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RITT SCHEMES AND TORSION THEORY

ALEXANDRU BuUIiUM

There is a natural way to associate a torsion theory to
any differential ring. Using this tool, one may prove that
there is a duality between the category of reduced affine
Ritt schemes and a full subcategory of the category of Ritt
algebras. As a consequence, a brief investigation is made
concerning morphisms of differential finite type and a
differential version of Chevalley’s constructibility theorem
is proved for such morphisms.

1. Introduction. The category Diff has as its objects commu-
tative rings A with unit together with m derivation operators
D, ---,D,: A— A which commute. A morphism f:(4, D, ---, D,) —
(4, D, ---, D,) in Diff is a ring homomorphism f: A — A with D,f =
fD, for every 7 =1, ---, m. Recall from [5, p. 110] that an LDR-
space is pair (X, @) where X is a topological space and & is a
sheaf in Diff on X such that for each P€ X the ring &, is local
and its maximal ideal is differential. A morphism of LDR-spaces
[ (X, &) — (Y, &%) is a pair (¢, §) where «: X — Y is continuous
and 0: &y — 4% is a morphism of sheaves in Diff on Y such that
for each Pe X, the morphism %y — %, p is local. The category
of LDR-spaces is denoted by LDR.

There exist two fundamental functors Spec,: Diff — LDR and
I'y: LDR — Diff defined such as follows: for any differential ring A,
the topological space Spec, A consists of the prime differential ideals
of A, the topology being induced by the natural inclusion j: Spec, A —
Spec A and the defining sheaf .., . being A= 47(A), where A i~s
the defining sheaf of the scheme Spec 4, [3, p. 70]. Note that A
(and consequently ﬁ) has a natural structure of sheaf in Diff. Indeed
the derivations D, ---, D, on A canonically give derivations
D -+, D, on A, for any PecSpec A; hence for any open set
U < Spec A, the ring I'(U, A) becomes a differential ring with deriva-
tions D,,, ---, D, defined such as follows: for any seI'(U, A),
D, ,(s) is the section defined by the family {D, »(sp)}pey. On the other
hand for any LDR-space X, I',(X) will denote the differential ring
of global sections I'(X, &%).

It was proved in [5] that at least in the case of a single deriva-
tion, the functors Spec, and I', give an adjunction between Diff and
LDR”. We shall prove in §2 that these functors give in fact an
equivalence between sufficiently large subecategories.

For the remainder of this paper we shall suppose that all rings
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contain the field of rationals Q. A differential ring which contains
Q will be called a Ritt algebra. If A is a Ritt algebra, an LDR-
space of the form Spec, A will be called an affine Ritt scheme. A
Ritt scheme will mean an LDR-space whice may be covered by affine
Ritt schemes.

The equivalence proved in §2 makes possible an investigation of
morphisms of differential finite type between affine Ritt schemes
which will be made in §3. In §4 we make some remarks on the
differential affine space.

The necessary information on rings and modules of quotients
may be found in [11]. We will use this technique in the following
context: given a commutative ring A and a subset X of Spec A, one
may associate to X an hereditary torsion class .7 = {MecMod 4,
M,=0 for any Pec X}, a Gabriel topology F={J idealin 4, A/Je 77} =
{J ideal in A, JZ P for any Pc X} and a left exact radical
t: Mod A — .77, t(M) = {xe M, ann(x)c F'}. For any MecMod A one
defines the module of quotients M, = li_r)n ser Hom (J, M/t(M)). Then

we have ker (p,: M — M) = t(M), coker (p,)e.7 and M, — (M;),
is an isomorphism. For any ideal I in A one defines the ideal I° =
{xe A, I: xe F'} and put C,(4) = {I ideal in A, I’ = I}. Now the set
F° = {J ideal in A,, J N AcF} is a Gabriel topology on A, and there
is a one-to-one correspondence between Cp(4) and C;.(A;) given by
I—1I, and J—J N A. This correspondence induces a one-to-one cor-
respondence between Spec AN Cr(4) and Spec A, N Cr:(A;7). Note
that for any Pe Spec A, we have Pe F or Pe C,(4).

2. Duality given by Spec, and I',. For any Ritt algebra 4
let &, F, and t, be the hereditary torsion class, the Gabriel
topology and the radical associated to the subset X = Spec, 4
of Spec A as in §1. Put A, = I', Spec, A.

