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RITT SCHEMES AND TORSION THEORY

ALEXANDRU BUIUM

There is a natural way to associate a torsion theory to
any differential ring. Using this tool, one may prove that
there is a duality between the category of reduced affine
Ritt schemes and a full subcategory of the category of Ritt
algebras. As a consequence, a brief investigation is made
concerning morphisms of differential finite type and a
differential version of Chevalley's constructibility theorem
is proved for such morphisms.

1* Introduction* The category Diff has as its objects commu-
tative rings A with unit together with m derivation operators
Dl9 , Dm: A —> A which commute. A morphism /: (A, Dlf , Dm) —>
(A, Dl9 , Dm) in Diff is a ring homomorphism /: A —> A with Dif =
fDi for every i = 1, , m. Recall from [5, p. 110] that an LDR-
space is pair (X9 έ?x) where X is a topological space and έ?x is a
sheaf in Diff on X such that for each PeX the ring έ7XtP is local
and its maximal ideal is differential. A morphism of LZλR-spaces
/: (X, έ?z) —> (Y9 έ?τ) is a pair (ψ, θ) where ψ: X-> Y is continuous
and θ: ̂ γ —> ψ^x is a morphism of sheaves in Diff on F such that
for each PeX, the morphism ^γ,i,{P) —> ^ , P is local. The category
of LlλB-spaces is denoted by LDR.

There exist two fundamental functors Spec^: Diff —> LDi2 and
Γ^: LJDJB —> J9i# defined such as follows: for any differential ring A,
the topological space Spec^ A consists of the prime differential ideals
of A, the topology being induced by the natural inclusion j : Spec^ A —>
Spec A and the defining sheaf έ?SvecDA being A = j~\Ά), where A is
the defining sheaf of the scheme Spec A, [3, p. 70]. Note that Ά
(and consequently A) has a natural structure of sheaf in Diff. Indeed
the derivations Dl9 , Dm on A canonically give derivations
Ditp, '"fDm>p on AP for any P e Spec A; hence for any open set
U £ Spec A, the ring Γ(U, Ά) becomes a differential ring with deriva-
tions Dltϋ9 - - , Dm>u defined such as follows: for any seΓ(UfA),
DitU(s) is the section defined by the family {Di)P(Sp)}Peϋ. On the other
hand for any LlλR-space X9 ΓD(X) will denote the differential ring
of global sections Γ(X, έ?z).

It was proved in [5] that at least in the case of a single deriva-
tion, the functors Spee^ and ΓD give an ad junction between Diff and
LDR0P. We shall prove in §2 that these functors give in fact an
equivalence between sufficiently large subcategories.

For the remainder of this paper we shall suppose that all rings
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contain the field of rationals Q. A differential ring which contains
Q will be called a Ritt algebra. If A is a Ritt algebra, an LDR-
space of the form Spec^A will be called an affine Ritt scheme. A
Ritt scheme will mean an LlλR-space whice may be covered by affine
Ritt schemes.

The equivalence proved in § 2 makes possible an investigation of
morphisms of differential finite type between affine Ritt schemes
which will be made in §3. In §4 we make some remarks on the
differential affine space.

The necessary information on rings and modules of quotients
may be found in [11]. We will use this technique in the following
context: given a commutative ring A and a subset X of Spec A, one
may associate to X an hereditary torsion class J7~ = {Me Mod A,
MP = 0 for any P e X}, a Gabriel topology F= {J ideal in A, A/J e J Π =
{J ideal in A, J g P for any PeX) and a left exact radical
t: Mod A-+J/~, t(M) = {xeM, a,τm(x)eF}. For any Me Mod A one
defines the module of quotients MF = limJei? Horn (J, M/t(M)). Then

we have ker (φM: M -> MF) = t(M), coker (φM) e J^~ and MF -> (MF)F

is an isomorphism. For any ideal I in A one defines the ideal Ic —
{x e A, I: x e .F} and put CF(A) = {/ ideal in A, Iβ = I}. Now the set
F e = {J ideal in A^, J Π AeF} is a Gabriel topology on AF and there
is a one-to-one correspondence between CF(A) and CFe(AF) given by
/f-* Ip and J H ^ J n A. This correspondence induces a one-to-one cor-
respondence between Spec A Γ) C (̂A) and Spec A*. Π CFs(AF). Note
that for any PeSpecA, we have PeF or P

