BARYCENTRIC SIMPLICIAL SUBDIVISION OF INFINITE DIMENSIONAL SIMPLEXES
 AND OCTAHEDRA

Thomas E. Armstrong

Abstract

A K-simplex is a convex set affinely homeomorphic to the positive face of the unit ball of a Kakutani L-space and an octahedron is a convex set affinely homeomorphic to the entire unit ball. It is shown how to barycentrically subdivide K-simplexes and octahedra so that the K-simplexes in the subdivision are affinely homeomorphic to the simplexes of probability measures on closed subsets of $(0, \infty)$ with the weak topology. As a consequence, for any closed subset C of ($0, \infty$), an apparently new complete metric for the weak topology on $\mathscr{M}_{1}^{+}(C)$ is given.

1. Introduction. In [2] it was shown how to barycentrically subdivide the unit cube \square of the infinite dimensional space $L^{\infty}(X, \Sigma, \mu)$ where (X, Σ, μ) is a positive localizable measure space. The elements of the subdivision were Bauer simplexes (under any locally convex topology on $L^{\infty}(X, \Sigma, \mu)$ between $\sigma\left(L^{\infty}, L^{1}\right)$ and the Mackey topology $\left.\tau\left(L^{\infty}, L^{1}\right)\right)$. The extreme points, or zero-skeleton, of the subdivision were the centers of the centrally symmetric or $\sigma\left(L^{\infty}, L^{1}\right)$ closed faces of \square. The $\sigma\left(L^{\infty}, L^{1}\right)$ closed faces of \square were ordered by inclusion, hence so were their centers. The Bauer simplexes of the subdivision were the closed convex hulls of maximal chains of centers (which chains are compact in the order topology which agrees with $\sigma\left(L^{\infty}, L^{1}\right)$ or $\tau\left(L^{\infty}, L^{1}\right)$). The restriction to the positive unit cube \square^{+}of this subdivision is a Bauer simplicial subdivision of \square^{+}whose various reflections yield the barycentric subdivision of \square. The extreme points of a subdivision simplex in \square^{+}are of the form $\left\{\chi_{A}: A \in C\right\}$ where C is a maximal chain in the measure algebra Σ_{μ} (which is the quotient of Σ modulo μ negligible sets). The $\sigma\left(L^{\infty}, L^{1}\right)$ closed convex hull S_{C} of $\left\{\chi_{A}: A \in C\right\}$ was shown to be affinely homeomorphic to $\mathscr{M}_{1}^{+}(C)$ the Radon probability measures on the compact C by showing that S_{C} is the set of $f \in \square^{+}$with $\{f \geqq t\} \in C$ for all $0<t \leqq\|f\|_{\infty}$. This was shown to be in affine correspondence with the convex set $\mathscr{D}(C)$ of distribution functions on C which in turn is affinely isomorphic to isomorphic to $\mathscr{M}_{1}^{+}(C)$.

Here we are concerned with barycentric subdivision in the dual (or rather predual) setting. We wish to barycentricically subdivide the unit octahedron \diamond of $L^{1}(X, \Sigma, \mu)$ which is the unit ball. This will be done by barycentrically subdividing the positive unit ball
\diamond^{+}and reflecting. The subdivision of \diamond^{+}will be obtained by subdividing the positive face Δ of \diamond^{+}in a barycentric fashion and extending to \diamond^{+}by taking the cone of this subdivision with 0 as vertex using the fact that $\diamond^{+}=\operatorname{conv}(0, \Delta)$. Δ in general has no extreme points and is non-compact. There are no symmetric faces and faces compact under most topologies tend to be high in codimension. The natural class of faces to consider are the norm closed faces of J which are the same as the $\sigma\left(L^{1}, L^{\infty}\right)$ closed faces of Δ or the split faces of Δ, (which are the faces F so that there is a unique disjoint face F^{\prime} with $\Delta=\operatorname{conv}\left(F \cup F^{\prime}\right)$, [0], [3], [4]), or the σ-convex faces, [3], [4]. The norm closed faces are in 1-1 correspondence with the elements A of Σ_{μ}. If $g \in L^{1}(X, \Sigma, \mu)$ then S_{g} denotes $\{g \neq 0\}, S_{g}^{+}=$ $\{g>0\}$ and $S_{g}^{-}=\{g<0\}$. If F is a norm closed face of Δ then the $A_{F} \in \Sigma_{/}$corresponding to it is $\cup\left\{S_{g}: g \in F\right\}$ where \cup denotes supremum in Σ_{μ}. If $g \in L^{1+}(X, \Sigma, \mu)$ then $F_{g}=F_{S_{g}}$ is the smallest norm closed face of Δ containing g. When F is a norm closed face of the form F_{g} for some $g \in \Delta$ then we say that g is a barycenter of F. If F is a norm closed face of Δ we denote by $\mathscr{S}_{\mathscr{P}}^{\mathscr{P}_{F}}$ the ensemble of split faces of F. We denote $\mathscr{S P}_{\mathscr{P}}^{\Delta}$ by $\mathscr{S P P}$ and $\mathscr{S}_{\mathscr{P}}^{P_{F g}}$ by $\mathscr{S} \cdot \mathscr{P}_{g}$ for any $g \in \Delta$. Each ${\mathscr{P}: \mathscr{P}_{F} \text { is a hyperstonean Boolean algebra isomorphic with }}_{\text {. }}$ the hyperstonean Boolean algebra $\left\{A \in \Sigma_{\mu}: A \subset A_{F}\right\}$ with supremum A_{F}, [3]. An $F \in . \mathscr{P} \mathscr{P}$ has a barycenter iff $\mathscr{C}_{P} \mathscr{P}_{F}$ satisfies the countable chain condition for Boolean algebras. Δ has a barycenter iff (X, Σ, μ) is σ-finite iff $X=S_{g}$ for some $g \in \Delta$.

Any Δ which is the positive face of the unit ball of a Kakutani L-space is affinely isometric with the positive face Δ of the unit ball of $L^{1}(X, \Sigma, \mu)$ for some positive localizable measure space (X, Σ, μ). All Choquet simplexes are of this form. We shall call such $\triangle K$ simplexes. Any norm closed face of a K-simplex is a K-simplex. Any K-simplex considered as Δ of $L^{1}(X, \Sigma, \mu)$ is a norm closed face of the positive face of the unit ball of the L-space $L^{\infty *}(X, \Sigma, \mu)$ when $L^{1}(X, \Sigma, \mu)$ is regarded as a subset of $L^{\infty *}(X, \Sigma, \mu) . \quad L^{\infty}(X, \Sigma, \mu)$ is Banach lattice isomorphic to $\mathscr{C}\left(Z_{\mu}\right)$, where Z_{μ} is the Stone space of the measure algebra Σ_{μ}, and $L^{\infty *}(X, \Sigma, \mu)$ is isomorphic to $\mathscr{M}\left(Z_{\mu}\right)$. Hence, any K-simplex is isometric with a norm closed face of a Bauer simplex. One particular K-simplex is the space $\mathscr{I}_{1}^{+}(Y)$ of Radon probabilities on a locally compact space Y which is isometric with the norm closed face of $\cdot \mathscr{C}_{1}^{+}(Y \cup\{\infty\}$) (Radon probabilities on the one point compactification $Y \cup\{\infty\}$ of Y) of probabilities assigning measure 0 to ∞. Our simplicial subdivisions will turn out to have as elements K-simplexes affinely isomorphic to . $\mathscr{H}_{1}^{+}(Y)$ for certain locally compact metric spaces Y.
2. The σ-finite case. Let (X, Σ, μ) be a σ-finite positive measure
space. Let $g \in \Delta$ have $S_{g}=X$ so $\Delta=F_{g}$. Let Chain $\left(\Sigma_{\mu}\right)$ denote all chains in $\Sigma_{\mu} \backslash\{\varnothing\}, C$-Chain $\left(\Sigma_{\mu}\right)$ denote all complete chains in $\Sigma_{\mu} \backslash\{\varnothing\}$ and M-Chain $\left(\Sigma_{\mu}\right)$ all maximal chains in $\Sigma_{\mu} \backslash\{\varnothing\}$. If $A \in \Sigma_{\mu} \backslash\{\varnothing\}$ let $g \chi_{A}\left[\int_{A} g d \mu\right]^{-1}=g^{A}$ and let $\mu(g, A)=\int_{A} g d \mu$. For any $C \in \operatorname{Chain}\left(\Sigma_{k}\right)$ let $C(g)=\left\{g^{A}: A \in C\right\}$. For $C \in$ Chain $\left(\Sigma_{\mu}\right)$ let $S(C, g)$ denote the norm closed convex hull of $C(g)$. Let \mathscr{S}_{g} denote $\left\{S(C, g): C \in M\right.$-Chain ($\left.\left.\Sigma_{\mu}\right)\right\}$.

Lemma 2.1. Let $C \in \operatorname{Chain}\left(\Sigma_{\mu}\right)$.
(a) The mapping $A \rightarrow g^{4}$ is a homeomorphism from C with the order topology into Δ with the norm topology or any coarser Hausdorff topology.
(b) The mapping $A \rightarrow \mu(g, A)$ is a homeomorphism from C into $(0,1]$.
(c) C is compact iff it is in C-Chain $\left(\Sigma_{\mu}\right)$ and $\inf (C) \neq \varnothing$.

Proof. It suffices to consider only $C \in C$-Chain (Σ_{μ}). (b) is immediate since $(0,1]$ has its order topology. (c) is also immediate. To establish (a) one notes that $A \rightarrow g^{4}$ is an order continuous injection on any chain C into Δ with the norm topology. If C is compact this map is a homeomorphism. Since any complete chain C is locally compact with every compact subset is contained in a compact subchain of the form $C_{A_{0}}=\left\{A \in C: A_{0} \subset A\right\}$ for some $A_{0} \in C$ the mapping must be a homeomorphism on any $C \in C$-Chain (Σ_{μ}).

Lemma 2.2. Let C be in Chain $\left(\Sigma_{\mu}\right)$ and let \bar{C} be its closure in $\Sigma_{\mu} \backslash\{\varnothing\}$.
(a) $S(C, g)=S(\bar{C}, g)$.
(b) The extreme points of $S(C, g), \xi(S(C, g))$, form a subset of $\bar{C}(g)$.
(c) If C is compact then $S(C, g)$ is a norm compact subset of Δ.

Proof. Immediate.
For $h \in L^{1+}(X, \Sigma, \mu)$ let $C(g, h) \in C$-Chain $\left(\Sigma_{\mu}\right)$ denote the complete chain generated by $\{h / g \geqq t\}$ as t varies over $\left[0,\|h / g\|_{\infty}\right)$. If $C \in$ Chain $\left(\Sigma_{\mu}\right)$ let $\widetilde{S}(C, g)$ denote those $h \in \Delta$ with $C(g, h) \subset C$. Of course $\widetilde{S}(C, g) \neq \varnothing$ iff $X \in C$ iff C is an intersection of chains in M-Chain $\left(\Sigma_{\mu}\right)$. For any $C \in C$-Chain $\left(\Sigma_{\mu}\right), \widetilde{S}(C, g)$ is a base for cone $(0, \widetilde{S}(C, g))=$ $\left\{h \in L^{1+}(X, \Sigma, \mu): C(g, h) \subset C\right\}$. For $C \in C$-Chain $\left(\Sigma_{\mu}\right)$ cone $(0, \widetilde{S}(C, g))$ is closed under taking arbitrary norm bounded infima and suprema and under almost sure sequential convergence. Thus, $\widetilde{S}(C, g)$ is closed under almost sure sequential convergence in Δ hence is norm closed. Any element h of $\operatorname{conv}\left(g^{A}: A \in C\right)$ is easily verified to lie in $\widetilde{S}(C, g)$ hence $S(C, g) \subset \widetilde{S}(C, g)$. On the other hand any $h \in$ cone ($0, \widetilde{S}(C, g))$ is an increasing limit of positive linear combinations $\sum_{i=1}^{n} \lambda_{i} g^{A_{i}}$ hence
any h in $\widetilde{S}(C, g)$ is a limit, in norm, of a sequence from conv $\left(g^{A}\right.$: $A \in C)$. Thus, $\widetilde{S}(C, g) \subset S(C, g)$.

Lemma 2.3. (a) If $C \in C$-Chain $\left(\Sigma_{\mu}\right)$ then $\widetilde{S}(C, g)=S(C, g)$.
(b) $C \in C$-Chain $\left(\Sigma_{\mu}\right)$ is a compact chain iff $\|h / g\|_{\infty}<\infty$ for all $h \in S(C, g)$.

Proof. (a) has been established.
(b) C is compact iff $\mu\left(g, A_{0}\right)>0$ where $A_{0}=\inf (C)$.

