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TENSOR PRODUCTS FOR SL 2 μr), I COMPLEMENTARY
SERIES AND THE SPECIAL REPRESENTATION

C. ASMUTH AND J. REPKA

We obtain the decomposition of the tensor product of
two irreducible unitary representations of SL2 of a local
field in the case when at least one of them is the special
representation or in the complementary series. This is done
by considering the analytic continuation of the unitary
principal series.

!• Introduction and notation* Martin ([3]) has studied the
tensor product of a principal series representation of SL2(J?t~) with
any irreducible unitary representation. His work makes extensive
use of the Mackey machinery. In particular, an application of
Mackey's Tensor Product Theorem ([2], pp. 128-133) shows that the
tensor product of two principal series representations is unitarily
isomorphic to a representation induced from the diagonal subgroup.
This idea was originated by Williams ([7]) and used by Martin. It is
also worked out in detail for SL2(R) in [4].

In this paper we shall view the complementary series and the
special representation as analytic continuations of the class one
principal series, and study tensor products with them in this light.
We obtain the decomposition of the tensor product of any unitary
irreducible representation with a complementary series or special
representation.

Let J%Γ be a local field of odd residual characteristic, with ring
of integers έ? and prime ideal 0* = (π); let q be the order of <?/&>.
Let Φ be an additive character of 3ίΓ which is trivial on έ? but not
on ^-\

Let G = SL2(S?~), let A be the diagonal subgroup, let N (resp.
V) be the subgroup of upper (resp. lower) triangular unipotent
matrices, and let K — SL2(έ7), a maximal compact subgroup of G.

For g = Γ^ J J e G, x e J%7 let x g = (ax + c)/(bx + d). If σ is a
quasicharacter of ^ ^ x , define a representation Tσ of G on L\SΓ) by
Tσ(g)f(x) = σφx + d)\bx + d^fix-g). This is called a (non-unitary)
principal series representation. In particular, if σ = \ |~s, we write
Tσ = T8. The representations Ts with seR are unitary, the "class
one principal series".

Following Sally ([5]) we give another realization of Ta. Let Cπ

be the kernel of the norm map of the quadratic extension Sfiy/Έ)
over JϊT We take σ, a quasicharacter of ^Γ*x, and extend it to

/ We define a map Eσ: L\CΓ) -> L\ST) by
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EJ(x) =
E71f(t) = ^^21(1 + ί)/2|-M(l + ί)/2)/((ί - l)/(V^(i + 1)))

(cf. [5], 2.20, 2.21).
If σ is unitary, then Eσ is a unitary isomorphism, and in any

case Eσ gives an isomorphism between the realization of Tσ on L\J%~)
and another realization on L\Cπ) (see [5], 2.22).

2* Tensor products of principal series representations* Let
a, σr be quasicharacters of 3ίΓx; following Sally ([5]), we write σ =
<7*|-|~% σ' = σ'* I |~s', with <τ*, σ'* characters of ^ x . We assume
that 8, 8' e £Λ U [—1, 0) and that if s (resp. s') e [-1, 0) then #* (resp.
σ'*) is trivial. Though we will not say so from now on, we will
interpret seiR to mean — τr/ln ̂  Im 8 ̂  ττ/ln ^.

As remarked above, if s,s'eίR, then Tσ® To, w Ind^C^')"1).
This is proved in [3], where it is also shown that this last repre-
sentation depends only on the value of σiσ')"1 at —Id. We write the
equivalence explicitly.

We define:

L = Lo:

T = To:

S = S.f.,:

as follows:

, 1/)

Tf(χ, y)

~f(χ, y)

l/», 1/)

y)f(l/(χ - y), y)

(we understand cτ(O) = 0; " is the partial Fourier transform).
All these maps are unitary isomorphisms. Note L = T~\
For any quasicharacter η of A, we realize Ind^ rj on L\3ίΓ x 3ίΓ) *&

L2(N x 7 ) ^ L\A\G). For g = Γj J l e G, the action is given as follows:

(2.2) g f(x, y) = 77(62/ + d)'ιf({by + d)((6» + d)α + 6),

The transform of this action by C)"1 is given as follows:

= VΦy + d)-ι\by + d\-2Φ(-bx/(by + d))f(x/by + d)\ yg) .