2. Duality given by Spec^ and ΓΏ. For any Ritt algebra A
let J^A, FA and ίA be the hereditary torsion class, the Gabriel
topology and the radical associated to the subset X — Spec^ A
of Spec A as in §1. Put AD = Γ

PROPOSITION 2.1. For any Ritt algebra A we have tA{A) =
ker (A —> AD) and the canonical morphism A —> A/tA(A) induces an
isomorphism of Ritt schemes SpecD A/tA(A) ~> Spec^ A

Proof, Our first statement follows directly from definitions. To
prove the second statement, observe that for any x e tA(A) and for
any P e Spec^ A we have ann (x) g£ P, hence tA{A) is contained in
every P 6 Spec^ A. We get that Spec^ A/tA(A) -* Spec^ A is a homeo-
morphism. It is sufficient to prove that the morphisms induced on
the stalks are isomorphisms, i.e. that for any PeSpec^A we have
AP ~ (A/tA(A))P. But this isomorphism holds since (tA(A))P = 0 for
any P e Spec^ A.
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REMARK. If A is a Ritt domain with field of quotients K and
U is an open subset of X^Spec^A, then the ring Γ(U, έ?z) is
equal to the intersection (taken in K) of all the local rings AP as
P runs through U.

COROLLARY 2.2. Let X be an a fine Ritt scheme. The following
statements are equivalent:

(1) For any open subset U £ X, the ring Γ( U, £?x) is reduced
(or integral).

(2) X is isomorphic to specD A where A is a reduced (or
integral) Ritt algebra.

Proof. (1)=>(2) If X - Spec ĵB, it follows by Proposition 2.1
that A = B/tB(B) is a subring of BD = Γ(X, έ?z)9 hence A is reduced
(or integral). By Proposition 2.1 again, we get that X is isomorphic
to Spec^A.

(2) => (1) If A is reduced then every local ring AP is reduced,
hence every Γ(U, έ?z) is reduced. If A is integral then Γ(U, έ?z)
is integral by the remark above.

A Ritt scheme will be called reduced (or integral) if Γ(U, έ?z)
is reduced (or integral) for any open subset U of X.

If A is a Ritt algebra then Spec^A is quasi-compact by [6]. If
J is an ideal in A, then r(J), [J] and {J} will denote the radical
ideal, then differential ideal and the radical differential ideal respec-
tively, which are generated by J. By [8, p. 13], {J} is the inter-
section of all prime differential ideals which contain J and by [4,
Lemma 1.8] we have {J} — r([J]).

For any A-module Mf put M = j~\M) where j is the natural
inclusion Spec^ A —> Spec A and M is the sheaf on Spec A defined by
M [3, p. 110]. The stalk of M at PeSpec^A is MP = M®AAP.
There exists a natural morphism of A-modules ΘM: M —> MD =
ΠSpec^A, M). It is apparent that keτ(φM:M-+MF) = ker( l̂f:Jli"->MI)) =
t(M) where F = FA and t = tA.

LEMMA 2.3. For every A-module M there exists a natural
injective morphism of A-modules ψM: MF —> MD such that ψMφM =

Proof. Take xeMF. Since coker (φM)e^A it follows that for
every P e Spec^ A there exist elements sP e A\P and xPeM such that
sPx = φM(xP). Since ^ ( β p ^ — sρ#P) = 0 for every P, QeSpec^A it
follows that Xpjsp — xQ/sQ in every MB with .BeSpec^A, hence the
elements xPjsP 6 ikίS/, stick together and define a global section s e MD.
It is apparent that s depends only on x and so we put ψM(x) = s.
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γM is injective because the condition s = 0 implies that for any P e
Spec^A there exists uFeA\P such that uPxP = 0. It follows that
UpSpX = 0 for any PeSpec^A, hence xet(MF) = 0.

