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ASYMPTOTIC PROPERTIES OF NONOSCILLATORY
SOLUTIONS OF HIGHER ORDER

DIFFERENTIAL EQUATIONS

W. J. KIM

A classification of the nonoscillatory solutions based
on their asymptotic properties of the differential equation
yin) _|_ py = o j g discussed. In particular, the number of
solutions belonging to the Kiguradze class A3 is deter-
mined.

We investigate asymptotic properties of the nonoscillatory solu-
tions of the differential equation

(E) y{n) + py = 0 ,

where p is a continuous function of one sign on an interval [α, oo),
Various aspects of Eq. (E) have been investigated by a number of
authors [1-15]; in most cases, under the condition that the integral

(1) I(r) = [°x*\p(x)\dx

is either finite or infinite for some constant r. For instance, Eq. (E)
is oscillatory on [α, oo) if the integral (1) is infinite with r=n—l—ε
for some ε > 0 [4, 8]. On the other hand, if I(n - 1) is finite, (E)
is nonoscillatory; in fact, it is eventually disconjugate [9, 14, 15].
Under the same condition, results on the existence of a fundamental
system of solutions possessing certain asymptotic properties have
also been obtained [5, 13]. Of particular interest to the present
work, however, is the notion of class Ap introduced by Kiguradze
[4] with the help of inequalities in Lemma 1.

A solution of (E) is said to be nonoscillatory on [α, oo) if it does
not have an infinite number of zeros on [α, oo). (Unless the contrary
is stated, the word "solution" is used as an abbreviation for "non-
trivial solution.") Eq. (E) is said to be nonoscillatory on [α, oo) if
every solution of (E) is nonoscillatory on [α, oo). If there exists a
point b ;Ξ> a such that no solution of (E) has more than n — 1 zeros
on [6, oo), Eq. (E) is said to be eventually disconjugate on [α, oo).

As previous studies of Eq. (E) indicate, asymptotic properties of
the solutions strongly depend on the parity of n and the sign of p.
For this reason, it is convenient to classify Eq. (E) into the following
four distinct classes:

( i ) n even, p ^ 0 ,
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Eq. (E) satisfying condition (i), for example, is denoted by (EO; (En),
(Eϋi), and (Eiv) are similarly defined.

We state important inequalities which will be used in defining
the class Ap and also in some proofs.

LEMMA 1. Let y be a nonoscillatory solution of (E) such that
y ^ 0 on [δ, °°) for some b JΞ> a, and let p ^ 0 on [bif °°) for every
δx ^ α. Define [C] to be the greatest integer less than or equal to C,

If y is a solution of (EJ or (Eiv), there exists an integer j ,
0£j£[(n- l)/2], such that

(2) y{ί)>0, i = 0, 1, -- , 2 i ,

on [62, oo) for some 62 ^ 6, and

(2') (- ly+y^ > 0 , i - 2j + 1, , n - 1 ,

on [6, oo).
If y is a solution of (En) or (EiΠ), there exists an integer j ,

0 ^ i ^ [n/2], such that

(3) y{i)>0, ϊ = 0,l, -. , 2 i - l ,

on [62, oo) for some b2^b, and

(30 ( - l ) V ί } > 0 , ΐ = 2i, . - - , n - l ,

on [6, oo).
Various versions of Lemma 1 appear in the literature [2, 5, 6,

12]. However, the important features of the present version are
that the inequalities in Lemma 1 are strict and that the inequalities
(2') and (3') hold on [6, oo)—rather than on [δ2, oo) for some 62 ^ b—
if y ^ 0 on [6, oo). Following Kiguradze [4], we shall say that a
nonoscillatory solution y of (EO or (Eiv) belongs to class Aό if y or
— y satisfies the inequalities (2) and (2') for 0 ^ j ^ [(n — l)/2].
Similarly, a nonoscillatory solution y of (En) or (Em) is said to belong
to eϊαss A,- if 2/ or — # satisfies the inequalities (3) and (3') for 0 ^
1 ^ [w/2]. In view of the above definition, we may restate Lemma
1 as follows: The family {Ao, Alf , AUn_1)/2l] forms a partition of
the nonoscillatory solutions of (E0 and (Eiv), and the family
{Ao, Aly , A[Λ/2]} forms a partition of the nonoscillatory solutions of
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(E π ) and (EU 1).