Now Tβ 0 Γ,» acts on L\CX) 0 L^C,) <=« L\Gπ x C,) or on
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), and E = Eσ(g)Eσ, gives the isomorphism between these
two spaces. The map S<>~oLoE:L\Cx x Cπ)-*L2(SΓ x 3tT) gives a
unitary isomorphism from Tσ 0 Ta, to Ind^tf**?'*)"1), with the action
(2.2), where η = ^(σ'*)"1-

3* Extension to complementary series. Now suppose we allow
one or both of s, s' to be in [ —1, 0). The maps defined by the
formulae (2.1) need no longer be unitary. And the action of G
on L\CK x Cπ) or L\^T x JfΓ) is not unitary. We recall that G
does act unitarily with respect to a different inner product (see [5],
pp. 429-431, where it is worked out for s, s' e (0, 1], but the results
are similar, or [1], p. 169); if s or s' equals —1, then we must take
a quotient space. If either s or s ' e ( - l , 0), let L\5ίΓ x Jtry be
the Hubert space on which G acts unitarily (i.e., completion with
respect to the unitary inner product of, say, the Schwartz functions
& = S"(JΓ x JST)). Similarly, let L\Gπ x Cπγ be the Hubert space
of functions on Cπ x Gπ on which G acts unitarily. We see from [5],
(3.7), that the characters of Cπ x Cπ form an orthogonal basis for
this space. Note too that every element of L\Cπ x Cπ)

u is also in
L2(Cπ x Cπ) and the identity map gives a continuous injection

J: L2(CZ x Cπγ > L\Cπ x Cπ)

(see [5], (3.7) and (3.9), noting however that s > 0 there).
We now consider the map defined by

This is a map from some subspace of L\Gπ x Cπ)
u to some subspace

of L\3Z~ x 3ίΓ). It is a G-map from the unitary representation
Tσ <g) To. on L\Cπ x Cπ)

u to the unitary representation Ind^tf*^'*)"1)
realized on L\3tT x 3ίT) by (2.2). We shall show that F is a closed
map and study its domain and range so that we can apply Schur's
Lemma.

Let ^ c ^ C ^ T x 3ίί) be the subset which vanish on {0} x JtΓ.

LEMMA 3.1. For s, s' e iR U [-1, 0),

~)) is dense in L\^Γ x JίΓ) .

Proof. Clearly domain(S)2^t, so S0Π (domain(S<O)2S0n
Thus

(S o ~ ) ( ^ n domain(S oΛ)) 2 | / 6 ̂ 0 : j/(α?, ») | x \{sf~s)/2dx = 0, V

Since ^ is dense in L2(SΓ x J3Γ), the fact that the above set
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is dense is a consequence of the fact that \x\(s'~s)/2 is not square-
integrable on 3ίΓ. Π

Trivial computations show that (at least formally):

L* = Γj -i Γ* = Lj-i

(3.1) S* s, = SΓ,.-, Sτϊ> = &>..

We also define two more spaces of functions. Let
be the subset of those functions which vanish on the diagonal. Let
& c L\Cπ x Cπ) be the set of finite linear combinations of characters
of Cπ x Cπ which vanish on the diagonal and on {-1} x C, and Cπ x
{-i}.

It is easy to verify from the definitions (2.1) that

(3.2)
These relations hold for any choice of σ, σr (specifically, they

remain true when σ is replaced by σ~\ as suggested by (3.1)).
From now on we assume

(3.3) R e s ^ Res'

PROPOSITION 3.2. F is a closed, injectίve map.

Proof. What we mean by this statement is that F is "closable",
i.e. its closure is a function, and moreover that it is an injective
function. If the closure were not a function, then there would exist
fn e L\Gπ x Cπ)

u such that fn -» 0 and Ffn -> / Φ 0. Since J is con-
tinuous, Jfn -> 0. Since (OS*)- 1 ^)^ Π domain((S*)-1o")) is dense in

x 3ίΓ), there exists φ e ^ Π domain((S*)-1 oΛ) such that

*r^w, /> = c ̂  o.
Now

((S*)-^-^), ίyft> = ((S*)-^-^), So-oLoEoJfn} - <A LoEoJfn)

- <Γ Γ -i^ ^ o J/n> .