In this case $\left\|g^{\Lambda} / g\right\|_{\infty}=\left\|\left(g \chi_{A} / g\right)(\mu(g, A))^{-1}\right\|_{\infty}=\mu(g, A)^{-1} \leqq \mu\left(g, A_{0}\right)^{-1}$. As a result $\|h / g\|_{\infty} \leqq \mu\left(g, A_{0}\right)^{-1}$ for all $h \in \operatorname{conv}\left\{g^{A}: A \in C\right\}$. By continuity, $\|h / g\|_{\infty} \leqq \mu\left(g, A_{0}\right)^{-1}$ for all $h \in S(C, g)$. Conversely, if $\mu\left(g, A_{0}\right)=0$ then $\left\|g^{4} / g\right\|_{\infty} \rightarrow \infty$ as A decreases in C. Choose a decreasing sequence $\left\{A_{i}\right\}$ in C with $0<\mu\left(g, A_{i}\right) \leqq 2^{-2 i}$ for all i. Set $h=\sum_{i=1}^{\infty} 2^{-i} g^{A_{i}} \in S(C, g)$. One may verify that $h / g \geqq 2^{i}$ on A_{i} for all i so $\|h / g\|_{\infty}=\infty$.

Let $C \in C$-Chain $\left(\Sigma_{\mu}\right)$ be compact with infimum A_{0} and supremum X. The map $\Phi_{1}: h \rightarrow h / g$ is $1-1$ from cone $(0, S(C, g))$ into $L^{\infty}(X, \Sigma, \mu)$. The image of cone ($0, S(C, g)$) consists precisely of those $f \in L^{\infty+}(X, \Sigma, \mu)$ so that $\{f \geqq t\} \in C$ for all $0 \leqq t \leqq\|f\|_{\infty}$. In [2] it was shown that the $\sigma\left(L^{\infty}, L^{1}\right)$ closed convex hull S_{C} of $\left\{\chi_{A}: A \in C\right\}$ consists precisely of those $f \in \square^{+}$with $\{f \geqq t\} \in C$ for $0<t \leqq\|f\|_{\infty}$ hence for $0 \leqq t \leqq$ $\|f\|_{\infty}$. From this it follows that $\Phi_{1}(\operatorname{cone}(0, S(C, g)))$ is cone $\left(0, S_{c}\right)$. The map Φ_{1}^{-1} is easily seen to be continuous for $\sigma\left(L^{\infty}, L^{1}\right)$ and $\sigma\left(L^{1}, L^{\infty}\right)$. There is an affine homeomorphism Φ_{2} from $\mathscr{M}^{+}(C)$ with the topology $\sigma(\mathscr{M}(C), \mathscr{C}(C))$ to cone $\left(0, S_{c}\right)$ with the topology $\sigma\left(L^{\infty}, L^{1}\right)$, [2] Proposition 3.2. The function $A \rightarrow[\mu(g, A)]$ is an element of $\mathscr{C}(C)$ which is never 0 by Lemma 2.1. The map $\Phi_{3}: \nu \rightarrow \mu(g, A) \nu$ is a homeomorphism of $\mathscr{M}^{+}(C)$ for $\sigma(\mathscr{L}(C), \mathscr{C}(C))$. The mapping $\psi=\Phi_{1}^{-1} \circ \Phi_{2} \circ \Phi_{3}$ maps $\mathscr{M}^{+}(C)$ in a $1-1$ continuous fashon onto cone $(0, S(C, g)$). If $A \in C$ then $\psi\left(\delta_{A}\right)$ is easily verified to be g^{4}. Consequently, $\psi\left(\mathscr{M}_{1}^{+}(C)\right)$ is the $\sigma\left(L^{1}, L^{\infty}\right)$ closed convex hull of $C(g)$ which is $S(C, g)$ since $\sigma\left(L^{1}, L^{\infty}\right)$ and the norm topology agree on $S(C, g)$. Since ψ is $1-1$ and continuous it is a homeomorphism from $\mathscr{N}_{1}^{+}(C)$ to $S(C, g)$. $\xi(S(C, g))=\psi\left(\mathscr{M}_{1}^{+}(C)\right)=C(g)$.

Proposition 2.4. If C is a compact chain in C-Chain $\left(\Sigma_{\mu}\right)$ then $S(C, g)$ is a Bauer simplex under the norm topology and $\xi(S(C, g))=C(g)$.

Proof. When $X \in C$ this has been established. Otherwise C is a closed subset of the compact chain $C \cup\{X\}$ hence $S(C, g)$ is a closed face of the Bauer simplex $S(C \cup\{X\}, g)$.

The mapping Φ_{2}^{-1} assigns to each $f \in S_{C}$ the $p_{f} \in \mathscr{M}_{1}^{+}(C)$ defined by $p_{f}\{A: A \in C,\{f \geqq t\} \subset A\}=t=d_{p_{f}}(\{f \geqq t\})$ where $d_{p_{f}}$ is the left continuous distribution function of p_{f} on C. One may deduce that if $A \in C$ then the essential infinum, $\operatorname{essinf}_{A}(f)=d_{f}(A)$ of f on A is $d_{p_{f}}(A)$. These remarks extend to the case where $f \in \operatorname{cone}\left(0, S_{C}\right)$ where $p_{f} \in \mathscr{M}^{+}(C)$. If $A_{1} \in C$ one may consider the order interval $C_{A_{1}}=\left\{A \in C: A_{1} \subset A\right\}$. The restriction of p_{f} to $C_{A_{1}}$ has distribution function which is the restriction of d_{f} to $C_{A_{1}}$. The measure $\left.p_{f}\right|_{C_{A_{1}}}$ may considered as an element of $\mathscr{M}^{+}(C)$ in the usual manner. Its distribution function is the extension $d_{f^{1}}^{A_{1}}$ of $\left.d_{f}\right|_{C_{A_{1}}}$ to C described by $d_{f}^{A_{1}}(A)=d_{f}(A)$ if $A_{1} \subset A$ and by $d_{f}^{A_{1}}(A)=d_{f}\left(A_{1}\right)$ otherwise. This corresponds to the function $f \wedge d_{f}(A)$ in cone $\left(0, S_{C_{A_{1}}}\right) \subset$ cone $\left(0, S_{C}\right)$). Since $\left.p_{f} \rightarrow p_{f}\right|_{G_{A_{1}}}$ is a continuous linear surjection from $\mathscr{M}^{+}(C)$ to $\mathscr{A}^{+}\left(C_{A_{1}}\right)$ the map $f \rightarrow f \wedge d_{f}\left(A_{1}\right)$ is a continuous linear surjection from cone $\left(0, S_{C}\right)$ onto cone $\left(0, S_{C_{A_{1}}}\right)$. As a result the map $h \rightarrow h \wedge$ [$g d_{h / g}\left(A_{1}\right)$] is a continuous linear surjection from cone $(0, S(C, g))$ to cone ($0, S\left(C_{A_{1}}, g\right)$).

If C is a noncompact complete chain and $h \in$ cone ($0, S(C, g)$) we may define $d_{h / g}(A)=\operatorname{essinf}_{A}(h / g)$ if $A \in C$. The map $Q_{A}: h \rightarrow h \wedge$ [$g d_{h / g}(A)$] is again a continuous linear map onto cone $\left(0, S\left(C_{A_{1}}, g\right)\right)$. Furthermore, if $A_{1} \subset A_{2}$ are in C then $Q_{A_{2}} \circ Q_{A_{1}}=Q_{A_{2}}$. For any h in cone ($0, S(C, g)$) $Q_{A}(h)$ increases to h as A decreases in C. The function $d_{h / g}$ is decreasing and left continuous on C. For each $A \in C$, one assigns to h the measure $\widetilde{Q}_{A}(h) \in \mathscr{M}^{+}\left(C_{A}\right)$ corresponding to the restriction of $d_{h / g}$ to C_{A}. The mapping $Q_{A}^{\#}: h \rightarrow \mu(g, A) \widetilde{Q}_{A}(h)$ is a continuous linear surjection from cone $(0, S(C, g))$ to $\mathscr{M}^{+}\left(C_{A}\right)$ such that if $A_{1} \subset A_{2}$, are in C then $Q_{A_{2}}^{\#} \circ \psi_{A_{1}} \circ Q_{A_{1}}^{\#}=Q_{A_{2}}^{\#}$ where $\psi_{A_{1}}$ is the affine isomorphism from $\mathscr{M}^{+}\left(C_{A_{1}}\right)$ to cone $\left(0, S\left(C_{A_{1}}, g\right)\right)$. The norm of $Q_{A}^{\#}(h)$ is equal to the norm of $h \wedge\left[g d_{h / g}(A)\right]$. As A decreases in $C, Q_{A}^{\#}(h)$ (considered as elements of $\mathscr{I}_{b}^{+}(C)$) converges to an element $Q^{*}(h)$ of $\mathscr{N}_{b}^{+}(C)$ whose restriction to any C_{A} is $Q_{A}^{\ddagger}(h)$. Furthermore $Q^{\sharp}(h) \in \mathscr{R}_{1}^{+}(C)$ iff $h \in S(C, g)$. If $\mu \in \mathscr{L}_{b}^{+}(C)$ one may find, for an $A \in C$, the image $\psi_{A}^{\sharp}(\mu)$ of the restriction of μ to C_{A} under ψ_{A} in cone $\left(0, S\left(C_{A}, g\right)\right) \subset$ cone ($0, S(C, g))$. For any $\mu \in \mathscr{N}_{b}^{+}(C), Q_{A}^{*} \circ \psi_{A}^{*}(\mu)$ is the restriction of μ to C_{A}. As A decreases in C, $\psi_{A}^{*}(\mu)$ converges to an element $\psi^{*}(\mu)$ of cone $\left(0, S(C, g)\right.$) which satisfies $Q^{\sharp}\left(\psi^{*}(\mu)\right)=\mu$. Conversely if $h \in$ cone ($0, S(C, g)$) then $\psi^{*}\left(Q^{*}(h)\right)=h$.

Proposition 2.5. Let $C \in C$-Chain $\left(\Sigma_{\mu}\right)$.
(a) $S(C, g)$ is affinely isomorphic to $\mathscr{A}_{1}^{+}(C)$ under Q^{\ddagger}.
(b) $\xi(S(C, g))=C(g)$.
(c) If C^{\prime} is a complete subchain of C then $S\left(C^{\prime}, g\right)$ is a norm closed face of $S(C, g)$.
(d) Any norm closed face F of $S(C, g)$ is the σ-convex hull of its
compact subfaces and is $S\left(C^{F}, g\right)$ for some C^{F} a complete subchain of C.
(e) If $\widetilde{C} \in C$-Chain $\left(\Sigma_{l}\right)$ then $S(C, g) \cap S(\widetilde{C}, g)=S(C \cap \widetilde{C}, g)$.

Proof. (a) has already been established.
(b) is immediate from the fact that the extreme points of $\mathscr{M}_{1}^{+}(C)$ are the δ_{Δ} with $A \in C$ which correspond to g^{A} for $A \in C$.

To establish (c) it is only necessary to note that $Q^{\#}$ assigns to the probabilities on C giving full measure to C^{\prime} the subset $S\left(C^{\prime}, g\right)$. Since these probabilities on C are a face of $\mathscr{I}_{1}^{+}(C), S\left(C^{\prime}, g\right)$ is a face of $S(C, g)$ which is norm closed.

If F is a compact face of $S(C, g)$ then $\xi(F)$ is a compact set in $C(g)$ of the form $\left\{g^{A}: A \in C^{\prime}\right\}$ for a compact chain $C^{\prime} \subset C$ hence $F=$ $S\left(C^{\prime}, g\right)$. Conversely, if C^{\prime} is a compact chain in C then $\mathscr{M}_{1}^{+}\left(C^{\prime}\right)$ is a face of $\mathscr{M}_{1}^{+}\left(C^{\prime}\right)$ which corresponds to $S\left(C^{\prime}, g\right)$ under Q^{*}. Hence $S\left(C^{\prime}, g\right)$ is a compact face of $S(C, g)$.

Let $h \in S(C, g)$ and let $\left\{A_{n}\right\}$ decrease to \varnothing in C. For any n set $h_{n}=h \wedge\left(g d_{h / g}\left(A_{n}\right)\right), \lambda_{1}=\left\|h_{1}\right\|_{1}$, and $\lambda_{n}=\left\|h_{n}-h_{n-1}\right\|_{1}$ if $n>1$. Set $h^{1}=h_{1} \lambda_{1}^{-1}$ if $\lambda_{1} \neq 0$, set $h^{n}=\left(h_{n}-h_{n-1}\right) \lambda_{n}^{-1}$ if $n>1$ and if $\lambda_{n} \neq 0$, and set $h^{j}=0$ if $\lambda_{j}=0$ for $j \geqq 1$. It is easily verified using Lemma 2.3 that $h^{n} \in S\left(C_{A_{n}}, g\right)$ for all n if $h^{n} \neq 0$. We have $h=\sum_{n=1}^{\infty} \lambda_{n} h^{n}$ and $\sum_{n=1}^{\infty} \lambda_{n}=1$. Thus, h is in the σ-convex hull of the union of the compact faces $\left\{S\left(C_{A_{n}}, g\right): n \in N\right\}$ of $S(C, g)$.

