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CONVERSE MEASURABILITY THEOREMS FOR
YEH-WIENER SPACE

KUN Soo CHANG

Cameron and Storvick established a theorem for evaluat-
ing in terms of a Wiener integral the Yeh-Wiener integral
of a functional of ¥ which depends on the values of x on a
finite number of horizontal lines. Skoug obtained the con-
verse of the theorem in case of one horizontal line. In this
paper we extend Skoug’s result to the case of a finite number
of horizontal lines.

1. Introduction. Let CjJa, b] denote the Wiener space of func-
tions of one variable, i.e., C[a, b] = {x(-)|x(a) = 0 and x(s) is continuous
on [a,b]}. Let R ={(s,t)|]a <s=<b, a<t=p}andlet C[R] be Yeh-
Wiener space (or 2 parameter Wiener space), i.e., C[R]={x(-,-)|x(a, t)=
x(s, @) = 0, 2(s, t) is continuous on R}. Let v be Wiener measure
on Cj[a, b] and let m be Yeh-Wiener measure on CJR]. For a dis-
cussion of Yeh-Wiener measure see [1],[3] and [4]. R will denote
the real numbers and C the complex numbers. We shall use the
following notation for the Cartesian product of # Wiener spaces

>“(Cl[a, b] = CJa, b] X . X Cla, b] and )ﬂ(v =y X e x v will denote
the product of n Wiener measures on XCa, b].
Let a =t, <t, < --- <t, = be a subdivision of [a, 8]. Define
#: XCa, b] — XC[a, b] by
@(yl, y?y Tt yn)

t, — ¢t t, — ¢ t, — t t, — 1
:< 12 Oyv]/lz 0y1+\/22 1%,,._,,\/12 Y+ o
B

Then @ is 1 — 1, onto and continuous with respect to the uniform

topology. Let G:G,[R]— ;(Cl[a, b] be defined by G(x) = (x(-, t,), x(-, t,),
-+, (-, t,)). Then G is a continuous function from C,[R] onto
X Cila, b].
In [1] Cameron and Storvick evaluated certain Yeh-Wiener in-
tegrals in terms of Wiener integrals. In particular they obtained
the following theorem;

THEOREM A (n-parallel lines theorem). Let f(y, ¥y, ---, ¥, be
a real or complex valued functional defined on XCJla, b] such that
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fop is a Wiener measurable functional of (Y, Yo, * -, Ya) 0N )n(Cl[a, b].
Then foG is a Yeh-Wiener measurable functional of x on C[R] and

S foG)dr = S oYy, Yoy -+, YA, X -0 X ¥,)
CylR] x¢qle,b]

1
where the existence of either integral implies the existence of the other
and their equality.

We note that Theorem A, in the case n=1, is called the one line
theorem. Now we explicitly state and prove the following corollary
of Theorem A which plays a key role in the proof of Lemma 3 in §2.

COROLLARY. Let A be any subset of ;(Cl[a, bl. If 9'A is )n(v-

measurable, then GA is Yeh-Wiener measurable and Xy(p'A) =
m(G*A).

PTOOf. Let f(yl, y29 tT Yy y'n) = XA(yly yZ, ) y'n)' Then
f0¢(y1, y2y . .’ y'n) = XA(@(yly y?i s '7 yn)) = XSP_IA(yly yZy b 'y yn> .

If p7'A is >n<v-measurable, then fop is )Zv-measurable. Hence by
Theorem A, foG is a Yeh-Wiener measurable functional of « on C,[R].
But foG(x) = X (G(x)) = Xg—1.(x). Thus G'A is Yeh-Wiener meas-
urable.

;<D(¢—1A> = S X¢—1A(y1y Yoy = -y Y)Y, X - X Y,)

n
xCqla,b]

= Sn fcq)(yly Yoy * s yn)d(yl X e X y“)
xCqla,b]

= S f<m<'yt1)y ""x<':tn))dx
ColR]

= g FoG(a)da = S Lo (@) = m(G—A) .
ColR] ColR]

2!

It has long been known that measurability questions in Wiener
space and Yeh-Wiener space are often rather delicate. In [3] Skoug
established some relationships between Yeh-Wiener measurability and
Wiener measurability of certain sets and functionals. Furthermore
he obtained the converse of the one line theorem. In this paper we
extend his result to the n-parallel lines theorem. In particular we

show that if A is any subset of ;(Cl[a, b], then G'A is a Yeh-Wiener
measurable subset of C,[R]if and only if ¢—*A is a Wiener measurable
subset of XCja, b].

2. Lemmas. The converse measurability theorems in §3 will
follow quite readily once we establish three lemmas.
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DEFINITION. Let 6 be a fixed constant satisfying 0 < 6 < 1/2
and let A > 0 be given. Let

A, = A0) = {x € Cz[R] (90(32, 1) — x(sy, )] = 7\'[(32 —8)" + (t, — )"
for all s, s, €[a, b] and ¢, ¢, €[a, B]} .

Our first lemma is taken from [3]. We state it without proof.

LemmaA 1. (a) For any ¢ >0, there exists N\, > 0 such that
m(A3) <e for all x=N. In fact m(Uz-1 4,) =1. (b) For each
x>0, A; is compact in the uniform topology in C,[R].

LEMMA 2. Let A be any subset of >M<CI[0L, b] and let V be any
open set im ClR] containing G*A. Let x>0 be given. Then there

exists an open set U in )“(Cl[a, b] such that AU and A, NGUZV.

