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A MINIMAX INEQUALITY AND ITS APPLICATIONS
TO VARIATIONAL INEQUALITIES

CHI-LIN YEN

In this paper we get a slight generalization of a Ky
Fan's result which concerns with a minimax inequality. We
shall use this result to give a direct proof for the existence
of solutions of the following two variational inequalities:

(1) i n f < w , y—x>^h{x)—h(y) f o r a l l xeX,
weTy

and

(2) sup<w, y—x>^h(x)—h(y) for all xeX,
w BTX

where TczExE' is monotone, E is a reflexive Banach space
with its dual E', X is a closed convex bounded subset of E,
and h is a lower semicontinuous convex function from X
into R.

In this paper we get a slight generalization of a Ky Fan's
result [4] which concerns with a minimax inequality. We shall use
this result to give a direct proof for the existence of solutions of
the following two variational inequalities:

( 1 ) i n f ( w , y — x ) ̂  h(x) — h ( y ) f o r a l l x e X ,
ιv e Ty

and

( 2 ) sup (w, y — x) <J h(x) — h(y) for all x e X,
weTx

where T c E x Ef is monotone, E is a reflexive Banach space with
its dual Ef, X is a closed convex bounded subset of E, and h is a
lower semicontinuous convex function from X into R. In fact, we
show that under our condition the inequalities (1) and (2) are equi-
valent, that is, the sets of solutions are coincide.

Many results on these problems were done for the case that T
is a single-valued monotone operator of E into Er with a continuity
in some sense. One may see, for examples, C. Stampacchia [12] and
J. L. Lions and G. Stampacchia [7], [8] for the case that T is linear
in a Hubert space E, P. Hartman and C. Stampacchia [5] and G.
Minty [9] for the case that T is nonlinear in a Hubert space E,
and G. Minty [10], F. E. Browder [1], [2], L. Leray and J. L,
Lions [6] and U. Mosco [11] for the case that T is nonlinear in a
Banach space E.

1* Preliminary* In this section we give some known defini-
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tions (e.g., see [4], [10]) which will be used in our paper.

DEFINITION 1.1. Let £ be a topological vector space and X a
convex subset of E. A real-valued function h on X is said to be

( i ) lower semicontmuous if for each t the set

{x 6 X\ h(x) ^ t)

is closed.
(ii) convex if for x, y in X and 0 <L r <J 1 we have h((l — r)y-h

rx) ^ (1 - r)h(y) + rh(x).
(iii) concave if — h is convex.

(iv) quasiconcave if for each t the set

{x 6 X: h(x) > t}

is a convex (or empty) subset of X.

DEFINITION 1.2. Let £ be a Banach space with a dual space
E', X(zE, and Γ c l x E'.

( i ) T is said to be monotone on X if for each x e X, there is
a, u e E' with (#, u) e T and for (x1? ^ ) , (#2, u2) e T we have

<χ — u2, cCi — x2y ^ o ,

where (u, x) is defined to be the number u(x).
(ii) Tx is defined to be the set {u e E'\ (cc, u) e Γ} for all xeX.
(iii) Γ is said to be hemiclosed on X if for each y e X, zeX

and 0 < t < 1 the conditions ((1 — t)y + tz, ut) e T and w-\imutn = u0

for some tn[0 imply that (yf uQ) e T.
(iv) T is said to be Z-bounded on X if for any two points y, z

in X there is a r > 0 such that the set {αt: 0 < t ^ r} is bounded,
where α't denotes the infimum of | |^ | | for all ueE' satisfying

((1 - t)y + tz,u)eT .

2* Fan's minimax inequality* In this section we give a
minimax inequality which is a slight generalized form of Fan [4],
the technique of the proof follows from Fan [4] which is based on
the following Fan's lemma [3].

LEMMA. Let X be an arbitrary set in a Hausdorff topological
vector space E. To each x e X let a closed set G(x) in E be given
such that G(x) is compact for at least one xe X. If the convex hull
of every finite subset {xlf x2, , xn} of X is contained in the corres-
ponding union U?=i (?(#<), then Γ\χeχG(x) Φ φ.
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THEOREM 1. Let X be a compact convex subset of a Hausdorff
topological vector space E. If f and g are real-valued functions on
X x X with the following properties:

( i ) for each xe X, g(xt ) is a lower semicontinuous function
on X,

(ii) for each y β X, f(-,y) is a quasi-concave function on X}

(iii) g(x, y) ^ f(x9 y) for all (x, y) e X x X,
then the minimax inequality

min sup g{x, y) ^ sup f(x, x)
y e X x e X xeX

holds.