Note Γj-i^ = f e ^ we claim E*ψ e L\Cπ x Cn). Indeed, since supp ψ
is bounded, σ~\(l + t)/2)σ'"\(l + ί')/2) is bounded on supp(£?*ψ), so
£7*^ = (ifr-i ® Eό'-iT'-ψ e L2(cπ x c,). Letting ί = E*φ, we have that

**^, Ffn) = (θ, Jfn), and 0 Φ c = lim<((S*)- ιo^, F/n> =
,̂ J/«>, which is impossible, since Jfn—>0. This contradiction

shows .F is closed.
Next we show that the closure of F is injective. It suffices to

show that the image of F* is dense in domain^), or, since J is
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injective, that image((S°~oI,ojg;)*) i s dense.
In the case where Re(s — s') < 1, image(S*) 3 S^, so image("oS*) D

£A. Thus, by (3.1), (3.2), image((So^oLo#)*) 2 (Lo£)*(^0) „ g>, which
is dense in L\Cπ x C*).

By (3.3), the other possibility occurs when sr = —1, seiR.
In this case, σ is a unitary character and L and T are unitary
maps. Now E* = Cδfr-i)"1 ® (E^-i)'1; we write #,,-i = JB?rloΛf,
where 1 means the trivial character and M is the multiplication
operator_on U(^T) given by Mf(x) = σ'-\2/(l--\/Έx))f(x) =
|(1 - Vπx)\2\./(«). Then # * - [(j^-i)"1 (x) JE^Ml <g) M], and since
the left-hand operator is unitary, it suffices to prove the image of
(1® ikf) oL*°^oS* is dense in L\SίT x ^ O Note that the operator
10 M maps ^ onto itself.

It would suffice to show we can approximate any element of Sf
by an element of the image. In fact, it suffices to approximate a
function of the form f(x, y) = h(x)φ(y), where h is a Schwartz function
and φ is the characteristic function of a set y0 + 3?n, where n is
large enough that h(x) and \l — \/πx\ are constant on cosets of ^ n .

We would like to find ti close to h in L\3ίΓ) and such that
h' ®Φ is in the image of L*o"ofif*. The image of S* contains &%,
so h' should satisfy

*)-\h'<g) φ)(x, y)dx = 0; equivalently,

[\x\~1σ-1(x)h'(y + l/x)dx = 0 , for all yeyo + g?n\ i.e.

(l&l-^CαO&'ί!/ + »)rf» = 0 , for. all yeyo + &>n\ i.e.

llajl^cri^/^'d/o + x)dx = 0 using the condition on ^) .
J

Since IOJI*"1^) is not square-integrable on Jst", it is possible to
find h' satisfying this last condition and arbitrarily close to h. Rather
than h' (g)φ, we let /'(&, y) = ti{x + y0 — y)Φ(y). This / ' is close to
/ and is also in (ScToL)*^).

By the choice of n, we know that M just multiplies φ by a
constant K ^ 1, so / is approximated by / ' = (1 (x) M)((l/K)f), which
is in the image of (1 (x) ikf)oL*o"oS*? as desired. •

Now we consider the image of F.

PROPOSITION 3.3. Image(F) is dense in L\^r x ̂ r ) .

Proof. By Lemma 3.1, it suffices to show that £/*i is contained
in the image of LoEoJ, which is clear from (3.2). Π
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Now we turn to the study of the domain of F. Of course, if
8, sf 6 iR, it is all of L2(Cπ x Cx).

PROPOSITION 3.4. F is defined on a G-invariant subspace, which
is dense if s or s' e iR or if s, sr e ( —1, 0) and s + s' ^ —1.

//, on the other hand, s, s 'e( — l, 0) and s + s' < —1, then the
orthogonal complement of domain(F) is a subspace on which G acts
as the (irreducible) complementary series representation T8+8,+1.

Proof. By (3.2), (3.3), we see that domain(F) 2 &>. Since " is
a unitary isomorphism, to show that domain(jP) contains the G-span
of this set, it suffices to show that the action (2.3) of G on L2(SΓ x 3ίΓ)
takes &* into L\SίT x SίΓ), when we let η = σ(σ')-\ In light of
(3.3), this is obvious.

The span of the G-translates of & (even the Cπ-translates) con-
tains the space of all locally constant functions which vanish on the
diagonal in CπxCπ. Let us call this space &d. So domain^) 2 ^ * .

Now let XeCπ and consider

L\C9 x Cπ)χ = {/ e L\CX x Cx): /(at, at') = l(a)f(t, t'), Va, ί, t' 6 Q .