LEMMA 2. // the class Ak contains three solutions v19 v2f and vz

of which every nontrivial linear combination again belongs to Ak,
where 0^k^[(n~ 2)/2] for (Ex) and (E iv) and 1 S k ^ [in - l)/2]
for (Eπ) and (E m ), then Ak contains three solutions ylf y2, and ys,
each a linear combination of vlf v2, and v3, such that

lim HΆ = 0 0 , 1 ^ i < i ^ 3 .
*-~ yt(χ)

Proof. Without loss of generality, we may assume that vz >
2̂ > Vx > 0 on [c, 00) for some c^a. The quotient v3Ίvif 1 ^ i < j ^ 3,

cannot assume a fixed value 7 an infinite number of times on [c, 00 )f

for otherwise vs — ΊVt would be an oscillatory solution contrary to
the hypothesis. Therefore,

SUp 1M = lim inf l Ά = lim *Ά = Ku ,

1 ^ KiΊ ^ oo, 1 <: i < j <; 3. At first there appear to be eight
different possibilities we must consider, depending on Ktί — oo or
Kit < ° o , l ^ ΐ < i ^ 3 . But note that if two of the constants Kii9

1 ^ i < 3 ^ 3, are finite, the third also must be finite. Furthermore,
it is impossible to have K12 = K2Z = oo and iΓ13 < oo. Hence we need
only to consider the following four cases.

(a) KiS = oo, 1 ^ i < j ^ 3. Put y, = vif i = 1, 2, 3.

(b) ifi2 < oo, ifi3 = iζ>3 = °°. In this case

lim 2^x' ~ — 1 2 ^ ^ = 0 , i.e., lim

P u t yx = v2 — if12Vi, 2/2 = vlf and ys = v3.
(c) if12 = ifi3 = 00, K23 < 00. Here we have

l i m v*(x) - K2Zv2(x) == Q ^

Suppose that

If IKI = 00, put 2/i = vx, y2 — vz — K2Sv2, and yz — v2. On the other
hand, if \K\ < 00, then

m t;8(a?) - K2Sv2(x) - Kv&x) = Q
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and we p u t yt = v2 — K2Zv2 — Kv19 y2 — v19 and ys

(d) Kiά < oo, l ^ i < j ^ 3. For this case

I ( / y ) i fC~ oj (/y*) <iί (/y»^ ___ ~fζ~ fk) (/•

U L • — urn '

^ ( c e ) s-°° ^iCα:)

Suppose that

I f |jfiΓ| = oo, l e t yx = vz — K13vlf y2 = v2 — Kl2v19 a n d yz = vL. If
< oo, then

i m v2(x) - KyvM - K(v3(x) - Kn

and we p u t ^ = v2 — {K1Z — KKιz)v1 — KvB, y2 = vs — Kuvl9 and y8 = ^i

The solutions y o i — 1,2, 3, defined in (a)-(d) belong to Ak and
satisfies

lim ^ i < i £ 3 .

Since we may take — #< if ?/* is eventually negative as # —• oo, the
proof is complete.

LEMMA 3. Suppose that Eq. (E) has there nonoscillatory solu-
tions y19 y2, and yz such that

(4) lim MΆ = oo , l ^ i < i ^ 3 ,
2/(a?)

2/8 > 3/2 > 2/i > 0 <m [f, oo). I/97 is α^ arbitrary point on [ζ9 00),
exists a solution v = ^A^i^kVk such that v ^ 0 on [ί, °°)

= v\ζ) = 0 /or some poiwί ζ ow [37, 00).