Let F be a norm closed face of $S(C, g)$ and let $h \in F$. Let $\left\{A_{n}\right\}$ and $\left\{h^{n}\right\}$ be as in the preceding paragraph. The face $F \cap S\left(C_{A_{n}}, g\right)$ of F and $S\left(C_{A_{n}}, g\right)$ is compact and h is in the σ-convex hull of the union of these faces as n ranges over N. For each $n, \xi\left(F \cap S\left(C_{A_{n}}, g\right)\right)$ is of the form $C^{n}(g)$ for a compact subset C^{n} of $C_{A_{n}}$. Furthermore $C^{n} \cap C_{A_{n-1}}=C^{n-1}$ for all $n>1$. Thus, F is the σ-convex hull of $C^{F}=\bigcup_{n \in N} C^{n}$ which is a complete subchain of C. This establishes (d).
(e) is immediate from Lemma 2.3.

We recall from [2] that a simplicial subdivision of Δ is a collection \mathscr{S} of simplexes which cover Δ, so that if $S_{1} \neq S_{2}$ are in \mathscr{S} then $S_{1} \cap S_{2}$ is a proper face of S_{1} and of S_{2}. A K-simplicial subdivision, under a topology on Δ, is defined to be one whose elements are K-simplexes. A simplicial precomplex on Δ is a collection \mathscr{S} of simplexes covering Δ such that $\left\{S_{1}, S_{2}\right\} \subset \mathscr{S}$ then $S_{1} \cap S_{2}$ is a face both of S_{1} and S_{2}. A simplicial complex, under a topology on Δ, is a simplicial precomplex which if it contains a simplex S also contains all closed faces of S. If \mathscr{S} is a K-simplicial subdivision then the ensemble \mathscr{C} of closed faces of elements of \mathscr{S} is the associated simplicial complex.

Proposition 2.6. $\mathscr{S}_{g}=\left\{S(C, g): C \in M\right.$-Chain $\left.\left(\Sigma_{\mu}\right)\right\}$ is a K-simplicial subdivision of Δ whose associated simplicial complex is $\mathscr{C}_{g}=$ $\left\{S(C, g): C \in C\right.$-Chain $\left.\left(\Sigma_{\mu}\right)\right\}$.

Proof. By Proposition 2.5, it is evident that \mathscr{S}_{g} is a cover of Δ by K-complexes and that \mathscr{C}_{g} consists of all norm closed faces of \mathscr{S}_{g}. The only condition not immediately apparent to verify that \mathscr{S}_{g} is a K-simplicial subdivision of Δ is the condition that if $C_{1} \neq C_{2}$ are in M-Chain $\left(\Sigma_{\mu}\right)$ then $S\left(C_{1}, g\right) \cap S\left(C_{2}, g\right)$ is a proper face of both $S\left(C_{1}, g\right)$ and $S\left(C_{2}, g\right)$. This is a consequence of Proposition 2.5. (e) and the maximality of C_{1} and C_{2}.

The mapping Q^{*} transfers the metric $\left\|\|_{1}\right.$ on $S(C, g)$ to a metric D_{g} on $\mathscr{M}_{1}^{+}(C)$ in the natural fashion so that $D_{g}\left(Q^{\ddagger}\left(h_{1}\right), Q^{\ddagger}\left(h_{2}\right)\right)=$ $\left\|h_{1}-h_{2}\right\|_{1}$. Actually, Q^{\ddagger} is extendable so that it is defined on $L(C, g)=$ cone $(0, S(C, g))$, - cone $(0, S(C, g))$ and is a Banach lattice isomorphism from the L-space $L(C, g)$ to the L-space $\mathscr{A}_{b}(C)$. The norm of the L-space $L(C, g)$ is not $\left\|\|_{1}\right.$ but the Minkowski functional ρ_{g} of $\operatorname{conv}(S(C, g)-S(C, g))$ and $\rho_{g} \geqq\| \|_{1}$ on $L(C, g)$ since $Q^{\#-1}$ is a contraction from $\mathscr{I}_{b}(C)$ into $L^{1}(X, \Sigma, \mu)$. Since $S(C, g)$ is \| $\|_{1}$-closed . $\mathscr{C}_{1}^{+}(C)$ is D_{g}-complete.

If $A_{1} \subset \cdots \subset A_{n}$ are in a complete chain C and $p=\sum_{i=1}^{n} \lambda_{i} \delta_{A_{i}} \in$.$/^{+}(C)$ then $d_{p}(A)=\sum_{n=k}^{n} \lambda_{i}$ if A is in the order interval $\left(A_{k-1}, A_{k}\right] \subset C$ where $A_{0}=\varnothing$ and $A_{n+1}=X$. If $h=\sum_{n=1}^{n} \lambda_{i} g^{A_{i}}$ so that $Q^{*}(h)=p$ then $d_{h / g}(A)=\sum_{r=k}^{n} \lambda_{i} \mu\left(g, A_{i}\right)^{-1}=\int_{C_{A}} \mu(g, B)^{-1} p(d B)$ if $A \in\left(A_{k-1}, A_{k}\right]$. For any $k,-\lambda_{k}=\left[d_{h^{\prime} g}\left(A_{k+1}\right)-d_{k^{\prime} g}\left(A_{k}\right)\right] \mu\left(g, A_{k}\right)$ so $d_{p}(A)=-\sum_{i=k}^{n} \mu(g$, $\left.A_{k}\right)\left[d_{h / g}\left(A_{k+1}\right)-d_{h^{\prime} g}\left(A_{k}\right)\right]=\int_{C_{A}} \mu(g, B) d_{h / g}(d B)$ where the latter is a Lebesque-Stieltjes integral. By continuity, whenever $p \in \mathscr{M}_{b}^{+}(C)$ is $Q^{*}(h)$ for $h \in$ cone $(0, S(C, g))$ one has $d_{p}(A)=\int_{C_{A}} \mu(g, B) d_{h / g}(d B)$ and $d_{h^{\prime} g}(A)=\int_{C_{A}} \mu(g, B)^{-1} p(d B)$.

Proposition 2.7. Let C be a complete chain. If $\left\{p_{1}, p_{2}\right\} \subset \mathscr{I}_{b}^{+}(C)$ then $\quad D_{g}\left(p_{1}, p_{2}\right)=\int_{C}\left|\int_{C_{A}} \mu(g, B)^{-1} p_{1}(d B)-\int_{C_{A}} \mu(g, B)^{-1} p_{2}(d A)\right| \mu(g, d A)$ where the outer integral is Lebesgue-Stieltjes with respect to the monotone function $\mu(g, \cdot) . D_{g}$ yields a complete metrization of vague and weak convergence on $\mathscr{l}_{1}^{+}(C)$.

Proof. Let $\widetilde{D}_{g}\left(p_{1}, p_{2}\right)$ denote $\int_{C} \mid \int_{C_{A}} \mu(g, B)^{-1} p_{1}(d B)-\int_{C_{A}} \mu(g$, $B)^{-1} p_{2} \mid \mu(g, d A)$ for the time being. Let us verify that $\widetilde{D}_{g}\left(p_{1}, p_{2}\right)$ is finite for all $\left\{p_{1}, p_{2}\right\} \subset \mathscr{L}_{b}^{+}(C)$ or that $\widetilde{D}_{q}(p)=\int_{C}\left|\int_{C_{1}} \mu(g, B)^{-1} p(d B)\right| \times$
$\mu(g, d A)<\infty$ if $p=p_{1}-p_{2} \in \mathscr{C}_{b}(C)$. Suppose that C is compact then \widetilde{D}_{g} is a continuous convex function of p for $\sigma\left(\mathscr{L}_{b}(C), \mathscr{C}(C)\right)$. \widetilde{D}_{g} attains its supremum at extreme points $p=\delta_{A_{1}}-\delta_{A_{2}}$, say with $A_{1} \subset A_{2}$. Here $\widetilde{D}_{g}(p)$ may easily be computed to be $\mu\left(g, A_{2}\right)^{-1}\left[\mu\left(g, A_{2}\right)-\mu\left(g, A_{1}\right)\right]+$ $\left[\mu\left(g, A_{1}\right)^{-1}-\mu\left(g, A_{2}\right)^{-1}\right] \mu\left(g, A_{1}\right)=2\left(1-\mu\left(g, A_{1}\right) \mu\left(g, A_{2}\right)^{-1}\right) \leqq 2$. Thus, $\widetilde{D}_{g}(p) \leqq 2\|p\|$ for all $p \in \mathscr{L}_{b}(C)$ if C is compact. If C isn't compact $\widetilde{D}_{g}(p)$ is the limit, as A decreases to \varnothing in C, of $\int_{C_{A}}\left|\int_{C_{A^{\prime}}} \mu(g, B)^{-1} p(d B)\right| \times$ $\mu\left(g, d A^{\prime}\right)$. Hence, $\widetilde{D}_{g}(p) \leqq\|p\|$ even in this case. Since $\mu(g, \cdot)$ is continuous and strictly increasing on $C, \widetilde{D}_{g}\left(p_{1}, p_{2}\right)=0$ implies $\int_{C_{A}} \mu(g, B)^{-1} p_{1}(d B)=\int_{C_{A}} \mu(g, B)^{-1} p_{2}(d B)$ for a dense set of A in C hence that $h_{1}=h_{2}$ where $Q^{\ddagger}\left(h_{j}\right)=p_{j}$ for $j=1,2$. Thus, $p_{1}=p_{2}$. This suffices to show that \widetilde{D}_{g} is a metric on $\mathscr{L}_{1}^{+}(C)$. If $\left\{p_{n}\right\}$ is a \widetilde{D}_{g}-Cauchy sequence in conv $\left(0, \mathscr{\mathscr { I }}_{1}^{+}(C)\right)$ and $A \in C$ one may select a subsequence $\left\{p_{n}^{\prime}\right\}$ whose restrictions to C_{A} are $\sigma\left(\mathscr{H}_{b}\left(C_{A}\right), \mathscr{C}\left(C_{A}\right)\right)$ convergent to p_{A}^{\prime}. Then $\left|\int_{C_{A}} \mu(g, B)^{-1} p_{n}^{\prime}(d B)-\int_{C_{A}} \mu(g, B)^{-1} p_{A}^{\prime}(d B)\right|$ converges to 0 as $n \rightarrow \infty$. Since $\left\{p_{n}\right\}$ is \widetilde{D}_{g}-Cauchy $\mid \int_{C_{A}} \mu(g, B)^{-1} p_{n}(d B)-$ $\int_{C_{A}} \mu(g, B)^{-1} p_{n}(d B) \mid$ converges to 0 for $\mu(g, d A)$ almost all A. We deduce that $\left|\int_{C_{A}} \mu(g, B)^{-1} p_{n}(d B)-\int_{C_{A}} \mu(g, B)^{-1} p_{A}^{\prime}(d B)\right|$ converges to 0 for $\mu(g, d A)$ almost all A. As a consequence p_{A}^{\prime} is the $\sigma\left(\mathscr{M}_{b}^{+}\left(C_{A}\right)\right.$, $\mathscr{C}\left(C_{4}\right)$) limit of the restrictions of $\left\{p_{n}\right\}$ to C_{A}. Thus, there is a $p^{\prime} \in$ conv $\left(0, \mathscr{I}_{1}^{+}(C)\right)$ whose restriction to each C_{A} is p_{1}^{\prime}. For this p^{\prime} we have $\int_{C} f d p_{n} \rightarrow \int f d p^{\prime}$ for all continuous f on C with compact support. That is, $\left\{p^{2}\right\}$ converges vaguely to p. Conversely, if $\left\{p_{n}\right\} \subset$ conv $\left(0, \mathscr{I}_{1}^{+}(C)\right)$ is vaguely convergent to p then $\mid \int_{C_{A}} \mu(g, B)^{-1} p_{n}(d B)-$ $\int_{C_{A}} \mu(g, B)^{-1} p(d B) \mid \rightarrow 0$ as $n \rightarrow \infty$ for all $A \in C$ from which it follows that $\widetilde{D}_{g}\left(p_{n}, p\right) \rightarrow 0$ as $n \rightarrow \infty$ if $\left\{p_{n}\right\} \subset \operatorname{conv}\left(0, \mathscr{A}_{1}^{+}(C)\right)$. Thus, the metric \widetilde{D}_{g} is complete on conv $\left(0, \mathscr{M}_{1}^{+}(C)\right)$ and gives the topology of vague convergence. If $p_{j}=\sum_{\imath=1}^{n} \lambda_{i}^{j} \delta_{A_{i}}$, for $A_{1} \subset \cdots \subset A_{n}$ and for $j=1,2$, are in $\mathscr{A}_{b}^{+}(C)$ and equal $Q^{*}\left(h_{j}\right)$ where $h_{j}=\sum_{i=1}^{n} \lambda_{i}^{j} g^{A_{i}}$ then $h_{j} g^{-1}$ is equal to $\sum_{\imath=k}^{n} \lambda_{\imath}^{j} \mu\left(g, A_{1}\right)^{-1}$ on $A_{k} \backslash A_{k-1}$ so $D_{g}\left(p_{1}, p_{2}\right)=\left\|h_{1}-h_{2}\right\|_{1}=$ $\sum_{k=1}^{n} \int_{A_{k} \backslash A_{k-1}}\left|\sum_{i=k}^{n} \lambda_{i}^{1} \mu\left(g, A_{i}\right)^{-1}-\sum_{i=k}^{n} \lambda_{i}^{2} \mu\left(g, A_{i}\right)^{-1}\right| g(d \mu)=\sum_{k=1}^{n} \mid \sum_{n=k}^{n} \lambda_{i}^{1} \mu(g$, $\left.A_{i}\right)^{-1}-\sum_{n=l}^{A_{k} \backslash \lambda_{i}} \lambda_{i}^{2} \mu\left(g, A_{i}\right)^{-1}\left|\left(\mu\left(g, A_{k}\right)-\mu\left(g, A_{k-1}\right)\right)=\int_{C}\right| \int_{C_{A}} \mu(g, B)^{-1} p_{1}(d B)-$ $\int_{C_{A}} \mu(g, B)^{-1} p_{2}(d B) \mid \mu(g, d A)=\widetilde{D}_{g}\left(p_{1}, p_{2}\right) . \quad$ Thus, $h \xrightarrow{C_{A}}(h)$ is an isometry from cone $(0, S(C, g))$ to $\mathscr{L}_{b}^{+}(C)$ with the metric \widetilde{D}_{g} at least on simple functions h. By continuity Q^{\ddagger} is an isometry from conv $(0, S(C, g))$ onto the vaguely complete $\operatorname{conv}\left(0, \mathscr{l}_{1}^{+}(C)\right)$. Thus, $\widetilde{D}_{g}=D_{g}$. Since $S(C, g)$ is norm complete, $\mathscr{L}_{1}^{+}(C)$ is D_{g} complete. That is, D_{g} is a complete metrization of vague convergence. It is well known that the weak topology $\sigma\left(\mathscr{M}_{b}^{+}(C), \mathscr{C}_{b}(C)\right)$ and the vague
topology agree on $\mathscr{A}_{1}^{+}(C)$ so D_{g} is a complete metrization of the weak topology as well.