The space L2(Cπ x Cff)χ is is isomorphic to L2(Cπ) under the mapping
/ - > / , , where /,(«) - /(I, t).

The projection (^ d ) z of &*d on L2(Cπ x Cπ)χ ^ L\Gπ) is the space
of finite linear combinations <j> of characters of Cπ such that Φ(l) — 0.
We index the characters of Cπ as ψ±i, 0 ^ i, as in [5], p. 420. Then
an orthogonal basis of L2(Cπ x Cπ)χ is given by φ±i = Xψ+l® ψ±i, and

= \φ = Σ α±^± <: Σ α±< - 0
finite

We wish to determine the closure of (&d)χ with respect to the
norm induced by the norm || ||w in L\Cπ x Cπ)

u. If seiR, let || ||a
be the ordinary norm on L2(Cπ); if s e ( —1, 0), let || ||s be defined as
in [5], (3.8). Then

(3.4) l l ^ l | = ||Z tΐϊll. ll+±ill.-

We note that if s and/or s 'e( — 1, 0) and if i is large enough so
that condOψς ) £ cond(Z), then cond(Zα/r±ί) = cond(ψ±ί), and

(3.5) „ n-hs'/2

Here h is the number such that ψ-±i is trivial on Cih), nontrivial on
σπ

h~l), cf. [5], (2.17), (3.13); note that for each h ^ 1, there are
2qh(l — 1/q) such characters.
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Recall that φe(^d)χiftφ is in the kernel of the linear functional
λ given by

λ: Σ a±i φ±i i > Σ a±i

To prove the proposition, we must determine whether or not λ is
continuous (i.e. whether ker λ has || ||"-closure of codimension 1 or 0).

LEMMA 3.5. (i) (&*d)χ is || \\u-dense in ker λ;
(ii) λ is || 11*-continuous iff s, s ' e ( — 1, 0) and s + s' < — 1.

Proof, (i) is trivial. For (ii), suppose s ,s 'e(—1,0). Consider
the orthonormal basis formed by the elements φu

±i = {\\Φ±i\\u)~ιΦ±i) so
if Φ = Σia±iΦ±i> then Φ = Σ(a±i\\φ±i\\u)φu

±i. Thus \φ = ^a±i =
Έj(a±i\\Φ±i\\u)(\\Φ±i\\v')~1, so the continuity of λ is equivalent to the
convergence of ΣdlfellT2-

By (3.4) and (3.5), ignoring finitely many terms, Σ(il^±ίll)~2 ~
ΣϊU2(l - llq)qh qh8-qhs' = 2(1 - 1/?)Σ qh{ι+s+s'\ This converges iff
1 + s + sr < 0; i.e. s + s' < —1. If either s or s' e ΐiί, we replace it
in the above norm calculations with 0 (its real part), and the sum
obviously diverges. Π

All that remains of the proposition is to discuss the action of G
on &k in the case when it non-trivial. Note that in this case {^έ)χ,
the projection of &£• on L\Cπ x Cπ)

u

χ, has dimension 1 for each X.
If we can show that 0>k contains the complementary series repre-
sentation Ts+S,+1, then we shall be done, since by considering the
representation of Cπ on &t we see that 0>t cannot contain more
than this one representation.

We argue that if s + s' < — 1, then T8® Ts, must contain some
complementary series representation. Indeed, if u and w are unit
ίΓ-fixed vectors in Ts and T$, respectively, and v = u (x) w, consider
the coefficient function on G given by φ(g) = <TS® T8,(g)v, v) =
(Ts(g)u, u) (Ts,(g)w, w>

The spherical functions (Ts(g)u, u) and (T8,(g)w, w) can be
calculated (cf. [1], pp. 174-176), and we note that T8 is "of class I/7"
iff q > 2/(1 + s) (i.e. the spherical function is in Lq(G)). We also see
that if \a \ = q\ n^O, then <JjJ χ9 Ί = const. q-^+*+*'\ so φeL%G)
iff q > 2/(s + s' + 1). In particular, Γ s ® Γs, is not of class L2+ε for
arbitrarily small ε > 0. But since the representation of G on the
closure of ^d is isomorphic to Ind^ 1, which is of class L2+e, we
must have that the representation of G on < ^ is not of class L2+e,
and hence must contain complementary series representations, since
all other irreducible unitary representations are of class L2+e. But
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since it can contain at most one such, and must be of class Lq iff
q > 2/(« + 8r + 1), this one must be T8+8>+1, as claimed. •