ProposiTION 2.1. For any Ritt algebra A we have t,(A) =
ker (A — A,) and the canonical morphism A — Aft,(A) induces an
1somorphism of Ritt schemes Spec, A/t,(A) ~ Spec, A

Proof. Our first statement follows directly from definitions. To
prove the second statement, observe that for any x¢t,(A) and for
any PecSpec, A we have ann (x) £ P, hence £, A) is contained in
every PeSpec, A. We get that Spec, A/t,(A) — Spec, A is a homeo-
morphism. It is sufficient to prove that the morphisms induced on
the stalks are isomorphisms, i.e. that for any Pe Spec, 4 we have
A, = (A/t,(A)),. But this isomorphism holds since (¢,(A)), = 0 for
any PeSpec, A.
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REMARK. If A is a Ritt domain with field of quotients K and
U is an open subset of X = Spec, A, then the ring I'(U, &) is
equal to the intersection (taken in K) of all the local rings A, as
P runs through U.

COROLLARY 2.2. Let X be an affine Ritt scheme. The following
statements are equivalent:

(1) For any open subset U S X, the ring I'(U, &%) 1s reduced
(or imtegral).

(2) X 1is isomorphic to spec, A where A is a reduced (or
integral) Ritt algebra.

Proof. (1)=(2) If X = Spec, B, it follows by Proposition 2.1
that A = B/ty(B) is a subring of B, = I'(X, <7;), hence A is reduced
(or integral). By Proposition 2.1 again, we get that X is isomorphic
to Spec, A.

(2)= (1) If A is reduced then every local ring A, is reduced,
hence every I'(U, ¢’y) is reduced. If A is integral then I'(U, &7)
is integral by the remark above.

A Ritt scheme will be called reduced (or integral) if I'(U, ox)
is reduced (or integral) for any open subset U of X.

If A is a Ritt algebra then Spec, A is quasi-compact by [6]. If
J is an ideal in A4, then »(J), [J] and {J} will denote the radical
ideal, then differential ideal and the radical differential ideal respec-
tively, which are generated by J. By [8, p. 13], {J} is the inter-
section of all prime differential ideals which contain J and by [4,
Lemma 1.8] we have {J} = »([J]).

For any A-module M, put M = j~ (M) where j is the natural
inclusion Spec, A — Spec A and I is the sheaf on Spec A defined by
M [3, p. 110]. The stalk of M at PeSpec, A is M, =M®,A,.
There exists a natural morphism of A-modules 6,: M — M, =
I'(Spec, A, M). It is apparent that ker (p,: M—M,) = ker (6,;: M—Mp)=
t(M) where FF = F, and t = t,.

LEMMA 2.3. For every A-module M there exists a mnatural
injective morphism of A-modules ~r,: My, — M, such that @, =
0.

Proof. Take xe M,. Since coker (¢,)c v, it follows that for
every PeSpec, A there exist elements s, € A\P and x, € M such that
sp% = Py(p). Since @, (spry — sep) = 0 for every P, @ €Spec, A it
follows that x,/s, = x,/s, in every M, with R € Spec, A, hence the
elements x,/s, € M,, stick together and define a global section s € M,,.
It is apparent that s depends only on z and so we put o, (z) = s.
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~ry 18 injective because the condition s = 0 implies that for any Pc
Spec, A there exists u,e A\P such that u,x, = 0. It follows that
upspx = 0 for any P e Spee, A, hence x ¢ t(M,) = 0.

For any A-module M, Ass (M) will denote the set of all primes
P in A for which there exists e M such that P is minimal among
the prime ideals containing ann (x).

LEMMA 2.4. Suppose that Ass (M) Spec, A. Then @,: M— M,
1s injective and o+, My — M, is bijective.