REMARK. If $f(B)=\mu(g, B)^{-1}$ then

$$
D_{g}\left(p_{1}, p_{2}\right)=\int_{C}\left|d_{f p_{1}}(A)-d_{f_{p_{2}}}(A)\right| \mu(g, d A)
$$

where $d_{f_{p_{j}}}$ is the distribution function of $f p_{j} \in \mathscr{M}^{+}(C)$.
Under the homeomorphism $H: A \rightarrow \mu(g, A)$ of C into $(0,1]$ the simplex $\mathscr{\mathscr { L }}_{1}^{+}(C)$ is assigned to the simplex $\mathscr{M}_{1}^{+}(H(C))$ under an affine homeomorphism for the weak topologies. The affine homeomorphism is the unique one sending $\delta_{A} \in \mathscr{M}_{1}^{+}(C)$ to $\delta_{\mu(g, A)} \in \mathscr{I}_{1}^{+}(H(C))$. The metric D_{g} on $\mathscr{A}_{b}^{+}(C)$ induces a metric D_{g}^{\ddagger} on $\mathscr{M}_{b}^{+}(H(C))$ in the usual fashion.

Corollary 2.7.1. If p_{1}, p_{2} are in $\mathscr{M}_{b}^{+}(H(C))$ then $D_{g}^{*}\left(p_{1}, p_{2}\right)=$ $\int_{H(C)}\left|\int_{t}^{1}(1 / s) p_{1}(d s)-\int_{t}^{1}(1 / s) p_{2}(d s)\right| d t=\int_{H(C)}\left|d_{1 / t p_{1}}(t)-d_{1 / t p_{2}}(t)\right| d t \quad$ where $d t$ is Lebesgue-Stieltjes integration with respect to the restriction of $f(t)=t$ to $H(C)$.

Proposition 2.8. (a) If μ is a non-atomic measure then all of the simplexes in \mathscr{S}_{g} are affinely isometric.
(b) If μ is not non-atomic there are two simplexes in \mathscr{C}_{g} which aren't affinely homeomorphic.

Proof. (a) If μ is non-atomic then $H(C)=(0,1]$ for all $C \in$ M-Chain $\left(\Sigma_{\mu}\right) . \quad D_{j}^{\#}\left(p_{1}, p_{2}\right)=\int_{0}^{1}\left|d_{1 / t p_{1}}(t)-d_{1 / t p_{2}}(t)\right| d t$ yields the same metric on $\mathscr{M}_{1}^{+}((0,1])$ for all $C \in M$-Chain $\left(\Sigma_{\mu}\right)$.
(b) If C_{1} and C_{2} in M-Chain $\left(\Sigma_{\mu}\right)$ were to have $S\left(C_{1}, g\right)$ and $S\left(C_{2}, g\right)$ affinely homeomorphic, then $\mathscr{I}_{1}^{+}\left(C_{1}\right)$ and $\mathscr{I}_{1}^{+}\left(C_{2}\right)$ would be affinely homeomorphic under the vague topology so C_{1} and C_{2} would be homeomorphic. In the proofs of Propositions 6.1 and 6.2 of [2] it is shown that if μ isn't non-atomic there are maximal chains in Σ_{μ} which aren't homeomorphic. The same procedure is applicable to complete chains in $\Sigma_{\mu} \backslash\{\varnothing\}$.

Remark. In the terminology of [2], \mathscr{S}_{g} is homogeneous iff μ is non-atomic.

Corollary 2.8.1. If g_{1} and g_{2} are two elements of Δ so that $F_{g_{1}}=F_{g_{2}}=\Delta$ and $C \in C$-Chain $\left(\Sigma_{\mu}\right)$ then $S\left(C, g_{1}\right)$ is affinely homeomorphic to $S\left(C, g_{2}\right)$.

Proof. Both are affinely homeomorphic to $\mathscr{A}_{1}^{+}(C)$ with the weak topology.

Remark. (1) This affine homeomorphism probably isn't attainable as an affine isometry unless C is connected.
(2) This states a strong equivalence between the simplicial subdivisions. $\mathscr{S}_{g_{1}}$ and $\mathscr{S}_{g_{2}}$ of Δ.

Of some interest is the question of which Hausdorff locally convex topologies τ on $L^{1}(X, \Sigma, \mu)$ induce on each simplex in \mathscr{P}_{g} its norm topology.

Proposition 2.9. The Hausdorff locally convex topologies on $L^{1}(X, \Sigma, \mu)$ which induce the nom topology on simplexes in \mathscr{S}_{g} are precisely those coarser than the norm topology.

Proof. Let τ be a Hausdorff locally convex topology on $L^{1}(X, \Sigma, \mu)$ coarser than the norm topology. Let $C \in M$-Chain $\left(\Sigma_{\mu}\right)$. Regard the linear span of $S(C, g)$ as being linearly isomorphic to $\mathscr{M}_{b}(C)$. If $A \in C$ then $S\left(C_{A}, g\right)$ is norm-compact, hence τ is compact. $\mathscr{L}_{b}\left(C_{A}\right)$ with its weak topology is linearly homeomorphic to the linear span of $S\left(C_{A}, g\right)$ with the topology τ. That is, τ induces on each $\mathscr{A}_{b}\left(C_{A}\right) \subset \mathscr{A}_{b}(C)$ the weak topology. The vague topology on $\mathscr{A}_{b}(C)$ is the coarsest such topology. Thus, τ is finer than the topology induced by the vague topology on $S(C, g)$. On $S(C, g)$ the norm topology is that induced by the vague topology. Thus, τ must be the norm topology on $S(C, g)$.

Conversely, suppose that τ induces on each $S(C, g)$ the norm topology. To show that τ is coarser than the norm topology on $L^{1}(X, \Sigma, \mu)$ it is only necessary to show that the τ-dual of $L^{1}(X, \Sigma, \mu)$ is a subspace of $L^{\infty}(X, \Sigma, \mu)$. Let λ be in the τ-dual of $L^{1}(X, \Sigma, \mu)$. Define the additive function λ^{\prime} on Σ_{μ} by $\lambda^{\prime}(A)=\lambda\left(g \chi_{A}\right)$ for $A \in \Sigma_{\mu}$. If $\left\{A_{n}\right\}$ is an increasing sequence in Σ_{μ} then $\lim _{n \rightarrow \infty} \lambda\left(g \chi_{A_{n}}\right)=\lambda\left(g \chi_{A_{\infty}}\right)=$ $\lambda^{\prime}\left(A_{\infty}\right)$ where $A_{\infty}=\bigcup_{n=1}^{\infty} A_{n}$. Thus, λ is countably additive on Σ_{μ}. Hence, $\lambda(A)=\int_{A} h_{\lambda} d u$ for some $h_{\lambda} \in L^{1}(X, \Sigma, \mu)$. Let $A^{+}=\left\{h_{\lambda} \geqq 0\right\}$ and $A^{-}=\left\{h_{2}<0\right\}$. If f is such that $f g \in L^{1}(X, \Sigma, \mu)$ with $S_{f} \subset A^{+}$ then $\lambda(f g)=\int_{A^{+}} f h_{\lambda} d \mu$. Thus, if $h \in L^{1}(X, \Sigma, \mu)$ with $S_{h} \subset A^{+}$one has $\lambda(g)=\int_{A^{+}}^{J_{A^{+}}} h g^{-1} h_{\lambda} d \mu$. If it were true that ess $\sup _{A}\left(h_{\lambda} g^{-1}\right)=\infty$ there would exist an $h \in L^{1+}(X, \Sigma, \mu)$ such that $\{h \neq 0\} \subset A^{+}$and $\infty=\int_{A^{+}} h g^{-1} h_{\lambda} d \mu=\lambda(h)$. Since $\lambda(h) \in(-\infty, \infty) h_{\lambda} g^{-1}$ must be bounded on $A^{A^{+}}$. Similarly, $h_{\lambda} g^{-1}$ must be bounded on A^{-}. That is, $g_{\lambda}=$ $h_{\mathrm{r}} g^{-1} \in L^{1}(X, \Sigma, \mu)$. This establishes the proposition.
3. The non- σ-finite case. The results obtained here are basi-
cally the same as in $\S 2$ with the exception of the fact that if μ isn't σ-finite there is no equivalent probability measure $g \mu$ with $g \in \Delta$. That is $\Delta \neq F_{g}$ for any $g \in \Delta$. In this case it turns out to be impossible to give a barycentric subdivision of Δ whose zeroskeleton contains a point in each norm closed face of Δ which has a barycenter. The subdivision simplexes we do obtain turn out to be affinely homeomorphic to K-simplexes $\mathscr{A}_{1}^{+}(C)$ where C is a closed subset of $(0, \infty)$ rather than of $(0,1]$, again where these K-simplexes are endowed with their weak (= vague) topologies.

We let Chain $f_{f}\left(\Sigma_{\mu}\right)$ denote such that $C \in \operatorname{Chain}\left(\Sigma_{\mu}\right) \mu(A)<\infty$ for all $A \in C$. C-Chain $_{f}\left(\Sigma_{\mu}\right)$ and M-Chain $\left(\Sigma_{\mu}\right)$ are similarly defined. If $C \in \operatorname{Chain}_{f}\left(\Sigma_{\mu}\right)$ we let $S(C)$ be the norm closed convex hull of $C(1)=\left\{\chi_{A}[\mu(A)]^{-1}: A \in C\right\}$. If $\sup (C)=A_{0}$ exists and $g=\chi_{A_{0}}\left[\mu\left(A_{0}\right)\right]^{-1}$ then $S(C)=S(C, g)$.