THEOREM 3.6. ( i ) // s e ( — 1, 0) and σf is a unitary character
of STX, then

(ii) // s, s ' e(~l , 0) and s + s' ^ - 1 , then

(iii) // a, s' e (-1, 0) and s + s' < - 1 , ίfcew

T /Q\ Φ r^ Φ /Q\ Φ CX± Φ

Proof. We apply Schur's Lemma ([4], Lemma 3.1) to the map
F. It tells us that the representation of G on the closure of domain(i^)
is isomorphic to Ind^tf*^'*)"1). Parts (i) and (ii) follow since domain(jP)
is dense in these cases. Part (iii) follows since G acts on ^i by
Γs+S,+1 and on the closure of ^d by Ind^ 1. •

REMARK. The decompositions of To (x) Tσ> and To (x) To can be
found in [3], Theorem 3.

4* The special representation* To extend our results to include
the special representation T_u we must study the above situation in
the case when s or s' is allowed to equal —1, still subject to (3.3).
In this case, G acts unitarily not on L\C% x Cκ) with a new norm,
but on a quotient of it. We let L\Cπ x Cπ)

n be the Hubert space
which has an orthogonal basis ψ±i (x) ψ±j, such that \\ψ±i(S> ψ±j\\ ~
ll'f±ilUI'f±il|S', where || ||, is as before if s Φ — 1, and, when s = — 1,
|| t-oll-i = (2/(1 + l/g))1/2, || ψ±i \U - qh/\ || ψ+0\U = 1; here h is as before,
and we have (in effect) used [5], (3.15), and we have just defined
II ΊKO ll-i arbitrarily. Note that G does not act unitarily on L\Cπ x Cπ)

u,
just on the quotient by {ψ+0} (x) L\Cπ) and/or L\Cπ) (x) {ψ+0} according
as s and/or s' equals —1.

Then the identity map /: L\Cπ x Cπ)
u -> L\Cπ x Cπ) is bounded

and we may define the map F as before. Moreover, Lemma 3.1 and
Propositions 3.2 and 3.3 still hold in this case. The analogue of
Proposition 3.4 is this:

PROPOSITION 4.1. Let at least one of s, s' equal —1. Then F
is defined on the G-space generated by &. For each XeCπ, the closure
of (&*)χ has codimension one in L2(Cπ x Cπ)χ iff neither s nor s' e iR;
otherwise & is dense.
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Proof. In the notation of Lemma 3.5, λ is continuous exactly
in this case (same argument). •

Next we let V c L\Cπ x Cπ)
u be the G-invariant subspace spanned

by {ψ+o®f±iϊ and/or {ψ±ί (x) ψ+0), according as s and/or s' is — 1. So
G acts unitarily on L\Cπ x Cπ)

u/V, as T^tg) Γ_x or Tσ<g) Γ_lβ Then
.F induces an injective map F,: L2(Cπ x Cπ)

u/V-^ L2(^T x
where F ' = F ( 7 n domain ί7).

PROPOSITION 4.2. (i) i*\ is α closed map.
(ii) 1/ owfo/ one of s, s' is —1, then V = {0}.

Proof, (i) Suppose 2^ is not closed, then for some 1 the map
which Fx induces, (JF^: L2(C* x Cπ)

u

χ/Vχ-> L2(<βΓ x ^T)χ/V'χ is not
closed. So there exist fn e domain F such that Ffn -+f9fΦθ modulo
Vχ and /n-»0 modulo Vχ. By adding elements of V[ to / and of
Vχ Γt domain(F) to fn, we may assume OΦf e (Vχ)1 and Ffn e (V£)L. So
Ffn —*/• Also, there exist vn 6 F χ such that fn — vn-+0.

As in Proposition 3.3, we see that any φe<0* is in domain^*"1),
so for any φe^9 </n, φ) = <J?yn, F*~ιφ)y which converges. Thus we
see that <t;n, 0> converges for any φ 6 ̂ . Since v̂  6 Vχ, which is a
finite-dimensional space, and inner products with & give all of its
dual, this implies that vn converges, to v, say, and so fn —> v.

But since F is closed and Ffn —»/, we must have v 6 domain F
and f = Fv e V, & contradiction, as desired.