For any A-module M, Ass (If) will denote the set of all primes
P in A for which there exists x e M such that P is minimal among
the prime ideals containing ann (x).

LEMMA 2.4. Suppose that Ass (Λf) SSpec^ A. Then φM:M—>MF

is injective and ψ.u: MF —> MD is bijective.

Proof. Since Ass (Λf) C Spec^ (A) it follows that for every a? e Λf
we have {ann (x)} = r(ann (a;)). For the first assertion of the lemma
it is sufficient to prove that t(M) = 0. If xet(M), for every P e
Spec^A there exists sPeA\P such that sPeann(x). Since the
differential ideal generated by these sP as P runs through Spec^A
is equal to A, it follows that le{ann(x)} = ? (ann(as)), hence x = 0.
To prove the second assertion it is sufficient to show that <fΛI is
surjective. Take s e MD. By quasi-compacity of SpecD A there exist
fl9 >>,fkeA and xu , xk e M such that {{fl9 , fk)} = A and the
restriction of s at !)(/,) = {Pe Spec,, A, /, ί P} is given by xjf, e Mf%.
Since xjft — ίCy//,- in any MP with P e D{ftfj) it follows that for any
such P there exists sίjP e A\P with s i i P 6 ann {fixj — /,•#*). Obviously,
for a fixed pair (ί, j) the element /̂ /y is contained in the radical
differential ideal generated by all the sijP as P runs through D{fxfό)y

hence ftf3 e {ann (/<#,• — /y^)} = r(ann (/^^ — /,•»<)). So there exists a
common JV such that (fif^ifXj — /,•»*) = 0 for all i and j . Re-
placing αjj/ί by XifN/fz

N+1 we may suppose N = 0. Consider the
morphisms of A-modules u: A& —> J = /XA + 4- ΛA and v: A/c —> Λf
sending the elements of a basis of Ak into fu ••-,/* and x2, , scΛ

respectively. Notice that ^(ker (u)) Q t(M). Indeed if we have
al9 , ak e A such that Σΐ=ι a%f% — 0 we get that

for all j , hence X, '=1 α ^ 6 ί(Λf). So v induces a morphism of A-
modules {; eHom (J, M/t(M)). Since Jejp7 we may consider the
image of v in MF = lim Ie FRom (/, Mjt{M)) and denote it by a;.

It is apparent that γM(x) = s.

LEMMA 2.5. Suppose A satisfies one of the conditions:
(1) A is reduced
( 2 ) A is Noetherian

Then Ass (A) £ Spec^ A.
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Proof. Suppose first that A is reduced and take P e Ass (A).
Since PAP e Ass (AP) we may suppose that A is P-local. Since P is
minimal among the primes which contain ann (x) for a certain xeA,
it follows that P = r(ann(a?)). On the other hand since the ideal
(0) is radical and differential, so is (0): (x) [4, Lemma 1.4] hence P
is differential.

If A is supposed to be Noetherian, our statement follows for
instance from [10].

We say that a Ritt algebra A is closed if the morphism
ΘA: A —> AD is an isomorphism. Every local Ritt algebra whose
maximal ideal is differential is closed by [7, Proposition 3.3]. The
following result shows that any ring of global sections of a reduced
affine Ritt scheme is closed. In §4 we will also show that an
algebra of differential polynomials over a closed Ritt domain is
closed.

THEOREM 2.6. Let A be a Ritt algebra such that Ass (A) £
Speĉ , A. Then the morphism θA\ A —> AD is injective and induces
an isomorphism of Ritt schemes Spec^ AΌ —> Spec^ A. Consequently,
AD is closed.