Proposition 3.1. (a) If $C \in \operatorname{Chain}_{f}\left(\Sigma_{\mu}\right)$ and if \bar{C} is the smallest element of C-Chain ${ }_{f}\left(\Sigma_{\mu}\right)$ containing C then $S(C)=S(\bar{C})$.
(b) If $C \in C$-Chain ${ }_{f}\left(\Sigma_{\mu}\right)$ then an $h \in \Delta$ is in $S(C)$ iff $\{h>t\} \in C$ for all $0 \leqq t<\|h\|_{\infty}$.
(c) If $C \in C$-Chain ${ }_{f}\left(\Sigma_{\mu}\right)$ then $S(C)$ is the σ-convex hull of $\left\{S\left(C^{A}\right)\right.$: $A \in C\}$ where $C^{A}=\left\{A^{\prime} \in C: A^{\prime} \subset A\right\}$.
(d) If $C \in C$-Chain ${ }_{f}\left(\Sigma_{\mu}\right)$ then $\xi(S(C))=C$.
(e) The maps $A \rightarrow \chi_{A}[\mu(A)]^{-1} \rightarrow \mu(A)$ are homeomorphisms from C to $C(1)$ to $(0, \infty)$ if $C \in C-\operatorname{Chain}_{f}\left(\Sigma_{\mu}\right)$.

Proof. The proofs are analogous to those of the corresponding facts in Lemmas 2.1, 2.2, 2.3 and Proposition 2.4.

From Propositions 2.5 and 2.9, if $C \in C$ - $\operatorname{Chain}_{f}\left(\Sigma_{\mu}\right)$ and $A \in C$ then $S\left(C^{A}\right)$ is affinely homeomorphic to $\mathscr{M}_{1}^{+}\left(C^{A}\right)$ equipped with the weak or vague topology under a unique map, say Q_{A}^{*}, which assigns to $\delta_{A^{\prime}} \in \mathscr{M}_{1}^{+}\left(C^{A}\right)$ the element $\chi_{A^{\prime}} \mu\left(A^{\prime}\right)^{-1}$ of $S\left(C^{A}\right)$. This remains true if $Q_{A}^{\#}$ is regarded as an affine bijection of $\mathscr{I}_{b}^{+}\left(C^{A}\right)$ onto cone ($0, S\left(C^{A}\right)$). If $A_{1} \subset A_{2}$ are in C then $\mathscr{M}_{b}^{+}\left(C^{A_{1}}\right)$ is injected into $\mathscr{M}_{b}^{+}\left(C^{A_{2}}\right)$ in the natural fashion. The restriction of $Q_{A_{2}}^{\#}$ to $\mathscr{M}_{b}^{+}\left(C^{A_{1}}\right)$ is just $Q_{A_{1}}^{\#}$. If $p \in \mathscr{L}_{b}^{+}(C)$ then $\left\{\left.p\right|_{A}: A \in C\right\}$ converges to p in norm as A increases in C. We have $Q_{A}^{*}\left(\left.p\right|_{A}\right)$ converging in $S(C)$ to an element $h=Q^{*}(p)$ with $Q_{A}^{\ddagger}\left(\left.p\right|_{A}\right)=\left[h-\operatorname{ess}_{\inf }^{A}\right.$ $\left.h\right] \vee 0$. The map Q^{\ddagger} is an affine bijection and agrees with $Q_{.1}^{*}$ on $\mathscr{A}_{b}^{+}\left(C^{A}\right)$ when C^{A} is regarded as a subset of $\mathscr{I}_{b}^{+}(C)$.

Proposition 3.2. (a) If C is in C-Chain ${ }_{f}\left(\Sigma_{\mu}\right)$ then $\mathscr{A}_{b}^{+}(C)$ with the weak topology is affinely homeomorphic with $S(C)$ under Q^{*}.
(b) The norm closed faces of $S(C)$ are of the form $S\left(C^{\prime}\right)$ where
$C^{\prime} \subset C$ is in C-Chain $_{f}\left(\Sigma_{n}\right)$ and $S\left(C_{1}\right) \cap S\left(C_{2}\right)=S\left(C_{1} \cap C_{2}\right)$.

Proof. The proofs are analogous to those of Propositions 2.4 and 2.5.

Proposition 3.3. $\mathscr{S}_{f}=\left\{S(C): C \in M\right.$-Chain $\left._{f}\left(\Sigma_{\mu}\right)\right\}$ is a K-simplicial subdivision of \triangle whose associated simplicial complex is $\mathscr{C}^{i}=$ $\left\{S(C): C \in \operatorname{Chain}_{f}\left(\Sigma_{k}\right)\right\}$.

Proof. The only thing to establish, given the result of Proposition 3.2 is that \mathscr{P}^{f} covers Δ. If $h \in \Delta$, then $C_{0}=\{\{h \geqq t: 0<t<$ $\left.\|h\|_{\infty}\right\} \in \operatorname{Chain}_{f}\left(\Sigma_{\mu}\right)$ and $h \in S\left(C_{0}\right)$. Consequently, $h \in S(C)$ for any $C \in M$-Chain $f_{f}\left(\Sigma_{\mu}\right)$ with $C_{0} \subset C$.

The metric on $\mathscr{I}_{0}^{+}(C)$ induced by $Q^{\#}$ from the norm on $L^{1}(X, \Sigma, \mu)$ will be denoted by D for a $C \in C-$ Chain $_{f}\left(\Sigma_{k}\right)$. Below we denote by H the continuous function $A \rightarrow \mu(A)$ on C and by $H(d A)$ the measure on C arising by Lebesgue-Stieltjes integration with respect to the continuous function H. With this terminology Proposition 3.4 is an immediate corollary of Proposition 2.7.

Proposition 3.4. If $C \in C-\operatorname{Chain}_{f}\left(\Sigma_{\mu}\right)$ and $\left\{p_{1}, p_{2}\right\} \subset \mathscr{A}_{b}^{+}(C)$ then

$$
\begin{aligned}
& D\left(p_{1}, p_{2}\right)=\int_{C}\left|\int_{C_{A}} \frac{1}{H(B)} p_{1}(d B)-\int_{C_{A}} \frac{1}{H(B)} p_{2}(d B)\right| H(d A) \\
& =\int_{C}\left|d_{I(A)^{-1} p_{1}}(A)-d_{H(A)^{-1} p_{2}}(A)\right| H(d A) .
\end{aligned}
$$

If one maps C in C - Chain $_{f}\left(\Sigma_{\mu}\right)$ homeomorphically into ($0, \infty$) via the map H assigning $\mu(A)$ to A a homeomorphism is established between $\mathscr{L}_{b}^{+}(C)$ and $\mathscr{H}_{b}^{+}(H(C))$ for vague or weak topologies. The metric D^{*} on $\mathscr{C}_{b}^{+}(H(C))$ is that induced by D. This corollary is analogous to Corollary 2.7.1.

Corollary 3.4.1. If $\left\{p_{1}, p_{2}\right\} \subset \cdot \mathscr{I}_{b}^{+}(H(C))$ then $D^{*}\left(p_{1}, p_{2}\right)=$ $\int_{I(C)}\left|\int_{t}^{\infty}(1 / s) p_{1}(d s)-\int_{t}^{\infty}(1 / s) p_{2}(d s)\right| d t$.

Proposition 3.5. (a) If μ is non-atomic the simplexes in \mathscr{S}^{f} are mutually affinely isometric.
(b) If μ is not non-atomic there are two simplexes in \mathscr{S}^{f} which aren't affinely homeomorphic.

Proof. (a) is immediate from Corollary 3.4.1 where $H(C)$ is $(0, \infty)$.
(b) is established in the same manner as was (b) of Corollary 2.8.1.

Proposition 3.6. The Hausdorff locally convex topologies on $L^{1}(X, \Sigma, \mu)$ inducing the norm topology on all elements of \mathscr{S}^{f} are precisely those coarser than the norm topology.

Proof. If τ is a Hausdorff locally convex topology on $L^{1}(X, \Sigma, \mu)$ coarser than the norm topology it may be shown, in the same manner as the proof of Proposition 2.9 that τ agree with the norm topology on each element of \mathscr{S}^{f}.

Conversely, suppose that τ is a Hausdorff locally convex topology on $L^{1}(X, \Sigma, \mu)$ inducing the norm topology on each element of \mathscr{P}^{f}. To show that τ is coarser than the norm topology it suffices to show that each τ-continuous linear functional λ is of the norm $\lambda(h)=$ $\int h g_{\lambda} d \mu$ for $h \in L^{1}(X, \Sigma, \mu)$ for some $g_{\lambda} \in L^{\infty}(X, \Sigma, \mu)$. If $A \in \Sigma_{\mu}$ with $0<\mu(A)<\infty$ regard $L^{1}(A, \Sigma, \mu)$ as a subspace of $L^{1}(X, \Sigma, \mu)$. The trace, $\mathscr{S}^{f} \cap L^{1}(A, \Sigma, \mu)=\left\{S \cap L^{1}(A, \Sigma, \mu)\right\}$ is the simplicial subdivision \mathscr{S}_{g} of the positive face of the unit ball of $L^{1}(A, \Sigma, \mu)$ with $g=$ $\chi_{A}[\mu(A)]^{-1}$. The norm and τ topologies agree on all elements of \mathscr{S}_{g}. Thus, there is a g_{λ}^{A} in $L^{\infty}(A, \Sigma, \mu)$ so that $\lambda(h)=\int_{A} h g_{\lambda}^{A} d \mu$ if $h \in$ $L^{1}(X, \Sigma, \mu)$ with $\{h \neq 0\} \subset A$. It must be the case that $g_{\lambda}^{A}=g_{\lambda}^{B}$ on $A \cap B$ if $\{A, B\} \subset \Sigma_{\mu}$ with $0<\mu(A), \mu(B)<\infty$. Thus, there is a $g_{i} \in L_{10 c}^{\infty}(X, \Sigma, \mu)=L^{\infty}(X, \Sigma, \mu), \quad \lambda(h)=\int h g_{\lambda} d \mu$ if $h \in L^{1}(X, \Sigma, \mu)$ with $\mu\{h \neq 0\}<\infty$. $\left(L_{\text {loc }}^{\infty}(X, \Sigma, \mu)\right.$ consists of functions whose restrictions to sets of finite measure are bounded.) If $\mu(\{h \neq 0\})=\infty$ then $\lambda(h)=$ $\lim _{\varepsilon \rightarrow 0} \lambda(h-h \wedge \varepsilon)=\lim _{\varepsilon \rightarrow 0} \lambda(h-h \wedge \varepsilon)=\lim _{\varepsilon \rightarrow 0} \int[h-(h \wedge \varepsilon)] g_{\lambda} d \mu=$ $\int h g_{\lambda} d \mu$ since τ agrees with the norm topology on elements of \mathscr{S}^{f}. This establishes the proposition.

Proposition 3.7. (a) Let (X, Σ, μ) be an infinite measure space. There is no $g \in \Delta$ such that $g^{A}=\chi_{A} \mu(A)^{-1}$ if $0<\mu(A)<\infty$.
(b) Let (X, Σ, μ) be non- σ-finite there is no collection $\left\{g^{A}\right.$: $\mu(A)>0$, A σ-finite $\}$ in Δ such that $g^{A}=g^{B} \chi_{A} \mu\left(g^{B}, A\right)^{-1}$ if $A \subset B$ are σ-finite elements of Σ_{μ}.

Proof. (a) is only non-trivial if (X, Σ, μ) is σ-finite. In the σ finite case the condition on g is that it be constant on any set of finite measure so g is a constant λ on X. In this case we have $1=\|g\|_{1}=\lambda \mu(X) \in\{0, \infty\}$ which is impossible.
(b) Let $\left\{A_{\alpha}\right\}$ be a maximal disjoint collection of σ-finite elements of Σ_{μ}. Define the measure ν_{α} on A_{α} as $g^{A} \alpha \mu$. Let ν be the positive
measure on Σ_{μ} equal to ν_{α} on each A_{α}. The map $f \rightarrow \sum f / g^{1_{\kappa}}$ is an isometry from $L^{1}(\mu)$ to $L^{1}(\nu)$ which assigns to each $g^{\Lambda_{r}}$ the function $\chi_{A_{\alpha}}=\chi_{A_{\alpha}}\left(\nu\left(A_{\alpha}\right)\right)^{-1}$. Actually, for all $A \sigma$-finite for μ, g^{A} is assigned to $\chi_{A}[\nu(A)]^{-1}$. Choosing countably many distinct $A_{\alpha_{n}}$, setting $A=\bigcup_{n=1}^{\infty} A_{\alpha_{22}}$ and g the image of g^{4} we are led to a contradiction of (a).