(ii) Suppose Vf] domainF Φ 0; V is a G-invariant space, iso-
morphic to Ta. If F were defined on V, there would be an embedding
of Tσ into Ind2(0 *(σ'*)-1), which is not possible. •

PROPOSITION 4.3. / / « = « ' = — 1 , £&ew F ΐs ίfee s p α ^ o/ {^+0(x)

^±i ® ̂ +o} Also ψ+0 ® o/r+0 g domain F, so F induces a map on
space is o/ course two copies of T^; exactly

one of them is in domain(F).

Proof. If a/r+0 (x) a/r+o 6 domain JP, then the trivial representation
would be embedded in Ind^tf*^'*)"1), which is impossible. F is
defined on ̂ d9 which contains ψ+0 ® ψ±i — ψ±i ® ψ+0, for each ± i .
These vectors span a G-invariant subspace of V/(ψ+0 (x) ̂ + 0) on which
G acts as T_x.

Now either domain F contains all of V/(ψ+0 (8) ̂ +o> or only this
one copy of T_γ. We claim that the latter case obtains. Indeed, let
us show that ψ+0 (g) ψ+i is not in domain F. Now J(ir+0 (x) ψ+i) =
q~~h/2ir+0(g) ψ+u where fe is as before; and L°E°J(ψ+0(><) ψ+ί)(x, y) =

which is ^oί in L 2(^T x
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Since " is unitary and S (in this case) is the identity transformation,

ψ+o ® ψ+i is not in domain F. •

THEOREM 4.4. (i) If s Φ — 1, then

Tσ (x) T_x &* Tσ (x) To ̂  Tσ (g) 2V , Vs' e i #

( ϋ ) Γ_i (x) Γ_! ^ Γo (x) To θ Γ_x

Proo/. We note that by Proposition 4.1, ^ / 7 Π ^ is dense in
L\Cπ x Cπ)

u/V. Then part (i) is immediate from Proposition 4.2.
For part (ii), we note that by Proposition 4.3, V is one copy of

T_u so Ind2((T*(α '*)-1)/F' is Γo<8) TOQT__U and we are done. •

5* Tensor products with supercuspidals* As is remarked, for
example, in [6], every supercuspidal representation T is induced from
some maximal compact subgroup, K — Kτ, say. Let T be any unitary
representation of G. A simple application of Mackey's Subgroup
Theorem says that if T is induced from the representation η of K,
then

To study the tensor product of T with a complementary series
representation or the special representation, we must therefore study
the restrictions of these latter representations to Kτ. We shall
compare the iΓy-decomposition of a complementary series or special
representation with the i^-decomposition of a class one principal
series representation. Since the structure of the tensor product of
T with a class one principal series representation is known from [3],
we shall then be able to describe the tensor product of a supercuspidal
representation with a complementary series or special representation.

For convenience, in this section we let K — Kτ be either maximal
compact subgroup of G.

LEMMA 5.1. Let se( — 1, 0). Then

Ts\κ™T,\κ™Ts,\κ, Vs'eiR,

i.e. these representations have the same K-types.
Moreover, Γ_i|^0 1^ ^ TQ\K, i.e. the K-type of the special repre-

sentation plus the trivial representation is the same as the class one
principal series.

Proof The class one principal series and the complementary
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series representations can all be realized on Hubert spaces of functions
on K which are invariant under left multiplication by (AN) Π K; K
acts by right translation. The subspace consisting of locally constant
functions is dense in each of these Hubert spaces, and is obviously
iΓ-invariant; the actions of K on these dense subspaces are isomorphic,
so the whole spaces are J£-isomorphic. Furthermore, the special
representation is realized on a completion of the quotient by the
space of constant functions. •

Combining this with Mackey's Subgroup Theorem, we find

THEOREM 5.2. Let T be any supercuspidal representation of G.
Then:

TS®T™ Γ0(x)Γ V8 6(-l,0)

T-i ®Tf* (To <g)Γ)ΘΓ,

i.e. to get the decomposition of Tβ l ® T, remove one copy of T from
the decomposition of To (x) T.

Proof. Suppose jΓ=Ind£ η. Then by Mackey's Subgroup Theorem
and Lemma 5.1,

T.® T~ Indlfo® T.I J = Indfo® TolJ ™TQ®T ,

and

= To (x) T θ T , as claimed . •

Since the tensor product of a supercuspidal representation with
a class one principal series representation is completely described in
[3], we can read off the results for the special representation and
complementary series representations too.
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