Proof. Choose a constant K>0 such that u^y2—Ky1<0 on [<J, 37].
Since % < 0 on [ζ9 rj\ and eventually u(x) > 0 as x —> 00, u vanishes
at some point of {ΎJ9 00). Let σ be the first zero of u on (37, °°).
Define 2^ — sup <?, where G is the set of real numbers β ^ 1 such
that ys ~- βu ^ 0 on [σ, 00). Evidently, G is bounded above and it
is nonempty because yB — u > 0, i.e., 16G. Let ^ e G and τe [σ, 00).
If u(τ) ^ 0, then #8(τ) - Kxu(τ) ^ y8(τ) > 0. On the other hand, if
w(τ) > 0, then yΛ(τ)/u(τ) ^ β for all βeG, and thus y*(τ)/u(τ) ^ ULΊ.
Since τ is arbitrary, the solution v = ys — Kλu ^ 0 on [σ, 00). There-
fore, if v(ζ) — 0 for some ζ e (σ, 00), then v\ζ) = 0. Hence, the proof
is complete if we can show that v(ζ) — 0 for some ζe(σ, 00). Assume
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to the contrary that v > 0 on (σ, ©o). Let ex > 0 be given. There
exists p > σ such that u > 0 on [̂ , c>o) and v(x)/u(x) > εlf xe [p, co),
since

l i m
»->°° tt(sc)

by (4). Choose an s2 > 0 so that v(x) > e2u(x), xe[σ, p]. Put ε =
minfe, ε2). Then v — εu>0 on [σ, ©o), i.e., τ/3 — (ZΊ + ε)^> 0 on [σ, ©o),
contradicting the choice of Kλ. Thus, v(ζ) — 0 for some ζe(σ, ©o).
Finally, it is evident that v > 0 on [f, <τ] and v ^ 0 on [f, oo).

We are ready to consider the problem of determining the number
of solutions belonging to class As. Let q(A5) be the maximum
number of linearly independent solutions belonging to Ad with the
property that every nontrivial linear combination of them again
belongs to class Aά.

THEOREM. Assume that Eq. (E) is nonoscίllatory on [α, ©o) and
that p -φ 0 on [au ©°) for every ax ^ α. Then

q(Aj) = 2, j = 0, 1, • , (n - 2)/2, for (EO;
ίCAo) - 1, g(A, ) - 2, i - 1, 2, , (n - l)/2, for (En);
q(A0) = 1, 9(A,) - 2, i = 1, 2, ., (n - 2)/2, g(An/2) = 1, /or (E m );

- 2, i = 0, 1, , (n - 3)/2, g(A(H_1)/2) - 1 for (E l v).

Proo/. We shall prove the theorem for (Em): q(A0) = 1, g ^ ) = 2,
i = 1, 2, , (n — 2)/2, and q(An/2) — 1. Suppose that the class A3

contains a set Bd of q(As) solutions of which every nontrivial linear
combination again belongs to A3 , j = 0, 1, , n/2. Using Lemmas 1
and 2, we can easily deduce that the set B = Ui=o B$ containing

solutions is a fundamental system for (Em). Thus,
= w For this reason, it suffices to prove that

(5) g ( A 0 ) ^ l , g(A,)^2, i - 1, 2, . , (^ - 2)/2, q(An/2) £ 1 .

If q(A0) > 1, then there exist two solutions y1 and y2 belonging to
Ao and a constant iΓ such that w = yλ — ίΓ^ ^ ̂ o> ^(c) — 0, and
w ^ 0 on [c, oo) for some c ^ α. But this contradicts Lemma 1 (see
also Kiguradze [5, Lemma 7]) and proves that q(AQ) S 1. Suppose
that q(Ak) > 2 for some k, 1 ^, k <> (n — 2)/2. Then the class Ak

contains at least three solutions ylf y2, and y3, of which every non-
trivial linear combination again belongs to Ak. By Lemma 2, we
may assume that

lim MM- = oo , l ^ ί < i ^ 3 ,
()
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and yB > y2 > yx > 0 on [£, oo) for some ζ ^ α. Let {η%) be an in-
creasing sequence of numbers such that r}i :> ξ and )? { ->ooas i-»oo,
By Lemma 3 there exists for each i, a solution

such that vt ^ 0 on [<?, oo) and v<(C<) = vί(Ci) = 0 for some ζ€ e (^ , oo).
Obviously, there are convergent subsequences {cci]c}, {βik}, and {yik},
which will be again denoted by {αj, {/3j, and {TJ, respectively, for
notational simplicity. Put

lim at = α , lim β* = /3 , lim yt = 7 .