Remarks. This proposition shows that it is impossible to have a barycentric subdivision of Δ when (X, Σ, μ) is non- σ-finite using barycenters of all norm closed faces of Δ which have barycenters if the barycenters are to be chosen in the coherent fashion we have used. However this section guarantees barycentric subdivision utilizing barycenters of some norm closed faces of Δ. Even in the σ-finite case the barycentric subdivision \mathscr{S}^{f} is definable and will not utilize barycenters of all norm closed having barycenters.
4. Barycentric subdivisions of octahedra. By an octahedron we mean a unit ball of a Kakutani L-space with its norm topology or any affinely homeomorphic image of such a ball. We will deal with octrahedra represented as the ball \diamond of $L^{1}(X, \Sigma, \mu)$ where (X, Σ, μ) is a positive localizable measure space. Since \diamond is centrally symmetric its center 0 is natural barycenter of \diamond to use in a barycentric subdivision of \diamond. The convex hull of 0 and the positive face Δ of \diamond is the positive unit ball \diamond^{+}of $L^{1}(X, \Sigma, \mu)$. With the norm topology \diamond^{+}is a K-simplex with 0 an extreme point. \rangle^{+}is affinely homeomorphic to the positive face of the unit ball of $L^{1}\left(X^{\prime}, \Sigma^{\prime}, \mu^{\prime}\right)$ where X^{\prime} is obtained from X by adjoining a new point ∞, Σ^{\prime} is the σ-algebra on X^{\prime} generated by Σ and $\{\infty\}$ and μ^{\prime} is the measure on X^{\prime} with $\mu^{\prime}\{\infty\}=1$ and whose restriction to Σ is μ.

Proposition 4.1. (a) $\mathscr{C}_{\Delta^{+}}=\left\{\operatorname{conv}(0, S): S \in \mathscr{S}^{+}\right\}$is a K-simplicial subdivision of \diamond^{+}whose associated simplicial complex is SP \cup $\left\{\operatorname{conv}(0, S): R \in \mathscr{S}^{f}\right\}$.
(b) If $C \in C$-Chain ${ }_{f}\left(\Sigma_{\mu}\right)$ then conv $(0, S(C))$ is affinely homeomorphic with the weak topology where ∞ is adjoined as an isolated point to C.

Proof. It is easily verified that $\mathscr{S}_{\rho_{+}}$is a covering of \diamond^{-}by K-simplexes. If $\left\{S_{1}, S_{2}\right\} \subset \mathscr{S}^{f}$ then $\operatorname{conv}\left(0, S_{1}\right) \cap \operatorname{conv}\left(0, S_{2}\right)=\operatorname{conv}(0$, $\left.S_{1} \cap S_{2}\right)$ is a norm closed face both of conv $\left(0, S_{1}\right)$ and conv $\left(0, S_{2}\right)$. Furthermore any norm closed face F of $\operatorname{conv}(0, S)$ with $S \in \mathscr{S}^{f}$ is either a norm closed face of S or is of the form conv $(0, \widetilde{F})$ for some norm closed face \widetilde{F} of S. These remarks suffice to establish (a).
(b) is immediate since 0 is not in the closure of $C(1)$ for any
$C \in C-$ Chain $_{f}\left(\Sigma_{\mu}\right)$.
Remark. If (X, Σ, μ) is σ-finite and $g \in \Delta$ with $F_{g}=\Delta$ then in Proposition 4.1, \mathscr{S}^{f} may be replaced by \mathscr{S}_{g} to obtain a K-simplicial subdivision of \diamond^{+}.

An isometry T of $L^{1}(X, \Sigma, \mu)$ carries the barycentric subdivision $\mathscr{S}_{\diamond^{+}}$into a barycentric subdivision $T\left(\mathscr{S}_{\diamond^{+}}\right)=\left\{T(S): S \in \mathscr{S}_{\diamond^{+}}\right\}$of the K-simplex $T\left(\diamond^{+}\right)$. By suitable choice of isometries T a barycentric K-simplicial subdivision of \diamond will be constructed as a union of the subdivisions $T\left(\mathscr{S}_{\diamond^{+}}\right)$. One isometry of $L^{1}(X, \Sigma, \mu)$ is that induced by a μ-measure preserving automorphism of Σ. For such an isometry T one has $T(\Delta)=\Delta, T\left(\diamond^{+}\right)=\diamond^{+}$. In fact, $T(S) \in \mathscr{S}_{\diamond^{+}}$if $S \in \mathscr{P}_{\diamond^{+}}$ for T must be an order isomorphism of Σ hence preserve chains, complete chains or maximal chains. Such isometries T can be ignored for the purpose of constructing a simplicial subdivision of \diamond. Any isometry of $L^{1}(X, \Sigma, \mu)$ is the composition (on either side) of an isometry arising from a measure preserving Σ-automorphism and an isometry of the form R_{E} where $E \in \Sigma_{\mu}$ and $R_{E}(f)$ is defined to be $\left(\chi_{E}-\chi_{E^{c}}\right) f$ for any $f \in L^{1}(X, \Sigma, \mu)$. This may be established in several different ways, one being an appeal to the Banach-Stone Theorem. We have E defined for the isometry T by the requirement that the image of $1 \in L^{\infty}(X, \Sigma, \mu)$ under the adjoint isometry T^{*} be $\chi_{E}-\chi_{E^{c}}$.

The image $T(\Delta)$ under an isometry T is a maximal proper face of \diamond, a one co-dimensional face in fact. $T(\Delta)$ is equal to $\{f \in \diamond$: $\|f\|_{1}=1$, $\left.\left(\chi_{E}-\chi_{E^{c}}\right) f \geqq 0\right\}$ where $E \in \Sigma_{\mu}$ is associated with T. The image of \diamond^{+}under T has a similar characterization. The 1 -codimensional skelton of \diamond consisting of all 1-codimensional faces of \diamond is precisely the set of maximal proper faces of \diamond by Lau in [5]. Lau also shows that any maximal proper face of \diamond is $R_{E}(\Delta)$ for a unique E in Σ_{μ}.

Proposition 4.2. (a) $\left\{R_{E}\left(\diamond^{+}\right): E \in \Sigma_{\mu}\right\}$ is a K-simplicial subdivision of \diamond.
(b) If $\left\{E_{1}, E_{2}\right\} \subset \Sigma_{\mu}$ then $R_{E_{1}}\left(\diamond^{+}\right) \cap R_{E_{2}}\left(\diamond^{+}\right)=R_{E_{1}}\left(\diamond^{+} \cap R_{F}\left(\diamond^{+}\right)\right)=$ $R_{E_{1}}\left(\left\{f \in \diamond^{+}: f \chi_{F^{c}}=0\right\}\right)$ where F is $\left(E_{1} \cap E_{2}\right) \cup\left(E_{1}^{c} \cap E_{2}^{c}\right)$.

Proof. The proof of (b) is straight forward. To establish (a) it is enough to show that if E_{1} and E_{2} are in Σ_{μ} then $R_{E_{1}}\left(\diamond^{+}\right) \cap R_{E_{2}}\left(\diamond^{+}\right)$ is a face of $R_{E_{1}}\left(\diamond^{+}\right)$. This is an isomorphic image of $\diamond^{+} \cap R_{F}\left(\diamond^{+}\right)=$ $\left\{f \in \diamond^{+}: f \chi_{F^{c}}=0\right\}$ where $F=\left(E_{1} \cap E_{2}\right) \cup\left(E_{1}^{c} \cap E_{2}^{c}\right)$. Since this is a face of $\diamond^{+}, R_{E_{1}}\left(\diamond^{+}\right) \cap R_{E_{2}}\left(\diamond^{+}\right)$is a face of $R_{E_{1}}\left(\diamond^{+}\right)$.

Proposition 4.3. $\mathscr{S}_{\diamond}=\left\{R_{E}(S): S \in \mathscr{S}_{\diamond_{+}}, E \in \Sigma_{\mu}\right\}$ forms a K-simplicial subdivision of \diamond.

Proof. It is only necessary to show that if $\left\{E_{1}, E_{2}\right\} \subset \Sigma_{k}$ and $S_{1} \cap S_{2} \in \mathscr{S}_{\diamond^{+}}$then $R_{E_{1}}\left(S_{1}\right) \cap R_{E_{2}}\left(S_{2}\right)$ is a face of $R_{E_{1}}\left(S_{1}\right)$. By (b) of Proposition 4.2, it may be assumed that $E_{1}=X$ so that $R_{E_{1}}\left(S_{1}\right)=S_{1}$. In this case $S_{1} \cap R_{E_{2}}\left(S_{2}\right)=S_{1} \cap\left\{f \in S_{2}: f \chi_{E_{2}^{*}}=0\right\}$. Since $\left\{f \in S_{2}: f \chi_{E_{2}^{*}}=0\right\}$ is a norm closed face of S_{2}, Proposition 3.3 guarantees that $S_{1} \cap R_{E_{2}}\left(S_{2}\right)$ is a face of S_{1}.

Remark. In the σ-finite case one may obtain a barycentric simplicial subdivision of \diamond as in Proposition 4.3 starting with the subdivision \mathscr{S}_{g} of Δ rather than \mathscr{S}^{f} for $g \in \Delta$ with $F_{g}=\Delta$.
5. K-simplicial subdivisions of barycentric type. In this section it is shown that the K-simplicial subdivision \mathscr{S}^{f} of a K-simplex Δ is the only type of barycentric subdivision possible satisfying certain coherence and regularity properties.

Proposition 5.1. Let \mathscr{S} be a K-simplicial subdivision of Δ (the positive face of the unit ball of $L^{1}(X, \Sigma, \mu)$) and \mathscr{G} its associated K-simplicial complex. (i) Assume that if $S \in \mathscr{P}$,
(a) $S=\mathrm{cl} \operatorname{conv}(\xi(S))$
(b) $\xi(S)$ is linearly ordered by absolute continuity $\left(g_{1}<g_{2}\right.$ iff $S_{g_{1}} \subset S_{g_{2}}$ iff $\left.F_{g_{1}} \subset F_{g_{2}}\right)$
(ii) If g_{1}, g_{2} are in the zero skeleton, ${ }^{\circ} \mathscr{P}$, of \mathscr{P} then $g_{1}^{A}=g_{2}^{1}$ if $A=S_{g_{1}} \cap S_{g_{2}}$.

Then, $\{\varnothing\} \cup\left\{S_{g}: g \in^{\circ} \mathscr{S}\right\}$ is an ideal in Σ_{μ}. If $g \in{ }^{\circ} \mathscr{S}$ then the trace $\mathscr{C} \cap F_{g}$ is \mathscr{C}_{g}.

Proof. We first note that (ii) implies that for an $A \in \Sigma_{\mu}$ there is at most one $g \in^{\circ} \mathscr{S}$ with $S_{g}=A$. The assumptions (i) and (ii) assure that $\xi(S)$ is a norm closed set in Δ which is locally compact and, in fact, for which every bounded order interval is compact. If S_{0} is the closed convex hull of a compact order interval in $\xi(S)$ then S_{0} is a compact face of S which is a Bauer simplex. The σ-convex hull of the union all such S_{0} is a norm closed face of the K-simplex S, [3], [4], which contains $\xi(S)$ hence equal S. If F is any closed face of S then F is the σ-convex hull of $F \cap S_{0}$ for such S_{0} hence F is the closed convex hull of $F \cap \xi(S)=\xi(F)$. That is, \mathscr{C} is the ensemble $\{\mathrm{cl}$ conv $(K): K$ closed in $\xi(S), S \in \mathscr{S}\}$. If $g_{0} \in \Delta$ is such that $g_{0}^{S} g=g$ for all $g \in \mathscr{S}$ with $S_{g} \subset S_{g_{0}}$ the trace $\mathscr{C} \cap F_{g_{0}}=\left\{S \cap F_{g_{0}}, S \in \mathscr{C}\right\}$ is $\left\{S \in \mathscr{C}, S \subset F_{g_{0}}\right\}$ and is a subset of $\mathscr{C}_{g_{0}}$ (the simplicial complex in Proposition 2.6 with $F_{g_{0}}$ replacing 4). Such g_{0} include all elements of ${ }^{\circ} \mathscr{S}$.

If $g \in^{\circ} \mathscr{S}$ and $A \in \Sigma_{\mu} \backslash\{\varnothing\}$ is in S_{g} then $g^{A} \in S$ for some $S \in \mathscr{S}$ hence $g^{A} \in S \cap F_{g} \in \mathscr{C}_{g}$. This is only possible if $g^{A} \in \xi\left(S \cap F_{g}\right) \subset \xi(S)$.

Thus, if $g \in^{\circ} \mathscr{S}$ and $\varnothing \neq A \subset S_{g}$ then $A=S_{g^{\prime}}$, for some $g^{\prime} \in^{\circ} \mathscr{S}$. If we are given $C \in C$-Chain $\left(\Sigma_{\mu}\right)$ with supremum in S_{g} one may construct an $h \in \Delta$ such that $C=C(h, g)$. For h to be in S for some $S \in \mathscr{S}$ it is necessary and sufficient that $C(h, g)$ be a closed subset of $\xi(S)$. Since \mathscr{S} covers F_{g} it is easy to deduce that $\mathscr{C} \cap F_{g_{0}}=\mathscr{C}_{g}$.