Proof. By Lemma 2.3, ψA\ AF — > AD is an isomorphism, hence it
is sufficient to prove that Spec^^ is an isomorphism of Ritt schemes.
Let us prove first that Spec^ φA is a homeomorphism between the
underlying topologycal spaces. Since Spec^ A n ί 7 ^ 0 we get that
SpeCjr) A Q CF(A). Applying this remark to the ring B — AF we get
that Spec^β £ CFβ{B). On the other hand we see that Fe C FB.
Indeed if JeFe then J cannot be contained in any PeSpec^I?
because if we had J C P for such a P, we would get J Π A Q P Π
A e Spec^ A which is a contradiction. Hence CFβ(B) £ CFe(B) and
finally we deduce that Spec^β £ CFe(B). Let us also observe that
for any P e Specβ A we have PF e Spec^ B. Indeed there exists a

canonical morphism of A-algebras AF —> AΓ and since PAP e Spec^ AP

it follow that P = PAP Π AFe Spec^ AF Q CFe(AF). Since P Π A =
PF Π A = P, by the one-to-one correspondence between CF(A) and
CFe(AF) we get PF = P, hence PF e Spec^ AF. We may conclude that
the one-to-one correspondence between Spec A f] CF(A) and Spec AF f]
CFe(AF) induces one-to-one correspondence between Spec^A and
Spec^A^. One knows that 0 h-> 0 Π A is continuous. To prove that
P h-» PF is continuous, take y e AF and calculate h~\D(y)) where D(y)
is the principal open subset of Spec^A^ defined by y. There exist
fl9"',fkeA and yu - ,ykeA such that {(f, , //c)} = A and

^(l/<) for every ϊ. Then we have
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hr\D{y)) = U h-KD(φA(ft)y)) = U D(yx)
i ί

which is an open set in Spec^ A.
Now we only have to prove that Spec^ φA gives an isomorphism

on each stalk, i.e. that for every PeSpec^ A we have AP = (AF)Pp.
We have the commutative diagram:

where a = φA and βa is the identity of AP. It is sufficient to prove
that β is injective. Suppose we have y e (AF)PF with β(y) = 0. After
multiplying y with a unit in (AF)Pp we may suppose y = y(x) with
xeAF. Since coker (α) e J/^ it follows that there exist seA\P and
aeA such that a{s)x = a(a). Applying βy to this equality we get
δ(α) = 0, hence there exists u e A\P such that ua = 0. We get that
a(us)x = 0 and since a(us) $ PF we get y = 0.

COROLLARY 2.7. Tfeβ functors Spec^ α-̂ ώ ΓD give a duality
between the category RA of reduced affine Ritt schemes and the
category RC of reduced closed Ritt algebras. Consequently, the
category RC is a coreflective subcategory of the category R of reduced
Ritt algebras.

Proof. The Corollary is a consequence of Lemma 2.5 and
Theorem 2.6.

REMARK. Our Theorem 2.6 may be stated in more general terms.
If in the definition of the category LDR we forget the condition
"maximal ideals in the stalks of έ? are differential", we get, by [5],
the category of differential local ringed spaces which is denoted by
Dίffloc. There are two standard functors Spec: Dijf—> Diffloo, and
Γ: Diffloc-^Diff, where Spec A, as topological space, is the set of
all prime ideals of A with the Zariski topology, A being any
differential ring. Suppose we have another functor S: Diff—»Dίffloc
which satisfies the follows:

1) There exists a functorial morphism j: S —> Spec such that for
any differential ring A, the morphism jA; S(A) -^ Spec A is an inclusion
of sets, the topology and the defining sheaf on S(A) being obtained
by inverse image from the structures of Spec A.