Proof. Since Ass (M) < Spec, (A) it follows that for every xe M
we have {ann (x)} = »(ann (x)). For the first assertion of the lemma
it is sufficient to prove that ¢(M) = 0. If xei(M), for every Pe
Spec, A there exists s, A\P such that s,cann (x). Since the
differential ideal generated by these s, as P runs through Spec, 4
is equal to A, it follows that 1€ {ann (x)} = »(ann (x)), hence x = 0.
To prove the second assertion it is sufficient to show that +, is
surjective. Take se M,. By quasi-compacity of Spec, A there exist
fi, o, freA and 2, ---, x,€ M such that {(f, ---, fi)} = 4 and the
restriction of s at D(f,) = {PeSpec, A, f,¢& P} is given by x,/f; € M;,.
Since x,/f; = wx;/f; in any M, with Pe D(f,f;) it follows that for any
such P there exists s,;» € A\P with s,;» €ann (f;z; — f;x;). Obviously,
for a fixed pair (i, 7) the element f,f; is contained in the radical
differential ideal generated by all the s,;, as P runs through D(f,f;),
hence f,f; € {ann (fix; — fyx,)} = r(@ann (fir; — f;2,)). So there exists a
common N such that (f.f;)"(fix; — f#;) =0 for all © and 5. Re-
placing x,/f; by x,fY/fF* we may suppose N = 0. Consider the

morphisms of A-modules u: A* ->J = flA + --- + f,A and v: A* > M
sending the elements of a basis of A* into f, ---, f; and z, ---, x,
respectively. Notice that wv(ker (u)) S ¢(M). Indeed if we have
a, ---,a,€A such that >  a,f; =0 we get that

(S e) = Safa; =0

for all j, hence X%, a,x,€t(M). So v induces a morphism of A-
modules ¥ € Hom (J, M/t(M)). Since JeF we may consider the
image of ¥ in M, = lim € F Hom (I, M/t(M)) and denote it by .

It is apparent that q,'p,,(_x) = 8.

LEMMA 2.5. Suppose A satisfies one of the conditions:
(1) A is reduced
(2) A is Noetherian

Then Ass (A) S Spec, A.
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Proof. Suppose first that A is reduced and take Pe Ass(A4).
Since PA,c Ass(A,) we may suppose that A is P-local. Since P is
minimal among the primes which contain ann (x) for a certain x4,
it follows that P = »(ann (x)). On the other hand since the ideal
(0) is radical and differential, so is (0): () [4, Lemma 1.4] hence P
is differential.

If A is supposed to be Noetherian, our statement follows for
instance from [10].

We say that a Ritt algebra A is closed if the morphism
0y A-—A, is an isomorphism. Every local Ritt algebra whose
maximal ideal is differential is closed by [7, Proposition 3.3]. The
following result shows that any ring of global sections of a reduced
affine Ritt scheme is closed. In §4 we will also show that an
algebra of differential polynomials over a closed Ritt domain is
closed.

THEOREM 2.6. Let A be a Ritt algebra such that Ass(4) &
Spec, A. Then the morphism 0. A-— A, 1s injective and induces
an isomorphism of Ritt schemes Spec, A, — Spec, A. Consequently,
A, s closed.

Proof. By Lemma 2.3, +,: Ap — A, is an isomorphism, hence it
is sufficient to prove that Spec, @, is an isomorphism of Ritt schemes.
Let us prove first that Spec, @, is a homeomorphism between the
underlying topologycal spaces. Since Spec, AN F = ¢ we get that
Spec, A € C,(A). Applying this remark to the ring B = A, we get
that Spec, B< Cy,(B). On the other hand we see that F* < F,.
Indeed if JeF° then J cannot be contained in any P& Spec,B
because if we had J S P for such a P, we would get JNAZ PN
AeSpec, A which is a contradiction. Hence C, (B) < C(B) and
finally we deduce that Spec, B < C,.(B). Let us also observe that
for any PeSpec, A we have P,cSpec, B. Indeed there exists a

canonical morphism of A-algebras A, LA A, and since PA, e Spec, A,
it follow that P = PA,N A,eSpec, A, S Cpe(A,;). Since PN A=
P.N A =P, by the one-to-one correspondence between C,(4) and
Cy(A;) we get P, = P, hence P,cSpec, A,. We may conclude that
the one-to-one correspondence between Spec A N Cr(A) and Spec 4, N
Cr(A;) induces one-to-one correspondence between Spec, A and

Spe;bcD Ay. One knows that O+— O N A is continuous. To prove that
P P, is continuous, take y e A, and calculate 2=(D(y)) where D(y)
is the principal open subset of Spec, A, defined by y. There exist

fi -, fueA and g, ---,y.€A such that {(f,, ---,/)} =4 and
?,(f)y = p,(y,) for every i. Then we have
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BDW) = U b D@ foy) = U D)

which is an open set in Spec, A.
Now we only have to prove that Spec, ¢, gives an isomorphism
on each stalk, i.e. that for every PecSpec, A we have A, = (4,),,.
We have the commutative diagram:
B