To establish that $\{\varnothing\} \cup\left\{S_{g}: g \in^{\circ} \mathscr{S}\right\}$ is an ideal in Σ_{μ} we need to show that if $\left\{g_{1}, g_{2}\right\} \subset^{0} \mathscr{S}$ there is a $g_{3} \in^{0} \mathscr{S}$ with $S_{g_{3}}=S_{g_{1}} \cup S_{g_{2}}$. It may be assumed, without loss of generality, that $S_{g_{1}} \cap S_{g_{2}}=\varnothing$. Hence we may assume that, in $F=F_{g_{0}}$ for $g_{0}=\left(g_{1}+g_{2}\right) / 2, F_{g_{1}}$ and $F_{g_{2}}$ are complementary split faces. If $g \epsilon^{\circ} . \mathscr{S} \cap F$ then g is uniquely expressed as a convex combination $\lambda_{g} \widetilde{g}_{1}+\left(1-\lambda_{g}\right) \widetilde{g}_{2}$ where $\widetilde{g}_{1} \in F_{g_{1}}$ and $\widetilde{g}_{2} \in F_{g_{2}}$ are given by $\widetilde{g}_{j}=g^{S_{g} \cap S_{g_{j}}}=g_{j}^{\text {Sng }_{g} S_{g_{j}}}$ for $j=1$, 2 . If $S \in \mathscr{S}$ then $F \cap S$ is cl conv $(F \cap \xi(S))$ where $\xi(S) \cap F$ is a closed initial interval of the linearly ordered $\xi(S)$. As g increases in $\xi(S) \cap F, S_{g}$ increases in $S_{g_{1}} \cup S_{g_{2}}$ to S_{0}. An increasing cofinal sequence $\left\{g_{n}\right\}$ may be found in $\xi(S) \cap F$ so that $\left\{\lambda_{g_{n}}\right\}$ is convergent to λ_{0}, say. Then $\left\{g_{n}\right\}$ converges in norm to $g_{\infty}=\lambda_{0} g_{1}^{S} g_{1} \cap S_{0}+\left(1-\lambda_{0}\right) g_{2}^{S} g_{2} \cap s_{0}$. Since $\xi(S) \cap F$ is closed $g_{\infty} \in \xi(S) \cap F$. Thus, g_{∞} is the maximum of $\xi(S) \cap F$. There is an $S \in \mathscr{S}$ so that $g_{0} \in S \cap F$. If there is an $A \varsubsetneqq S_{g_{1}} \cup S_{g_{2}}$ such that $S_{g} \subset A$ for all $g \in \xi(S) \cap F$ then $S_{h} \subset A$ for all $h \in S \cap F$. Considering $h=g_{0}$ this is seen to be impossible so such an A doesn't exist. Thus, $S_{g_{1}} \cup S_{g_{2}}=S_{g_{\infty}}$. Thus, we may set $g_{3}=g_{\infty}$. This establishes the proposition.

Any K-simplicial subdivision \mathscr{S} of a K-simplex Δ which satisfies (i) and (ii) of Propotision 5.1 will be said to be of barycentric type.

Proposition 5.2. Let \mathscr{S} be a K-simplicial subdivision of Δ of barycentric type. There is a measure ν on (X, Σ) so that Δ is affinely isometric with the positive face of the unit ball of $L^{1}(X, \Sigma, \nu)$ under an isometry Φ and so that $\Phi\left({ }^{\circ} \mathscr{S}\right)$ consists of elements of the form $\chi_{A}[\nu(A)]^{-1}$ for $0<\nu(A)<\infty$.

Proof. Select a maximal collection $\left\{g_{\alpha}\right\} \subset{ }^{0} \mathscr{S}$ with disjoint $\left\{S_{g_{\alpha}}\right\}$. Select $g_{\alpha_{0}}$. If $\alpha \neq \alpha_{0}$ there is a unique $g^{\alpha} \in^{0} \mathscr{S}$ with $S_{g^{\alpha}}=S_{g_{\alpha}} \cup S_{g_{\alpha_{0}}}$ and $g^{\alpha}=\lambda_{\alpha}\left(g_{\alpha_{0}}+\gamma_{\alpha} g_{\alpha}\right)$ where $\lambda_{\alpha}\left(1+\gamma_{\alpha}\right)=1$ with $\lambda_{\alpha}>0$ and $\gamma_{\alpha}>0$. Set $h=g_{\alpha_{0}}+\sum_{\alpha \neq \alpha_{0}}\left(1 / \gamma_{\alpha}\right) g_{\alpha}$ and $\nu=h \mu$ so that $\int_{X} f d \nu=\int_{X} f h d \mu$ for all f. The map $\Phi: f \rightarrow f / h$ is a bipositive isometry from $L^{1}(X, \Sigma, \mu)$ onto $L^{1}(X, \Sigma, \nu)$ with $\Phi\left(g_{\alpha_{0}}\right)=\chi_{s_{g \alpha_{0}}}$ and $\Phi\left(g_{\alpha}\right)=\left(1 / \gamma_{\alpha}\right) \chi_{s_{g \alpha}}$. For all $\alpha, \quad 0<\nu\left(S_{g_{\alpha_{0}}}\right)<\infty$. If $\varnothing \neq A \subset S_{g_{\alpha}}$ then $\Phi\left(g_{\alpha}^{A}\right)=$ $\chi_{A}\left[\gamma_{\alpha} \mu\left(g_{\alpha}, A\right)\right]^{-1}$.

Suppose that $\alpha_{0}, \alpha_{1}, \alpha_{2}$ are distinct and that A_{j} is a non-empty subset of $S_{g_{\alpha_{j}}}$ for $j=1,2$. The unique $h \in^{\circ} \mathscr{S}$ with $S_{h}=A_{0} \cup A_{1} \cup A_{2}$
is a convex combination $\eta_{0} g_{\alpha_{0}}^{A_{0}}+\eta_{1} g_{\alpha_{1}}^{A_{1}}+\eta_{2} g_{\alpha_{2}}^{A_{2}}$. We have $h^{A_{0} \cap A_{j}}=$ $\left[g^{\alpha_{j}}\right]^{A_{0} \cap A_{j}}=\left[g_{\alpha_{0}}+\gamma_{\alpha_{j}} g_{\alpha_{j}}\right]^{A_{0} \cup A_{j}}=\left(\mu\left(g_{\alpha_{0}}, A_{0}\right) g_{\alpha_{0}}^{A_{0}}+\gamma_{\alpha_{j}} \mu\left(g_{\alpha_{j}}, A_{j}\right) g_{\alpha_{j}}^{A j}\right)\left[\mu\left(g_{\alpha_{0}}, A_{0}\right)+\right.$ $\left.\gamma_{\alpha_{j}} \mu\left(g_{\alpha_{j}}, A_{j}\right)\right]^{-1}$ for $j=1,2$. Also, $h^{A_{0} \cup A_{j}}=\left(\eta_{0} g_{\alpha_{0}}^{A_{0}}+\eta_{j} g_{\alpha_{j}}^{A_{j}}\right)\left(\eta_{0}+\eta_{j}\right)^{-1}$ for $j=1,2$. Thus, the vector $\left(\eta_{0}, \eta_{j}\right)$ is proportional to the vector $\left(\mu\left(g_{\alpha_{0}}, A_{0}\right), \gamma_{\alpha_{j}} \mu\left(g_{\alpha_{j}}, A_{\alpha_{j}}\right)\right)$ for $j=1,2$. Thus, $\left(\eta_{0}, \eta_{1}, \eta_{2}\right)$ is proportional to $\left(\mu\left(g_{\alpha}, A_{0}\right), \gamma_{\alpha_{1}} \mu\left(g_{\alpha_{0}}, A_{1}\right), \gamma_{\alpha_{2}} \mu\left(g_{\alpha_{2}}, A_{2}\right)\right)$. We have $h^{A_{1} \cup A_{2}}=\widetilde{h}$ as the unique element of ${ }^{0} \mathscr{S}$ with $S_{\tilde{h}}=A_{1} \cup A_{2}$. $h^{A_{1} \cup A_{2}}$ is a multiple of $\gamma_{\alpha_{1}} \mu\left(g_{\alpha_{1}}\right.$, $\left.A_{1}\right) g_{\alpha_{1}}^{A_{1}}+\gamma_{\alpha_{2}} \mu\left(g_{\alpha_{2}}, A_{2}\right) g_{\alpha_{2}}^{A_{2}}$. Setting $\gamma_{\alpha_{0}}=1$ we may deduce that if h is any element of ${ }^{0} \mathscr{S}$ it may be represented as a countable convex combination $\sum_{\alpha} \eta_{\alpha} g_{g_{\alpha}}^{S_{\alpha} \cap s_{g_{\alpha}}}$ when η_{α} is $\gamma_{\alpha} \mu\left(g_{\alpha}, S_{g_{\alpha}} \cap S_{h}\right)\left[\sum_{\beta} \mu\left(g_{\beta}, S_{g_{\beta}} \cap S_{h}\right)\right]^{-1}$. We have that $\Phi(h)=\sum_{\alpha} \eta_{\alpha} \Phi\left(g_{\alpha}^{S} h^{n} \cap S_{g_{\alpha}}\right)=\left[\sum_{\alpha} \gamma_{\alpha} \mu\left(g_{\alpha}, S_{g_{\alpha}} \cap S_{h}\right)\left[\gamma_{\alpha} \mu\left(g_{\alpha}\right.\right.\right.$, $\left.\left.\left.S_{g_{\alpha}} \cap S_{h}\right)\right]^{-1} \chi_{S_{g_{\alpha}} \cap S_{h}}\right]\left[\sum_{\beta} \gamma_{\beta} \mu\left(g_{\beta}, S_{g_{\beta}} \cap S_{h}\right)\right]^{-1}=\chi_{S_{h}}\left[\sum_{\beta} \mu\left(g_{\beta}, S_{g_{\beta}} \cap S_{h}\right)\right]^{-1}$. Since $\Phi(h)$ has norm 1 in $L^{1}(X, \Sigma, \nu)$ we have $\nu\left(S_{h}\right)=\sum_{\beta} \gamma_{\beta} \mu\left(g_{\beta}, S_{g_{\beta}} \cap S_{h}\right) \in$ $(0, \infty)$. That is, if $h \in^{0} \mathscr{S}$ then $\Phi(h)=\chi_{S_{h}}\left[\nu\left(S_{h}\right)\right]^{-1}$ and $0<\nu\left(S_{h}\right)<\infty$.

The mapping Φ sends \mathscr{S} onto a simplicial subdivision $\Phi(\mathscr{S})$ of the positive face $\Delta(\nu)$ of the unit ball of $L^{1}(X, \Sigma, \nu)$ whose zero skeleton $\Phi\left({ }^{\circ} \mathscr{S}\right)$ is a subset of the zero skeleton of the simplicial subdivision $\mathscr{S}^{f}(\nu)$ of $\Delta(\nu)$ given by Proposition 3.3. Conditions (i) and (ii) asssure that $\Phi(\mathscr{S}) \subset \mathscr{C}^{f}(\nu)$ (the simplical complex associated with $\mathscr{S}^{f}(\nu)$). If $\nu(A)<\infty$ then $\chi_{A}[\nu(A)]^{-1}$ belongs to some simplex S in $\Phi(\mathscr{S})$. Since S is a face of some simplex \widetilde{S} in $\mathscr{S}^{f}(\nu)$ and $\chi_{A}[\nu(A)]^{-1} \in \xi(\widetilde{S}), \chi_{A}[\nu(A)]^{-1} \in \xi(S)$ hence is in $\Phi\left({ }^{\circ} \mathscr{S}\right)$. That is, $\Phi\left({ }^{0} \mathscr{S}\right)=$ ${ }^{0} \mathscr{S}^{f}$. If $S \in \mathscr{S}$ then $\Phi\left(\xi(S)\right.$) is in $\operatorname{Chain}_{f}\left(\Sigma_{\nu}\right)$. If $A_{1} \subset A_{2}$ and $\chi_{A_{2}}\left[\nu\left(A_{2}\right)\right]^{-1} \in \Phi(\xi(S))$ then $\chi_{A_{1}}\left[\nu\left(A_{1}\right)\right]^{-1} \in \Phi(\xi(S))$. If there is an A with $0<\nu(A)<\infty$ with $\chi_{A_{1}}\left[\nu\left(A_{1}\right)\right]^{-1} \ll \chi_{A}[\nu(A)]^{-1}$ for all $\left.\chi_{A_{1}}\left[\nu\left(A_{1}\right)\right]^{-1} \in \Phi(S)\right)$ and $\chi_{A}[\nu(A)]^{-1}$ isn't in $\Phi(\xi(S))$ we find that there is a simplex \widetilde{S} in \mathscr{S} with $\Phi^{-1}\left(\chi_{A}[\nu(A)]^{-1} \in \widetilde{S}\right.$ with S a proper face of \widetilde{S} which is impossible since \mathscr{S} is a simplicial subdivision. Thus, $\Phi(\xi(S))$ must belong to M-Chain ${ }_{f}\left(\Sigma_{\nu}\right)$. That is, $\Phi(S) \in \mathscr{S}^{f}(\nu)$ for any $S \in \mathscr{S}$. For any $S \in \mathscr{S}^{f}(\nu)$ there is an $h \in L^{1}(X, \Sigma, \nu)$ so that the chain $\{\{h>t\}: 0<$ $t<\|h\|\}$ has closure $\xi(S)$. The simplex S is the smallest in $\mathscr{C}^{f}(\nu)$ containing h. Since $\Phi(\mathscr{S})$ covers $\Delta(\nu), h \in \Phi(\widetilde{S})$ for some $\widetilde{S} \in \mathscr{S}$. Thus, $S=\Phi(\widetilde{S})$. It follows that $\mathscr{P}^{f}(\nu)=\Phi(\mathscr{S})$. This completes the proof of the proposition.