Proof. Let t — sup {f{x, x): xeX}. Without loss of the gener-
ality we may assume that t < +00. For each xeX, let

G(x) = {yeX: g(x, y) £ t} .

Then by (i), (ii) and (iii) we have that
(iv) G{x) is a closed subset of the compact set X and hence

G{x) is compact for all x e X,
(v) for any finite subset {xlf x2, , xn} of X we have

conv {xlf x2, - , xn} c U F(xt) ,

(vi) for each xeX, F{x) cG(x),
respectively. It follows from (v) and (vi) that we have

(vii) for any finite subset {xlf x2f , xn} of X we have

n

conv {xl9 x2, , xn} c U G(Pi)
i=l

It is due to the above lemma and the fact that (iv) and (vii) holds
we have that Π {G(x): x e X) Φ φ.

Let y0 e n {G(x): xeX}. Then

g(x9 y0) ^ t for all x e X ,

and our minimax inequality holds.

3* Applications to variational inequalities* In this section
we make use of theorem 1 to prove the existence of solutions for
the variational inequalities (1) and (2).

THEOREM 2. Let E be a reflexive Banach space with dual space
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E' and X a closed bounded convex subset of E. If T a X x Ef is
monotone D(T) = X, h:X—>R is a lower semicontinuousf convex
function. Then there is a yoe X such that

sup (u, y0 — x) <: h(x) — h(y0) for all x e X .
u e Tx

Proof. The monotonicity ensures that for (x, u), (y, v) e T, we
have (u, y — x) + h(y) — h(x) ̂  (v, y ~ x) + h(y) — ̂ (x). Define, the
real valued-functions / and g on X x X by

f(x, y) = inf {<>, 7/ - x> + h(y) - h(x): veTy} ,

g(x, y) = sup {(u} y — x) + Λ(2/) — h(x): u e Tx} .

Since h is convex, lower semicontinuous with respect to the norm
topology on X we see that h is also lower semicontinuous with
respect to the weak topology on X Then / and g satisfy the
conditions (i), (ii) and (iii) with the weak topology on X in Theorem
1, hence there is a yQeX such that

sup g(x, yQ) <: sup/(a?, x) = 0 ,
.re I' xeX

or

sup (u, yQ — x) ^ h(x) — h(y0) for all xe X .
u eTx

THEOREM 3. In addition to the assumption of Theorem 2,
assume further that T is hemiclosed and l-bounded. Then there is
a yoe X such that

inf (v, yQ — x) <S h(x) — h(yQ) for all x e X
v e TyQ

Proof. By Theorem 2 there is a yQeX with

sup <X y0 — x) <, h{x) — h(y0) for all x e X .
neϊ'a;

For a/ 6 X and 1 > r > 0, let xr = y0 — r(yQ — xf). Then vr 6 X and

<^r, yQ - xr> ^ fc(a?r) - h(y0)

for all u r e Txr. The convexity of h implies that

h(xr) - &(!/o) ^ r(Λ(a?0 - Λ(i/o)) for all 0 < r < 1 .

Hence,

<ur, yQ - x') g fe(x') - h(y0) for all r r 6 2X .

I t follows from the i-boundedness of T that there is a subsequence
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{rn} of {r} such that lim rn = 0 and {rrj has some weak limit v0 e E\
Moreover, by the hemiclosedness of T that v0 e Ty0 and

<v0, Vo - a?'> ^ fe(a?0 - fe(2/o) >

that is

inf <>, 2/0 - x'} ^ fe(a') - h(yQ) for all a?' 6 Y .
veTy0

REMARK. The inequality (1) always implies (2), but under the
hypothesis of Theorem 3 we have shown that (2) implies (1) in
Theorem 3. Hence the inequalities (1) and (2) are equivalent.

The author would like to express his gratefulness to the referee
who pointed out a lot of misprints in the original copy of this paper.
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