A -5 4, 2 4,

(I

B8

Ap — (AF)PF —_— (AP)PAP

where @ = @, and Ba is the identity of A,. It is sufficient to prove
that /3 is injective. Suppose we have y € (4,),, with S(y) = 0. After
multiplying y with a unit in (4;),, we may suppose y = v(x) with
xe€Ap. Since coker (o) €., it follows that there exist se A\P and
a € A such that a(s)z = a(a). Applying By to this equality we get
d(a) = 0, hence there exists u € A\P such that uwa = 0. We get that
a(us)x = 0 and since a(us) ¢ P, we get y = 0.

COROLLARY 2.7. The functors Spec,and [I', give a duality
between the category RA of reduced affine Ritt schemes and the
category RC of reduced closed Ritt algebras. Consequently, the
category RC is a coreflective subcategory of the category R of reduced
Ritt algebras.

Proof. The Corollary is a consequence of Lemma 2.5 and
Theorem 2.6.

REMARK. Our Theorem 2.6 may be stated in more general terms.
If in the definition of the category LDR we forget the condition
“maximal ideals in the stalks of ¢ are differential”’, we get, by [5],
the category of differential local ringed spaces which is denoted by
Diffloc. There are two standard functors Spec: Diff — Diff loc and
I': Diff loc — Diff, where Spec A, as topological space, is the set of
all prime ideals of A with the Zariski topology, A being any
differential ring. Suppose we have another functor S: Diff — Diff loc
which satisfies the follows:

1) There exists a functorial morphism j: S — Spec such that for
any differential ring A, the morphism j,: S(4) — Spec A4 is an inclusion
of sets, the topology and the defining sheaf on S(A) being obtained
by inverse image from the structures of Spec A.

2) For any differential ring A and for any PeS(A) we have
PA, e S(A,).
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Notice that the functor Spec, in arbitrary characteristic satisfies
these axioms. The functor Spec, considered in [7] satisfies them too.
It is easy to see that our method leads in fact to the following
result:

THEOREM 2.8. If A is a differential ring such that S(A) is
quasi-compact and Ass (A) S S(A), then the morphism A — ['S(A) is
injective and induces an isomorphism SI'S(A) — S(A).

3. Morphisms of differential finite type. We say that a
morphism f: X — Y of affine Ritt schemes is of differential finite type
if there exists a morphism of Ritt algebras u: A — B with B finitely
generated over A as a differential algebra [8, p. 59] and there exist
isomorphisms X = Spec, B, Y = Spec, A such that Spec, » induces f
via these isomorphisms. If b, ---, b, generate B as an A-differential
algebra we use the notation B = A{b, ---,b}. A morphism of Ritt
schemes f: X — Y is called dominant if f(X) is a dense subset in
Y. One may easily check that given a morphism of Ritt algebras
u: A — B, then Spec,u: Spec, B — Spec, A is dominant if and only
if ker (w) S nil (4).

LeEmMMA 3.1. If u: A— B is an injective morphism of reduced
Ritt algebras, then the morphism u,: A, — By 18 also imjective.

Proof. Since w is injective, it follows that the morphism
Spec, B— Spec, A is dominant. By Theorem 2.6 we get that the
morphism Spec, B, — Spee, A, is dominant, hence ker (u,) &
nil (4,) =0

LEMMA 3.2. Let f: X — Y be a morphism of reduced affine Ritt
schemes. Put A=I(Y,%) and B=I(X,7%). Then f 1is of
differential finite type if and only if there exists a differential sub-
A-Algebra C of B such that C is finitely gemerated over A as a
differential algebra and C, = B.