2) For any differential ring A and for any P e S(A) we have
PAΓeS(AP).
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Notice that the functor Spec^ in arbitrary characteristic satisfies
these axioms. The functor Specg considered in [7] satisfies them too.
It is easy to see that our method leads in fact to the following
result:

THEOREM 2.8. If A is a differential ring such that S(A) is
quasi-compact and Ass (A) £ S(A), then the morphism A—>ΓS(A) is
ίnjective and induces an isomorphism SΓS(A) —> S(A).

3* Morphisms of differential finite type* We say that a
morphism /: X —> Y of affine Ritt schemes is of differential finite type
if there exists a morphism of Ritt algebras u: A —> B with B finitely
generated over A as a differential algebra [8, p. 59] and there exist
isomorphisms X = Spec^ B, Y ~ Spec^ A such that Spec^ u induces /
via these isomorphisms. If bl9 , bs generate B as an A-differential
algebra we use the notation B = A{bu ••-,&,}. A morphism of Ritt
schemes /: X —> Y is called dominant if f{X) is a dense subset in
Y. One may easily check that given a morphism of Ritt algebras
u: A —> J5, then Spec^ u: Specp B —> Spec^ A is dominant if and only
if ker (u) £ nil

LEMMA 3.1. // u: A —> B is an injective morphism of reduced
Ritt algebras, then the morphism uD: AD —> BD is also injective.

Proof. Since u is injective, it follows that the morphism
Spec^ B —> Spec^ A is dominant. By Theorem 2.6 we get that the
morphism Spec^ BD ~-+ Spec^ AD is dominant, hence ker (uD) £
nil (AD) = 0

LEMMA 3.2. Let f: X—>Y be a morphism of reduced affine Ritt
schemes. Put A = Γ{Y, έ?γ) and B = Γ(X, έ?z). Then f is of
differential finite type if and only if there exists a differential sub-
A-Algebra C of B such that C is finitely generated over A as a
differential algebra and GD = B.

Proof. By Corollary 2.2 we have Y = Spec^ Ax where A1 is
reduced. By Theorem 2.6 we get that Spec^ Ax = Spec^ (A^)D ~
Spec^A, hence Y = Spec^A. In the same way we get X~ Spec^JB.
If we suppose there exists an algebra C as in the statement of our
lemma, then by Theorem 2.6 we get that Spec^ C — Spec^I? and so
/ is of differential finite type. Conversely, suppose that / is of
differential finite type. Let u: A —> B be a morphism of Ritt algebras
such that JB is finitely generated over 1 as a differential algebra
and suppose there exist isomorphisms Y = Spec^ A, X ~ Spec^ B
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such that / is given by Spec^ u via these isomorphisms. Since
tj(A) £ tβ(B), by Proposition 2.1 we may replace A and B by Ajt-^A)
and B/tβ(B) which are reduced being subrings in AD = A and BD — B
respectively. Hence we may suppose that A and B are reduced. If
uD denotes the morphism A -> B, put C = uD(A)[B] £ B. Applying
Lemma 3.1 to B £ G £ B we get B = BD<^CΌQB, hence CD = B.
Since C is finitely generated over A as a differential algebra, the
lemma is proved.

THEOREM 3.3. If X—.>Y~>Z are morphίsms of differential
finite type between reduced affine Ritt schemes, then gf is also of
differential finite type.

Proof. Put A = Γ(Z,έ?z), B = Γ(Y, έ?τ), C = Γ(X, &z). By

Lemma 3.2 there exist morphisms A —> E £ B = ED and B —> G £
C — GD where E and G are finitely generated over A and B respec-
tively, as differential algebras. Put T = b(E){xly , xk} £ C, where
α?x, , xk generate G over B as a differential algebra. Applying the
functor Γn Spec^ to E —> T £ C we get by Lemma 3.1 B = ED—>
TD ζZ CD — C, hence 2^ contains the ring b{B) and the elements
xu , xk. Consequently TD contains G and so applying again Lemma
3.1 to G £ TD £ C we get C = GDQTDQC hence Γ,, - C. Since
T is finitely generated over A as a differential algebra, we may
apply Lemma 3.2 and we get that gf is of differential finite type.