Proof. Case 1. Assume that A consists of just one point, say,
(Ys, -++, ¥,). Suppose that Lemma 2 is false. Forn =1,2,3, ---, let
U, be open sphere of radius 1/n about (¥, ¥,, -+, ¥,). Then there
exists a sequence of points {x,}3_, in (A, N G*U,)\V. Hence {z,};; &
A; and |Gz, — (Y, Yo, -+, ¥n) || < 1/m where ||-]|| is a product norm
in )n<Cl[a, b]. Since A, is compact in the uniform topology for G,[R],
there exists a subsequence {z,};., which converges uniformly on R
to some element, say x,, of C[R]. By continuity of G, (y,, - -, ¥.) =
lim, ... Go,, = Gx,. Thus Gz, is in A and «, is in GA. But V* is closed
and so %, is in V° Z (G*A)° which is contrary to x,€ G'A.

Case 2. General case. Let A be any set in )”(Cl[a, b]. By Case
1, we see that for each point z in A there exists an open set U, in

X C.[a, b] such that ze U, and 4,0 G-*U. S V. Then U= U..,U. is
an open set in XCja, b] containing A and
4,0 GU = AN (G—1<U U>> —U@ANGU) V.
z€A z€d

LEMMA 3. Let A be any subset of QCl[a, bl. Then m*G~'A =

()2»)*(@‘%) where m* and ()ﬂ(v)* are outer Yeh-Wiener and product
Wiener measures respectively.

Proof. First we will show that m*G—4 < ()“(v)*@‘lA). Let A
be a subset of XC,[a,d] such that A S A, A is Xv-measurable
and ;<v(cp“lﬁ) = (;(v)*(gv‘lA). Note that such A exists since there
exists a subset B of )7‘<Cl[a, b] such that B is )%(v-measurable and
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)n<v(B) = (;w)*(@“NA) and @‘114 C B Let A= @(B). Then A =
p(p~A) € p(B) = A and ¢o'(A) = o7(@(B)) = B. By Corollary~ of
Theorem A, G*A is Yeh-Wiener measurable and m*G—*A £ m*G'4 =
mGA = Xu(@'A) = (Xv)* (@' A).

To show (Xv)*(p'4) < m*G'4, it suffices to show that for given

>0, ()zv)*(cp—‘A) < m*G*A + . Now choose a Yeh-Wiener meas-
urable set H such that G*A < H and m*G'A = mH. Next we
choose n > 0 so large that m(A4:) < ¢/2 [Lemma 1]. Then

(1) m(H U A3) £ mH + m(4) < m*G™'4 + ¢/2.

Let V be an open subset of C,[R] such that HUA; £V and
m(V\[H U AS)) < ¢/2 [2, Theorem 1.2, p. 27]. Then

(2) mV < m(H U AS) + ¢/2 .

By Lemma 2 (note that G*A S HZ HU A; SV and V is open), there

exists an open set U < XCi[a, b] such that A CU and 4,NG'UC
V. But (G*U)NAsC A, C HU A, CV. Hence

(3) GU=(G'UNA)UGTUNA)CSV.

Since U is open and ¢ is continuous, @—*U is open. Hence @'U is
;(v-measurable. By continuity of G, G*U is Yeh-Wiener measurable
and m(G~'U) = )“(v(cp"U). By (1), (2) and (3) we obtain (;@)*(quA) <
Xu(@U) = m(GU) < mV < m(H U A2) + /2 < m*GA + ¢.

3. Converse measurability theorems. OQur first theorem in this
section establishes a relationship between Yeh-Wiener measurability
and product Wiener measurability of certain related sets. In Theorem
2 we obtain the converse of Theorem A.

THEOREM 1. Let A be any subset of )“(Cl[a, b). Then GA is
Yeh-Wiener measurable if and only if @A is Xv-measurable.
Furthermore m(G—A) = Xy(p~A).

Proof. We only need to show that if G-'A is Yeh-Wiener
measurable then ¢4 is )“<u-measurable So assume that G4 is
Yeh-Wiener measurable. By Lemma 8, m*G A= (Xu) (p7*A). Another
application of Lemma 3 yields (Xv)*(qflA) —(xy) (PTlA)=m*GA° =

m*(G*A) = m(G™*A). Thus we obtain that
(X" (@AY + (X0)* (97 4) = m*(GA) + m*(GA)
=m(G'A) + m(GA)y =1
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from which it follows that @ '4 is Xyv-measurable.

THEOREM 2. Leta=1t, <t < --- <t,=pBandlet (Y, Yo -+, Ys)
be a real or complex valued functional defined on XCla,bl. Then

fe@ is a Wiener measurable functional of (Y., Yy, =+, Yu) ON )201[6(,, b]
if and only if foG 1s a Yeh-Wiener measurable functional of x on
CJR]. In this case,

g, fOG<x)dx = gn fo¢<yly Yoy =0y yn)d(yl Xowee X yn)
ol ] xCla,bl

where the existence of either integral implies the existence of the other
and their equality.

Proof. By Theorem A it suffices to show measurability only.
Let B be any Borel set in B or C. Suppose that foG is Yeh-Wiener
measurable. Then G™'(f'B) = (fG)™*(B) is Yeh-Wiener measurable.

By Theorem 1, @ '(f'B) = (fo@) ! (B) is >n(v-measurable. Hence fop
is Xy-measurable.
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