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BARYCENTRIC SIMPLICIAL SUBDIVISION OF
INFINITE DIMENSIONAL SIMPLEXES

AND OCTAHEDRA

THOMAS E. ARMSTRONG

A iΓ-simplex is a convex set affinely homeomorphic to
the positive face of the unit ball of a Eakutani L-space and
an octahedron is a convex set affinely homeomorphic to the
entire unit ball. It is shown how to barycentrically subdivide
iΓ-simplexes and octahedra so that the iΓ-simplβxes in the
subdivision are affinely homeomorphic to the simplexes of
probability measures on closed subsets of (0, oo) with the
weak topology. As a consequence, for any closed subset C
of (0, oo), an apparently new complete metric for the weak
topology on ~^i+(C) is given.

I* Introduction* In [2] it was shown how to barycentrically

subdivide the unit cube • of the infinite dimensional space L°°(X, Σ, μ)
where (X, Σ, μ) is a positive localizable measure space. The elements
of the subdivision were Bauer simplexes (under any locally convex topol-
ogy on JL°°(X, Σ, μ) between σ(L°°, L1) and the Mackey topology τ(L°°, L1)).
The extreme points, or zero-skeleton, of the subdivision were the
centers of the centrally symmetric or σ(L°°, L1) closed faces of ••
The 0(L°°f L

1) closed faces of • were ordered by inclusion, hence so
were their centers. The Bauer simplexes of the subdivision were
the closed convex hulls of maximal chains of centers (which chains
are compact in the order topology which agrees with σ(L°°, L1) or
τ(L°°, L1)). The restriction to the positive unit cube Π + of this sub-
division is a Bauer simplicial subdivision of Π + whose various reflec-
tions yield the barycentric subdivision of •• The extreme points
of a subdivision simplex in Π + are of the form {XA: AeC} where C
is a maximal chain in the measure algebra Σμ (which is the quotient
of Σ modulo μ negligible sets). The σ(L°°, L1) closed convex hull Sc

of {XA: AeC} was shown to be affinely homeomorphic to ^C+(C) the
Radon probability measures on the compact C by showing that Sc is
the set of / e Π + with {f^t}eC for all 0 < t ^ ||/1|«,. This was
shown to be in affine correspondence with the convex set £&(&) of
distribution functions on C which in turn is affinely isomorphic to
isomorphic to ^£[+{C).

Here we are concerned with barycentric subdivision in the dual
(or rather predual) setting. We wish to barycentricically subdivide
the unit octahedron <> of L\X, Σ, μ) which is the unit ball. This
will be done by barycentrically subdividing the positive unit ball
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O + and reflecting. The subdivision of O + will be obtained by
subdividing the positive face A of O>+ in a barycentric fashion and
extending to O + by taking the cone of this subdivision with 0 as
vertex using the fact that O + = conv (0, A). A in general has no
extreme points and is non-compact. There are no symmetric faces and
faces compact under most topologies tend to be high in codimension.
The natural class of faces to consider are the norm closed faces of A
which are the same as the σ(L\ L°°) closed faces of A or the split
faces of Δ, (which are the faces F so that there is a unique disjoint
face Fr with A = conv (F U Fr), [0], [3], [4]), or the σ-convex faces,
[3], [4]. The norm closed faces are in 1-1 correspondence with the
elements A oί Σμ. If g e L\X, Σ, μ) then Sg denotes {g Φ 0}, Sj =
{g > 0} and S~ = {g < 0}. If F is a norm closed face of A then the
AF e Σμ corresponding to it is U {Sg: g e F} where U denotes supremum
in Σμ. If g e L1+(X, Σ, μ) then Fg = FSg is the smallest norm closed
face of A containing g. When F is a norm closed face of the form
Fg for some g e A then we say that g is a barycenter of F. If F is
a norm closed face of A we denote by ,9^F the ensemble of split
faces of F. We denote &&Δ by && and S&Fg by ,9?^ for any
g e A. Each .9^F is a hyperstonean Boolean algebra isomorphic with
the hyperstonean Boolean algebra {Ae Σμ: Aa AF] with supremum
AF, [3]. An Fe.9^0* has a barycenter iff .9^F satisfies the count-
able chain condition for Boolean algebras. A has a barycenter iff
(X, Σ, μ) is σ-finite iff X = Sg for some geA.