Now we prove the following differential version of Chevalley's
constructibility theorem:

THEOREM 3.4 Let X—>Y be a morphism of differential finite
type between ordinary affine Ritt schemes ("ordinary" means there
is a single derivation). Suppose that Y has a Noetherian underlying
topological space. Then f is constructive.

Proof. Suppose that / = Spec^ u where u is a morphism of Ritt
algebras A —> B such that B is finitely generated over A as a dif-
ferential algebra.

Suppose for the beginning that B is finitely generated over A
as an algebra (in the nondifferential sense!). It is sufficient to prove
that /(Spec ĵB) is constructible. Since Spec^A is a Noetherian
topological space, it is sufficient, applying classical criterion [9, 6. C],

to prove that whenever the morphism Specΰ (B/PB) —> Spec^ (A/P) is
dominant for a certain PeSpec^A, it follows that the image of g
contains a nonempty open subset in Spec^ (A/P). But if g is
dominant, we get that A/P —> B/PB is injective. So we may suppose
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that A is a domain and A £ B, all we have to show being that
/(SpeCp B) contains a nonempty open subset in Spec^ A. But /(Spec B)
contains a nonempty open subset in Spec A by [9, proof of 6. E]
and our statement follows from the general formula

/(Spec* B) = /(Spec B) n Spec,, A

and from the fact that Spec^A is dense in Spec A.
Now come back to the general case and suppose that B is

finitely generated over A as a differential algebra. It is sufficient
to prove that /(Spec^ B) is constructible. Applying [9, 6. C]
again, we reduce ourselves to the case A domain, A £ B and we
have to prove that the image of / contains a nonempty open set.
Suppose B = A{yί9 ••-,!/»}. Let ylf -yN be a maximal family of
differentially algebraically independent elements over A[8, p. 69]
and put C — A{ylf , yN). Since Spec^ A is a Noetherian topological
space and B is finitely generated over A as a differential algebra,
it follows from [8, Theorem 1, p. 126] that Spec^ B is also Noetherian
and hence by [8, Theorem 1, p. 14] every radical differential ideal
in B is a finite intersection of prime differential ideals. Consequently,
nil (B) = Px n Π Pr, Pi 6 Specp B for all i and so we get (0) =
nil (B) Π C = (Px Π C) Π (Pr Π C). Hence there exists an index i
such that the morphism C —> B/Pi is injective. Put zs = ys mod P,
for all j ^ N + 1. For any such j take a differential polynomial
[8, p. 70] Fj 6 C{Y}, F3- Φ 0, Fό(zά) = 0. Suppose that we have chosen
each i^ of minimum order % and of minimum degree in Y{nt\
Consider Sβ = dFJdY^ the separant of i^ [8, p. 75]. We have
Sj Φ 0 (because of the characteristic) and S${z?) Φ 0 by the minimality
of Fs. Put S = Πi=iv+i Sj(«i) which is a nonzero element in E — B/Pt.
We claim that E[l/S] is finitely generated as a C-algebra (in the
nondifferential sense). Indeed, if

Fj = Σ G w ( Γ ( " ί ' ) f t , GhJeC[Y, ¥',-•-, ¥<**-»]

we get

0 = {Ffa))' = Σ «?«(z,))W)* + ̂ .(Z,)φ +1)

A;

We get then by induction that for any q >̂ 0

«^ 6 C [ ^ + 1 , • f ^Λ, , s», , ^ , 1/S1 , ΛΓ = max nά
3

By the first part of our proof, the morphism

Spec,, (E[l/S]) > Spec,, C

is constructible and since it is dominant we get that its image
contains a principal open set D(H) £ Spec^ C with H Φ 0. Now if
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h is a nonzero coefficient of H it follows that D(h) £ Spec^ A is
contained in /(Spec^ ((B/P^l/S])) Q f(SpecD B) and the theorem is
proved.