Proof. By Corollary 2.2 we have Y = Spec, 4, where A4, is
reduced. By Theorem 2.6 we get that Speec, A, = Spec, (4), =
Spec, A, hence Y = Spec, A. In the same way we get X = Spec, B.
If we suppose there exists an algebra C as in the statement of our
lemma, then by Theorem 2.6 we get that Spec, C = Spec, B and so
f is of differential finite type. Conversely, suppose that f is of
differential finite type. Let u: A — B be a morphism of Ritt algebras
such that B is finitely generated over A as a differential algebra
and suppose there exist isomorphisms Y = Spec, A, X = Spec, B
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such that f is given by Spec,u via these isomorphisms. Since
tz(A) < t5(B), by Proposition 2.1 we may replace A and B by A/t:(A)
and B/tz(B) which are reduced being subrings in A, = A and B, = B
respectively. Hence we may suppose that A and B are reduced. If
u, denotes the morphism A — B, put C = u,(A)[B] < B. Applying
Lemma 8.1 to BCCZ B we get B=RB,<C, < B, hence C, = B.
Since C is finitely generated over A as a differential algebra, the
lemma is proved.

THEOREM 3.3. If X EX YL Z are morphisms of differential

finite type between reduced affine Ritt schemes, them gf is also of
differential finite type.

Proof. Put A=1Z, ¢y, B=I(Y,cy), C=IX, %). By
Lemma 3.2 there exist morphisms A YSECB= E, and B LA G <
C = G, where E and G are finitely generated over A and B respec-
tively, as differential algebras. Put T = b(&){x, ---, 2} & C, where
%, - -, %, generate G over B as a differential algebra. Applying the
functor I',Spec, to F—->T < C we get by Lemma 3.1 B=E,—
T,< C, = C, hence T, contains the ring b(B) and the elements
2, -+-, %, Consequently 7', contains G and so applying again Lemma
31 to GET,SC we get C=G, & T, < C hence T, =C. Since
T is finitely generated over A as a differential algebra, we may
apply Lemma 3.2 and we get that gf is of differential finite type.

Now we prove the following differential version of Chevalley’s
constructibility theorem:

THEOREM 3.4 Let XLY be o morphism of differential finite
type between ordinary affine Ritt schemes (“ordinary” means there
is a single derivation). Suppose that Y has a Noetherian underlying
topological space. Then f is constructible.

Proof. Suppose that f = Spec, u where u is a morphism of Ritt
algebras A — B such that B is finitely generated over A as a dif-
ferential algebra.

Suppose for the beginning that B is finitely generated over A
as an algebra (in the nondifferential sense!). It is sufficient to prove
that f(Spec, B) is constructible. Since Spec, A is a Noetherian
topological space, it is sufficient, applying classical criterion [9, 6. C],
to prove that whenever the morphism Spec, (B/PB) LR Spec, (A/P) is
dominant for a certain PeSpec, A, it follows that the image of ¢
contains a nonempty open subset in Spec,(A/P). But if g is
dominant, we get that A/P — B/PB is injective. So we may suppose
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that A is a domain and A S B, all we have to show being that
f(Spec, B) contains a nonempty open subset in Spec, A. But f(Spec B)
contains a nonempty open subset in Spec A by [9, proof of 6. E]
and our statement follows from the general formula

f(Spec,, B) = f(Spec B) N Spec, A

and from the fact that Spec, A is dense in Spec A.

Now come back to the general case and suppose that B is
finitely generated over A as a differential algebra. It is sufficient
to prove that f(Spec, B) is constructible. Applying [9, 6. C]
again, we reduce ourselves to the case A domain, A £ B and we
have to prove that the image of f contains a nonempty open set.
Suppose B = A{y,, ---, ¥.}. Let ¥, ---yy be a maximal family of
differentially algebraically independent elements over A[8, p. 69]
and put C = A{y, ---, ¥5}. Since Spec, A is a Noetherian topological
space and B is finitely generated over A as a differential algebra,
it follows from [8, Theorem 1, p. 126] that Spec, B is also Noetherian
and hence by [8, Theorem 1, p. 14] every radical differential ideal
in B is a finite intersection of prime differential ideals. Consequently,
nil(B)=P,N---NP, P,ecSpec, B for all ¢+ and so we get (0) =
nil(B)NC=P,NnC)N ---(P,NC). Hence there exists an index ¢
such that the morphism C — B/P, is injective. Put z; = y; mod P,
for all j= N+ 1. For any such j take a differential polynomial
[8, p. T0] F,eC{Y}, F; +# 0, F,(2;) = 0. Suppose that we have chosen
each F; of minimum order #, and of minimum degree in Y9,
Consider S; = 0F;/0Y ™" the separant of F; [8, p. 75]. We have
S; # 0 (because of the characteristic) and S;(z;) # 0 by the minimality
of F;. Put S = [[7-».1S;(z;) which is a nonzero element in £ = B/P,.
We claim that E[1/S] is finitely generated as a C-algebra (in the
nondifferential sense). Indeed, if

