contrary that v > 0 on (g, ). Let ¢, > 0 be given. There
exists o > o such that w > 0 on [p, ) and v(x)/u(x) > ¢, xe|p, ),
since

lim M = oo

=0 U(1)
by (4). Choose an ¢, > 0 so that v(x) > eu(x), €0, p]. Put ¢ =
min(g, &,). Then v —eu >0 on [g, =), i.e., ¥y, — (K;+&)u>0 on [o, ),
contradicting the choice of K,. Thus, v({) = 0 for some (€ (g, o).
Finally, it is evident that v > 0 on [¢, ¢] and v = 0 on [g, <o).

We are ready to consider the problem of determining the number
of solutions belonging to class A;. Let ¢(4;) be the maximum
number of linearly independent solutions belonging to A; with the
property that every nontrivial linear combination of them again
belongs to class 4;.

THEOREM. Assume that Eq. (E) is monoscillatory on [a, ) and
that p = 0 on [a, <) for every a, = a. Then

94 =2,5=0,1,---, (n — 2)/2, for (E);

a(4) =1, q(4,) =2, 7=L12,---, (n — 1)/2, for (Ey);

q4) =1, q4;) =2, 7=1,2, -+, (n — 2)/2, q(4,p) = 1, for (E);

q4)=2,3=0,1,---,(n —3)/2, q(Au_np) =1 for (Ei).

Proof. We shall prove the theorem for (E;): ¢(4,) = 1, q(4;) = 2,
i=12 «--,(n — 2)/2, and ¢q(A,, = 1. Suppose that the class A;
contains a set B; of ¢(A4;) solutions of which every nontrivial linear
combination again belongs to A4;,7=0,1, ---, n/2. Using Lemmas 1
and 2, we can easily deduce that the set B = 3?3 B; containing
>z q(A;) solutions is a fundamental system for (E;;). Thus,

*2 q(A;) = m. For this reason, it suffices to prove that

(5) q(AO) é 1 ’ q(AJ) é 2 ’ .7 = 1y 2! Ty (n - 2)/2) Q(An/‘z) é 1 .

If q(A,) > 1, then there exist two solutions y, and ¥, belonging to
A, and a constant K such that w =y, — Ky,e A,, w(c) =0, and
w = 0on [¢, ) for some ¢ = a. But this contradicts Lemma 1 (see
also Kiguradze [5, Lemma 7]) and proves that ¢(4,) < 1. Suppose
that ¢q(4,) > 2 for some %k, 1 <k =< (n — 2)/2. Then the class A4,
contains at least three solutions y,, y., and y,, of which every non-
trivial linear combination again belongs to A4,. By Lemma 2, we
may assume that

1im%=oo, 1<i<j=<3,
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and ¥, > ¥, > ¥, > 0 on [§ o) for some £ =a. Let {7} be an in-
creasing sequence of numbers such that 7, = £and 7, — « as ¢ — oo.
By Lemma 3 there exists for each 4, a solution

v, = oy + Bl + YYs o+ E+Ti=1,

such that v, = 0 on [¢, ) and v,({,) = vi({;) = 0 for some {, € (y,, ).
Obviously, there are convergent subsequences {a,}, {8,}, and {v,},
which will be again denoted by {a.}, {8:}, and {v.}, respectively, for
notational simplicity. Put

lima;, = a, lim B, =g, lim~v,=~.

i—00 i—co i—00
Then w(x) = ay,(x) + By.(x) + 7ys(x) is a nonoscillatory solution
belonging to the class A,. Since w = 0 on [g, ), we have

(6) w>0w >0 ---, w*" >0,
on [b,, =) for some b, = &, and
(7) w(zlc) > 0 , w(2k+1) < 0 , w(2k+2) > 0’ ceey w('n—l) < 0 R

on [£, ) by Lemma 1. We now use a line of reasoning due to
Kondrat’ev [7]. Since lim; .. v = w"?, j =0, 1, ---, n, uniformly on
any finite subinterval of [a, «), there exists a number N such that

(8) 0 (by) > W0 <”2)>0 §=0,1, -, 2% —1,

if ¢+ > N. We may assume that n, > b, for ¢ > N. Since v»,€ 4, and
v; = 0 on [g, ) for all 7, v > 0 on [£, o) by Lemma 1. Thus,

(9) v (b,) < v V(7)) , T € [by, ).
Substituting (9) in (8) with j = 2k — 1, we obtain

w*(b,)

2 ’ T €[by, ).

(10) v () >
Integrating the above inequality from b, to x € [b,, -) and substituting
in the resulting expression the inequality (8) with j = 2k — 2, we
get

(b (2k_2)(b2) .

2)
——2(x — b)) + 3

,v;ﬂc 2)(x) >

Repeating a similar procedure 2k — 2 times, we arrive at the
inequality
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) w1 (b,) — b))kt w2 (b,) — b))
vi(w) > 2@k — D1 (@ — b + 22 o)) (@ — b2)

+ e +—w(2bz) » o ®efby ).

(11)

This inequality, however, cannot hold throughout the interval [b,, o).
Indeed, for x = {;, > 7, > b,(i > N), the left-hand side »,({;) = 0, while
the right-hand side is positive by (6). This contradiction proves
that q(4,) <2, 7=1,2, ---, (n — 2)/2. The proof that ¢(4,, =1 is
more or less similar to the preceding case. Suppose that A,,
contains two solutions y, and y, of which every nontrivial linear
combination belongs to A4,,. Assume that %, > y, > 0 on [£ ), and
let {n,} be defined as before. Put

v, = oY + BYe af +8i=1,
such that »,(n,) =0. If

lima;, =a, lim B; =
(take subsequences, if necessary), define w = ay, + By,. Thenwe A,
and we may assume that w =0 on [b, <) for some b. Hence, by
Lemma 1,

(12) w>0,w>0---, 0" >0,

some N, and for 7 =0,1, ---, n — 1. Assume that », > b, for + > N,.
For each ¢ > N,, there exists ¢;€ (b, ;] such that wv,c;) =0 and
v, >0 on [b, ¢;), since v,(n;) = 0. On the interval [b, ¢;], we have

on [b,, =) for some b, = b, and the inequality (8) holds for 7 > N,, for

v"(x) = —p@)v,(x) = 0. Therefore, v{"(b,) < v{*"(z), T €[b,, ¢;], and
when this inequality is substituted in (8) with 7 =n — 1, we get
(13) @ > L0 e, o

Following the procedure employed to get from (10) to (11), we
alternately integrate (13) from b, to x € [b,, ¢;] and substitute in the
resulting expression a suitable inequality from (8) (which holds for
i=0,1,:--,n—1, in this case). When this process is repeated
n — 1 times, we arrive at

, W) 0y 1 WO 0 e
vz(x)>2(n_1)!(x b,) +2(n_2>!(x b,)

TR +—w<2”2> . welb,cl.

However, this inequality cannot hold at « = ¢, because wv,(c;) =0
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while the right-hand side is positive by virtue of (12). Consequently,
q(4,,) = 1, and the proof is complete for (E;;). Proofs for (E), (E,),
and (E;,) are similar.

This theorem generalizes a main result of Etgen and Taylor [3].
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