4* Remarks on the differential affine space* For any Ritt
algebra A, let B = A{Yl9 •••, Yn] be the ring of differential poly-
nomials over A. The Ritt scheme A\ = Spec^i? will be called the
differential ^-affine space over A. For all a = (au , am) eNm and
for all FeB we shall write F{a) instead of Aαi * D^F. Order the
set of all indeterminates Y>} lexicographically [8, p. 75]. Then for
any FeB, the leader uF of F denotes the highest derivative Yτ

ίa)

present in F[8, p. 75].

LEMMA 4.1. Let A be Ritt domain, B = A{Yl9 •••, Yn] and
O^FeB. Then any element xe Γ(D(F), B) may be written as
x = HjG, H, G e B and uG <* uF.

Proof. Let K be the field of quotients of A. There exist
Fu - - , Fr, Gl9 - - , GreB such that Fe{(Glf , Gr)} and x = FJGt

for all i = 1, , r. Let H,GeB be such that x = iϊ/G and Jϊ, G
have no common prime divisor in the ring K{ Yl9 , Fn} which is
factorial. Since HGi = FtG for all i, it follows that G divides G,
in K{YU •••, yn} and so there exist gl9 ---,greA such that g^e
(G)B for all i. If g = Qlg2 ...gr, we have {((?)} 2 { ( ^ , , gGr)} =
{(&)} Π {(Gi, , Gr)} 3 gF. Now take a decomposition of G into prime
factors G = E£ JE7Λ

ίfc in the ring I Π ^ i , , ^ } Since gFe{E%),
we cannot have ^^^ < uE. because if we had such an inequality, gF
would be reduced with respect to E^S, p. 77] and hence gF would
be divisible by ^ [ 8 , p. 155] which is a contradiction. Hence uF =
ugF ^ uE%9 for all i — 1, , r and since uG — max {uE.9 1 ̂  i ^ r} we
get itF ̂  uβ.

THEOREM 4.2. Lei A be a Ritt domain. There is a natural
isomorphism

(A{YU •-., Yn})D = AD{Yu . . . , Γn}

Consequently, if A is closed, so is A{Yλ, , Fn}.

Proof. Both rings are subrings in field of quotients of B =
A{YU ->, Yn}. Obviously, AD{Ylf , Yn) £ 5^. Conversely, if x e
BD = Γ(Speci)jB, j?), Lemma 4.1 α? may be written as F/g with FeB
and gre A. Let us prove that F/g eAD{Yu •••, F J by induction on
the number of monomials in F. Take p e Spec^ A and put P — pB +
[Ylf - , Y"n] e Spec^ 5 . Since F/βf 6 B P we get that there exist
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W,HeB with 17(0, , 0) = wgp and FW = gH. Let fM =
fΐli,a(Yia))kia b e a monomial of minimum degree in F where feA.
Identifying the coefficients of M we get fw = gh with he A, hence
f/geAp. Since p runs through Spec^A it follows that f/geAD.
Hence fM/g eAD{Yu •••, ΓiJ. Applying the induction hypothesis to
(F-fM)/g we get t h a t (F - fM)/g e AD{Yl9 •••, Γn} and so F/ge

AD{YU ..-, Γn}.
Let if be a field of characteristic zero. A consequence of

Theorem 4.2 is the fact that the algebra K{Yl9 , Yn} is closed.
It is natural to look for its factorizations which remain closed.
Suppose the derivation operators are independent on K[8, p. 95] and
that K has an uncountable field of constants.

PROPOSITION 4.3. Let P be a differential prime ideal in
K{Ylf , Yn) such that the algebra K{Ylf , Yn}/P = A is cloesd. If
the field of quotients Q(A) is differentially algebraic over K, then
A is a field, algebraic extension of K.