F; = Zk, G (Y )k G;eClY, Y, .-, Y]
we get
0= (Fyz)) = Zk, (Gs(27) (25"")° + Si(2;)=5" ™
We get then by induction that for any ¢ = 0
€ ClRyayy w vy Yy ey Ry oo, 2D, 1/S], M = maxn;
By the first part of our proof, the morphism J
Spee, (E[1/S]) —— Spec, C

is constructible and since it is dominant we get that its image
contains a principal open set D(H) < Spec, C with H = 0. Now if



290 ALEXANDRU BUIUM

h is a nonzero coefficient of H it follows that D(h) < Spec, A is
contained in f(Spec, (B/P)[1/S])) < f(Spec, B) and the theorem is
proved.

4. Remarks on the differential affine space. For any Ritt
algebra A, let B= A{Y, ---, Y,} be the ring of differential poly-
nomials over A. The Ritt scheme A" = Spec, B will be called the
differential n-affine space over A. For all a = (a,, -+, a,) € N™ and
for all F ¢ B we shall write F*“ instead of D -.- Di=F. Order the
set of all indeterminates Y/* lexicographically [8, p. 75]. Then for
any F'e B, the leader u, of F denotes the highest derivative Y,“
present in F'[8, p. T5].

LEvMmaA 4.1. Let A be Ritt domain, §:A{Y1, <o, Y} and
0% FeB. Then any eclement x€'(D(F), B) may be written as
x=H|/G, H GeB and uw; < up

Proof. Let K be the field of quotients of A. There exist
F,.---F,G,---,G,eB such that Fe{G, ---,G,)} and =z = F,/G,
for al ¢ =1, ..., ». Let H,Ge B be such that x = H/G and H, G

have no common prime divisor in the ring K{Y, ---, Y,} which is
factorial. Since HG, = F,G for all ¢, it follows that G divides G,
in K{Y,, ---, Y.} and so there exist ¢, ---, g.€ A such that ¢,G;¢

(G)B for all 4. If g = g,9.---g,, we have {(®} 2 {(9G,, ---, 9G,)} =
{9y n{@G, ---, G)}agF. Now take a decomposition of G into prime
factors G = Ef+ --- Ej* in the ring K{Y,, ---, Y,}. Since gFe{E},
we cannot have u,, < u,, because if we had such an inequality, gF
would be reduced with respect to E,[8, p. 77] and hence gF would
be divisible by FE,[8, p. 155] which is a contradiction. Hence u, =
gy = Uy, for all 4 =1, --- 7 and since u, = max {u,, 1 <1 < 7} we
get Uy, = ug.

THEOREM 4.2. Let A be a Ritt domain. There is a wnatural
180MOrPhism

(A{Yly ) Yn})D = AD{Yly Ty Yn}
Consequently, if A is closed, so is A{Y,, ---, Y,}.

Proof. Both rings are subrings in field of quotients of B =
A{Y, ---, Y,}. Obviously, A,{Y,, ---, Y.} £ B,. Conversely, if z¢
B, = I'(Spec,, B, B), Lemma 4.1 © may be written as F/g with FeB
and ge A. Let us prove that Flge A,{Y,, ---, Y,} by induction on
the number of monomials in F. Take p e Spec, A and put P = pB +
[Y, ---, Y,]€Spec, B. Since F/ge B, we get that there exist
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W,HeB with WO, ---,00)=we¢p and FW=gH. Let fM=
fILi. (YY) be a monomial of minimum degree in F where fe A.
Identifying the coefficients of M we get fw = gh with he A, hence
flgeA,. Since p runs through Spec, A it follows that f/geA,.

Hence fM/ge A, {Y,, ---, Y,}. Applying the induction hypothesis to
(F — fM)/g we get that (F — fM)/ge A, {Y,, ---, Y.} and so F/ge
AD{YI’ Tty Yn}'

Let K be a field of characteristic zero. A consequence of
Theorem 4.2 is the fact that the algebra K{Y,, --., Y,} is closed.
It is natural to look for its factorizations which remain closed.
Suppose the derivation operators are independent on K[8, p. 95] and
that K has an uncountable field of constants.