Corollary 5.2.1. Let $\left\{F_{\alpha}\right\}$ be a disjoint collection of norm closed faces of Δ. Let \mathscr{S}_{α} be a simplicial subdivision of F_{α} of barycentric type. There is a simplicial subdivision \mathscr{S} of Δ such that each \mathscr{S}_{a} is in the K-simplicial complex \mathscr{C} associated with \mathscr{S}.

Proof. Let Δ be represented as the positive face of the unit ball of $L^{1}(X, \Sigma, \mu)$. For each α let $A_{\alpha}=\bigcup\left\{S_{g}: g \in F_{\alpha}\right\}$ so F_{α} is representable as the positive face of the unit ball of $L^{1}\left(A_{\alpha}, \Sigma, \mu\right)$. Let ν_{α} be a measure on A_{α} so that Δ_{α} is $\mathscr{P}^{f}\left(\nu_{\alpha}\right)$ as in Proposition
5.2. Let F_{∞} be the face of Δ complementary to $\bigcup_{\alpha} F_{\alpha}$ and $A_{\infty}=$ $X \backslash \bigcup_{\alpha} A_{\alpha}$ (in Σ_{μ}) so that $F_{\infty}=\bigcup\left\{S_{g}: g \in A_{\infty}\right\}$. Let ν_{∞} be the restriction of μ to A_{∞}. Let $\nu=\sum_{\alpha} \nu_{\alpha} \chi_{A_{\alpha}}+\nu_{\infty} \chi_{A_{\infty}} . \quad L^{1}(X, \Sigma, \nu)$ is isometric with $L^{1}(X, \Sigma, \mu)$ under a positive isometry Φ. The image of $\mathscr{S}^{f}(\nu)$ under Φ is a K-simplicial subdivision \mathscr{S} of Δ whose associated K simplicial complex contains $\bigcup_{\alpha} \mathscr{S}_{\alpha}$.

We may improve Corollary 2.5.1 in Proposition 5.3 and provide a basis for giving barycentric subdivisions of arbitrary K-simplicial complexes in Proposition 5.4.

Proposition 5.3. Let $\left\{F_{\alpha}\right\}$ be a collection of norm closed faces of the K-simplex 4 . Let \mathscr{S}_{α} be a K-simplicial subdivision of F_{α} for each α which is barycentric type. If the trace of \mathscr{S}_{α} and \mathscr{S}_{β} agree on $F_{\alpha} \cap F_{\beta}$ for all α, β, then there is a K-simplicial subdivision \mathscr{S} of Δ with associated simplicial complex \mathscr{C} such that $\mathscr{S}_{\alpha} \subset \mathscr{C}$ for all α.

Proof. For any α there is a minimal collection $\left\{F_{\beta}: \beta \in \Lambda_{\alpha}\right\}$ so that $\alpha \in \Lambda_{\alpha}$ and so that if $\gamma \notin \Lambda_{\alpha}$ then F_{γ} is disjoint from the norm closed face Δ_{α} generated by $\left\{\bigcup F_{\beta}: \beta \in \Lambda_{\alpha}\right\}$. The relation $\alpha_{1} \sim \alpha_{2}$ iff $\alpha_{2} \in \Lambda_{\alpha_{1}}$ is an equivalence relation on the index set of $\left\{F_{\alpha}\right\} . \quad \Delta_{\alpha}$ depends only on the equivalence class of α. If $\alpha_{1} \nsim \alpha_{2}$ then $\Delta_{\alpha_{1}} \cap \Delta_{\alpha_{2}}=\varnothing$. If we show how to give a simplicial subdivision \mathscr{S} of a Δ_{α} so that $\mathscr{S}_{\beta} \subset \mathscr{C}$ if $\beta \in \Lambda_{\alpha}$ we will be done upon appeal to Corollary 5.2.1. Thus, without loss of generality it may be assumed that $\Delta=\Delta_{\alpha_{0}}$ for some α_{0}. We may enumerate $\left\{F_{\alpha}\right\}$ by ordinals α so that $F_{\alpha_{0}}=F_{0}$ and so that if β is an ordinal then $F_{\beta} \cap F^{\beta-} \neq \varnothing$ where $F^{\beta-}$ is the norm closed face of Δ generated by $\left\{F_{\alpha}: \alpha<\beta\right\}$. Let F_{β}^{\prime} be the norm closed face of F_{β} complementary in F_{β} to $F_{\beta} \cap F^{\beta-}$. Let $S_{\beta}=$ $\bigcup\left\{S_{g}: g \in F_{\beta}\right\}, S^{\beta-}=\bigcup\left\{S_{\alpha}: \alpha<\beta\right\}, S^{\beta}=S^{\beta-} \cup S_{\beta}$ and $S_{\beta}^{\prime}=S_{\beta} \mid S^{\beta-}$. We wish to construct a measure ν on (X, Σ) and a Banach lattice isomorphism $\Phi: L^{1}(X, \Sigma, \mu) \rightarrow L^{1}(X, \Sigma, \nu)$ so that $\Phi\left(\mathscr{S}_{\alpha}\right) \subset \mathscr{C}^{f}(\nu)$. The measure ν and isomorphism Φ will be constructed by transfinite induction by constructing ν_{α}, the restriction of ν to S^{α}, for each ordinal α. Each ν_{α} will be of the form $h \chi_{S_{\alpha}} \mu$ for some positive measurable h and Φ will be the map $g \rightarrow g / h$. Suppose ν_{β} has been constructed for all $\beta<\alpha$ so that $\nu_{\beta}=h \chi_{s^{8}} \mu$ for some measurable h and so that $\Phi\left(\mathscr{S}_{\beta}\right) \subset \mathscr{C}^{f}\left(\nu_{\beta}\right)$ when $\mathscr{C}^{f}\left(\nu_{\beta}\right)$ is the simplicial complex on the positive face $F^{\beta}=F^{\beta-} \cup F_{\beta}$ of the unit ball of $L^{1}\left(S^{\beta}, \Sigma, \nu_{\beta}\right)$. Now ν_{α}, which is to be defined, must equal, on $S^{\alpha-}$, the measure $h \chi_{s^{\alpha}-\mu}$. ν_{α} must be defined on S_{α}^{\prime}, if this is non-empty. By Proposition 5.2, there is a measure ω_{α} on S_{α} so that $\omega_{\alpha}=h_{\alpha} \chi_{S_{\alpha}} \mu$ for some measurable h_{α}, and so that if $\Phi_{\alpha}: g \rightarrow g / h_{\alpha}$ is the isomorphism of $L^{1}\left(S_{\alpha}, \Sigma, \mu\right)$ to $L^{1}\left(S_{\alpha}, \Sigma, \omega_{\alpha}\right)$ then $\Phi\left(\mathscr{S}^{\alpha}\right)=\mathscr{S}^{f}\left(\omega_{\alpha}\right)$. In the construction
of ω_{α} one may actually set $\omega_{\alpha}=h \mu$ on $S^{\alpha^{\prime}} \cap S_{\alpha}$ to begin with. The function h is defined only on $S^{\alpha-}$. Extend h to S^{α} so that $h=h_{\alpha}$ on S_{α}^{\prime}. Let $\nu_{\alpha}=h \chi_{s^{\alpha}} \mu$. It must be verified that $\Phi\left(\mathscr{S}_{\alpha}\right) \subset \mathscr{C}^{f}\left(\nu_{\alpha}\right)$. It suffices to verify that $\Phi\left({ }^{0} \mathscr{S}_{\alpha}\right) \subset{ }^{0} \mathscr{S}^{f}\left(\nu_{\alpha}\right)$. If $g \in^{0} \mathscr{S}_{\alpha}$, write it uniquely as the convex combination $\lambda_{\alpha} g^{S^{\alpha}}+\left(1-\lambda_{\alpha}\right) g^{S_{\alpha}^{\prime}}$. We have $\Phi(g)=$ $\Phi_{\alpha}(g)=\chi_{S_{g}}\left[\omega_{\alpha}\left(S_{g}\right)\right]^{-1}=\chi_{S_{g}}\left[\nu_{\alpha}\left(S_{g}\right)\right]^{-1} \in^{0} \mathscr{S}\left(\nu_{\alpha}\right)$. Thus, $\Phi\left(\mathscr{S}_{\alpha}\right) \subset \mathscr{C}^{f}\left(\nu_{\alpha}\right)$. At the termination of transfinite induction h is defined on all of X, ν is defined on Σ, and Φ is defined on $L^{1}(X, \Sigma, \mu)$ to $L^{1}(X, \Sigma, \nu)$ so that $\Phi\left(\mathscr{S}_{\mu}\right) \subset \mathscr{C}^{f}(\nu)$ for all α. This establishes the proposition.

Proposition 5.4. Let \mathscr{C} be a K-simplicial complex. There is a K-simplicial complex \mathscr{C}^{\prime} such that
(i) If $S^{\prime} \in \mathscr{C}^{\prime}$ and $S \in \mathscr{C}$ then $S^{\prime} \cap S$ is a face of S^{\prime}.
(ii) If $S \in \mathscr{C}$ the trace, $S \cap \mathscr{C}^{\prime}$, is the K-simplicial complex associated with a K-simplicial subdivision of S of barycentric type.

Proof. Enumerate \mathscr{C} as $\left\{S_{\alpha}\right\}$ where α ranges over an initial set of ordinals. Suppose that for all ordinals $\gamma<\alpha, S_{\gamma}$ has been provided with a K-simplicial subdivision \mathscr{C}_{r} of barycentric type with associated K-simplicial complex \mathscr{C}_{r}. Suppose further that the traces of $\mathscr{C}_{r_{1}}$ and $\mathscr{C}_{r_{2}}$ on $S_{r_{1}} \cap S_{r_{2}}$ are the same. On S_{α} we have a collection of norm closed faces $\left\{S_{\alpha} \cap S_{\gamma}: \gamma<\alpha\right\}$ each of which has the simplicial complex $\mathscr{C}_{\gamma} \cap S_{\alpha}$ corresponding to a K-simplicial subdivision S_{γ} of $S_{\alpha} \cap S_{\gamma}$ of barycentric type. Furthermore, if $\gamma_{1} \neq \gamma_{2}$ then $\mathscr{C}_{r_{1}} \cap\left(S_{\alpha} \cap S_{r_{1}} \cap S_{r_{2}}\right)=$ $\mathscr{C}_{r_{2}} \cap\left(S_{\alpha} \cap S_{r_{1}} \cap S_{r_{2}}\right)$. By Proposition 5.3, there is a K-simplicial subdivision \mathscr{S}_{α} of S_{α} of barycetric type so that the associated K-simplicial complex \mathscr{C}_{α} has trace equal to $\mathscr{C}_{\gamma} \cap\left(S_{\alpha} \cap S_{\gamma}\right)$ for all $\gamma<\alpha$. By transfinite induction each simplex S_{α} in \mathscr{C} is simplicially subdivided in a barycentric fashion by \mathscr{S}_{α}. Let $\mathscr{C}^{\prime}=\bigcup_{\alpha} \mathscr{C}_{\alpha}$. \mathscr{C}^{\prime} is easily verified to be a K-simplicial complex which satisfies (i) and (ii) of this proposition.

References

0. E. M. Alfsen, Convex Compact Sets and Boundary Integrals, Springer, New York, 1971.
1. T.E. Armstrong, Polyhedrality of infinite dimensional cubes, Pacific J. Math., 70 (1977), 297-307.
2. .—. Simplicial subdivisions of infinite dimensional compact cubes, Pacific J. Math., 81 (1979), 1-16.
3. -, Split faces in base norm ordered Banach spaces, (unpublished).
4. K. R. Goodearl, Choquet simplexes and σ-convex faces, Pacific J. Math., 66 (1976), 119-124.
5. K. S. Lau, Infinite dimensional polytopes, Math. Scand., 32 (1973), 193-213.

Received August 5, 1980 and in revised form February 11, 1981.