Proof. Suppose there exists y eA which is transcendental over
K. Since y is differentially algebraic over K, there exists a
differential polynomial 0 Φ FeK{Z) such that F(y) = 0. Since the
derivation operators are independent on K, there exists by [8, p.
99] veK such that F(y) Φ 0. By Taylor's formula,

F(v + T) = F(v) + Σ (dF/dZ{a))(v)T{a) +
a

Put

G(T) = F(v) + (dF/dZ)(v)T + -

Since G is a nonzero polynomial in K[T], it has only a finite set of
roots (perhaps non) in the field of constants Ko of K. Consequently,
there is an uncountable set Ω £ Ko such that for every c e Ω we
have 2̂ (v + c) = G(c) Φ 0. Put z — y — v which is also transcendental
over K. Since F((z — c) + (v + c)) = 0 we get that for every ceΩ
the differential ideal generated by z — c in A is the whole ring A.
Consequently, for every ceΩ we have l/(s — cJeA^ = A. But the
family {l/(z — c), ce Ω} is uncountable and liniarly independent over
K, which contradicts the obvious fact that A is generated as a
vector space by a countable set. Consequently A is algebraic over
K, hence A is a field.

COROLLARY 4.4. If P is a nonzero differential prime ideal
prime ideal in K{Y}, then K{Y}/P cannot be closed unless it is a
field.
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For any topological space X, H*(X, ) will denote the derived
functors of Γ(X, ):Ab(X)->Ab, [3, p. 207]. The following result
shows that there is a great difference from the cohomological point
of view between schemes and Ritt schemes.

THEOREM 4.5. Let A be a Ritt domain, n ^ 1 and An

A the dif-
ferential n-affine space over A, {7 being its defining sheaf. Then
we have:

H\U,<!?)Φ0

for any nonempty open subset U of An

A.

Proof. Suppose H\U, 6?) = 0 where U = D(I), I being a nonzero
ideal in B = A{Ylt , Yn}. Replacing A{YU , Γn_J by A we may
suppose that n == 1 and put Y = Yλ. Choose Fel, FgA, uF = Γ(δ).
Let us also take a e Nm, a > 6 in the lexicographic order and take
ceNm, c Φ (0, , 0). Put 7/ = Y{a) — γ{a+c) and consider the exact
sequence of B-modules

0 >B-^B >B/yB = M >0

where w is the multiplication by y. This sequence induces an exact
sequence of B — ^-modules

0 > d7 > & > M >0

We get an exact sequence

Put F1 = Y{a) - 1 and F2 = Yia+C) - 1. Since F[c) - F2 = 1 we get
that JD(JPO U D(F2) - Spec,, B. Put

sx = Ϊ/F1 6 Jkf̂  s2 - Ϊ/F2 6 ilfF2

where for all x e B, x is the image of x in Λf. Since βj and s2 stick
together, we get a section seΓ(U, M). Since p is surjective there
exists teΓ(U, <?) such that pit) — s. By Lemma 4.1, we may write
t = W/JEZ" with T7, ί ί e S and uH £ uF. Since W/H and 1/^ have
the same image in any MP with PeD(F^) ί~]U = D(FJ), we get that
for any such P, there exist TP e B\P and GPeB such that

TP((Yia) - 1)TΓ- if) = GP(Yia) - Γ(α+C))

But Γ(α) - F ( α + C ) cannot divide the polynomial E = (Y{a) - Ϊ)W ~ H
because if it did, making in E the substitution Y{a) = Yia+C) = l w e
would get H — 0 (since H does not change under this substitution).
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Consequently, Y{a) - Γ(α+C) divides TP and so TPe[Y{a)] for any
PeD(FJ). Let / be the radical differential ideal generated by all
TP as P runs through D(FJ). Obviously we have FJ £ J and so

On the other hand Fx = F ( α ) - l£[Γ ( α ) ] and F £ [Γ(α)] because uF =
y(fc) and 6 < α. We have obtained a contradiction, because the ideal
[F ( α )] is prime.
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