PrOPOSITION 4.3. Let P be a differential prime ideal in
K{Y,, ---,Y,} such that the algebra K{Y,, ---,Y,}/P = A is cloesd. If
the field of quotients Q(A) is differentially algebraic over K, then
A is a field, algebraic extension of K.

Proof. Suppose there exists y € A which is transcendental over
K. Since y is differentially algebraic over K, there exists a
differential polynomial 0 = F' € K{Z} such that F(y) = 0. Since the
derivation operators are independent on K, there exists by [8, p.
99] v € K such that F(v) = 0. By Taylor’s formula,

Fv + T) = F) + > (0FZ)v)T + ---

Put
G(T) = F(v) + GFOZ))T + ---

Since G is a nonzero polynomial in K[T], it has only a finite set of
roots (perhaps non) in the field of constants K, of K. Consequently,
there is an uncountable set 2 £ K, such that for every ce Q2 we
have Fi(v + ¢) = G(¢) # 0. Put z = y — v which is also transcendental
over K. Since F((z —¢) + (v + ¢)) = 0 we get that for every ce
the differential ideal generated by z — ¢ in A is the whole ring A.
Consequently, for every ce 2 we have 1/(z —c¢)e A, = A. But the
family {1/(z — ¢), ce 2} is uncountable and liniarly independent over
K, which contradicts the obvious fact that A is generated as a
vector space by a countable set. Consequently A is algebraic over
K, hence A is a field.

COROLLARY 4.4. If P 1is a nonzero differential prime ideal
prime tdeal in K{Y}, then K{Y}/P cannot be closed unless it is a
field.
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For any topological space X, H*(X, ) will denote the derived
functors of I'(X, ): Ab(X)— Ab, [3, p. 207]. The following result
shows that there is a great difference from the cohomological point
of view between schemes and Ritt schemes.

THEOREM 4.5. Let A be a Ritt domain, n =1 and A% the dif-
ferential n-affine space over A, 7 being its defining sheaf. Then
we have:

HYU, 7))+ 0
for any nonempty open subset U of A7.

Proof. Suppose H*(U, ¢#) = 0 where U = D(I), I being a nonzero
ideal in B = A{Y,, ---, Y,}. Replacing A{Y,, ---, Y,_,} by A we may
suppose that » = 1 and put Y = Y,. Choose Fel, F¢A, u, =Y.
Let us also take ae N™, a > b in the lexicographic order and take
ceN™ ¢+#(0,---,0). Put y =Y — Y and consider the exact
sequence of B-modules

w

0—>B-".B— > B/yB=M—0

where w is the multiplication by y. This sequence induces an exact
sequence of B = ¢-modules

0 i o M 0

We get an exact sequence

U, &) -2 rw, ) —s H(U, &) =0

Put F;, =Y“ —1 and F,= Y*“" — 1. Since F{" — F,=1 we get
that D(F,) U D(F,) = Spec, B. Put

s, = 1/F, € My, s, = 1/F,e M,,

where for all xe€ B, T is the image of x in M. Since s, and s, stick
together, we get a section se I'(U, M). Since p is surjective there
exists t e I'(U, ) such that p(¢{) =s. By Lemma 4.1, we may write
t=W/H with W, HeB and u; < uy. Since W/H and 1/F, have
the same image in any M, with Pe D(F,) N U = D(F,I), we get that
for any such P, there exist T,< B\P and G,¢€ B such that

TP((Y(G) - l)W - _H) = GP<Y(a) — Y(a+c))

But Y — Y“*9 cannot divide the polynomial £ = (Y — L)W — H
because if it did, making in E the substitution Y = Y+ =1 we
would get H = 0 (since H does not change under this substitution).
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Consequently, Y — Y©“** divides T, and so T,e€[Y ] for any
Pe D(F\I). Let J be the radical differential ideal generated by all
T, as P runs through D(F,I). Obviously we have F.I < J and so

FFe[Y™]

On the other hand F, = Y™ — 1¢[Y“] and F¢[Y“] because u, =
Y% and b < a. We have obtained a contradiction, because the ideal
[Y*] is prime.
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