Then w(α?) Ξ α /̂̂ ίc) + βy2(x) + 72/3(^) is a nonoscillatory solution
belonging to the class Ak. Since w ^ 0 on [ζ, 00), we have

( 6 ) w > 0, w' > 0, , w{2*-υ > 0 ,

on [62, 00) for some 62 ^ f, and

( 7 ) w(2fc) > 0 , w{2k+1) < 0 , w{2k+2) > 0, - - -, w (-» < 0 ,

on [ξ, 00) by Lemma 1. We now use a line of reasoning due to
Kondrat'ev [7]. Since lim^*, v\ά) = wU), j = 0, 1, , n, uniformly on
any finite subinterval of [α, 00), there exists a number N such that

( 8 ) v^(b2) > ^ ^ > 0 , i = 0, 1, - -., 2fc - 1 ,

if i > N. We may assume that τji > 62 for i > N. Since v, 6 Afc and
vt ^ 0 on [f, 00) for all i, v|2;k) > 0 on [f, 00) by Lemma 1. Thus,

( 9 ) vt-1^) ^ vfk-ι\τ) , τe[6 2 , 00).

Substituting (9) in (8) with j = 2ik — 1, we obtain

(10) vΓ~»(τ) > W

 o

{t>ΰ , τ 6 [δ2) 00) .

Integrating the above inequality from b2 to x e [b2, 00) and substituting
in the resulting expression the inequality (8) with j = 2k — 2, we
get

Repeating a similar procedure 2k — 2 times, we arrive at the
inequality
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This inequality, however, cannot hold throughout the interval [δ2, ©o).
Indeed, for x = ζt > rji > 62(i > JV), the left-hand side vt(ζi) = 0, while
the right-hand side is positive by (6). This contradiction proves
that q(Ad) ^ 2 , j = 1, 2, , (w - 2)/2. The proof that ?(An/2) ^ 1 is
more or less similar to the preceding case. Suppose that An/2

contains two solutions y1 and y2 of which every nontrivial linear
combination belongs to An/2. Assume that y2 > yλ > 0 on [ξ, oo), and
let {Ύ]i} be defined as before. Put

such that v^^) = 0. If

lim at = α , lim ^ =
i-yoo

(take subsequences, if necessary), define w = ayλ + βy2. Then te; e An/2

and we may assume that w ̂  0 on [6, oo) for some δ. Hence, by
Lemma 1,

(12) w > 0, w' > 0, , w^-^ > 0 ,

on [62, °°) for some b2 ^ &, and the inequality (8) holds for ί > Nίf for
some N19 and for jΓ = 0, 1, , n — 1. Assume that ^ > 62 for i > Nί9

For each ί > N19 there exists c, 6 (62, 57J such that vt(ct) — 0 and
Vi > 0 on [62, cO, since v<(̂ i) = 0. On the interval [62, c j , we have
vϊn)(x) = -v(x)vlx) ^ 0. Therefore, v^φ^ ^ ^"""(τ), τ 6 [62, c j , and
when this inequality is substituted in (8) with j — n — 1, we get

(13) t;ί"-"(r) > """"&> , r e [6,, et] .
Lt

Following the procedure employed to get from (10) to (11), we
alternately integrate (13) from 62 to x e [ί>2, ct] and substitute in the
resulting expression a suitable inequality from (8) (which holds for
j = 0, 1, , n — 1, in this case). When this process is repeated
n — 1 times, we arrive at

+ + , xeί^cj.
Δ

However, this inequality cannot hold at x = ct because Vt(ct) = 0
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while the right-hand side is positive by virtue of (12). Consequently,
q(An/2) ^ 1, and the proof is complete for (Em). Proofs for (Ei), (En),
and (Elv) are similar.

This theorem generalizes a main result of Etgen and Taylor [3].
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