Any A which is the positive face of the unit ball of a Kakutani
L-space is afϊinely isometric with the positive face A of the unit ball
of L\Xf Σ, μ) for some positive localizable measure space (X, Σ, μ).
All Choquet simplexes are of this form. We shall call such A K-
simplexes. Any norm closed face of a iί-simplex is a iί-simplex.
Any if-simplex considered as A of L\X, Σ, μ) is a norm closed face
of the positive face of the unit ball of the L-space L™*(X, Σ, μ)
when L\X, Σ, μ) is regarded as a subset of L°°*(X, Σ, μ). L^i^X, Σ, μ)
is Banach lattice isomorphic to <^(Zμ), where Zμ is the Stone space
of the measure algebra Σμ, and LTO*(X, Σ, μ) is isomorphic to ^fέ{Zμ).
Hence, any if-simplex is isometric with a norm closed face of a Bauer
simplex. One particular i£-simplex is the space ^/^+(Y) of Radon
probabilities on a locally compact space Y which is isometric with
the norm closed face of . // (ΓUl 0 0 } ) (Radon probabilities on the
one point compactification ΓU{°°} of Y) of probabilities assigning
measure 0 to oo, Our simplicial subdivisions will turn out to have
as elements 2£-simplexes affinely isomorphic to ../^(Y) for certain
locally compact metric spaces Y.

2* The tf-fϊnitβ case* Let (X, Σ, μ) be a σ-finite positive measure
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space. Let geA have Sg = X so A = i*V Let Chain (2^) denote all
chains in Σμ\{0], C-Chain (Σμ) denote all complete chains in Σμ\{0}
and M-Chain (Σμ) all maximal chains in Σμ\{0}. If AeΣμ\{0\ let

gXA\ ^ #dμ = ̂  and let μ(g, A) = I #<2μ. For any C 6 Chain (Σμ)

let C(<7) = {gA: A e C}. For Ce Chain (!"/) let S(C} g) denote the norm
closed convex hull of C(g). Let £fg denote {S(C, flf): Ce M-Chain (Σμ)}.

LEMMA 2.1. Let C e Chain (2^).
(a) T%β mapping A -^ gΛ is a homeomorphism from C with the

order topology into A with the norm topology or any coarser Hausdorff
topology.

(b) The mapping A —> μ(g, A) is a homeomorphism from C into

(0, 1].
(c) C is compact iff it is in C-Chain (Σμ) and inf (C) Φ 0 .

Proof. It suffices to consider only Ce C-Chain (Σμ). (b) is im-
mediate since (0, 1] has its order topology, (c) is also immediate. To
establish (a) one notes that A -+ gA is an order continuous injection
on any chain C into Δ with the norm topology. If C is compact
this map is a homeomorphism. Since any complete chain C is locally
compact with every compact subset is contained in a compact sub-
chain of the form CAQ = {Ae C: Ao c 4̂} for some AoeC the mapping
must be a homeomorphism on any Ce C-Chain (Σμ). •

LEMMA 2.2. Let C be in Chain (Σμ) and let C be its closure in

Σμ\{0}.
(a) S(C,g) = S{C,g).
(b) The extreme points of S(C, g), ζ(S(C, g)), form a subset of C(g).
(c) If C is compact then S(C, g) is a norm compact subset of A.

Proof. Immediate. •

For h e L1+(X, Σ, μ) let C(g, h) 6 C-Chain (Σμ) denote the complete
chain generated by {h/g^t} as t varies over [0, \\h/g\\oo). If Ce
Chain (Σμ) let S(C, g) denote those he A with C(g9 h) c C. Of course
S(C, g) Φ 0 iff Xe C iff C is an intersection of chains in ilf-Chain (Σμ).
For any C 6 C-Chain (Σμ), S(C, g) is a base for cone (0, S(C, g)) =
{h 6 L1+(X, Σ, μ): C{g, h) c C}. For C e C-Chain (Σμ) cone (0, S(C, g)) is
closed under taking arbitrary norm bounded infima and suprema and
under almost sure sequential convergence. Thus, S(C, g) is closed
under almost sure sequential convergence in A hence is norm closed.
Any element h of conv (gΛ: A e C) is easily verified to lie in S(G, g)
hence S(C, g) c S(C, g). On the other hand any h e cone (0, S(C, g))
is an increasing limit of positive linear combinations Σ?=i \9Ai hence
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any h in S(C, g) is a limit, in norm, of a sequence from conv (gA:
AeC). Thus, S(C, g) c S(C, g).

LEMMA 2.3. (a) // Ce C-Chain (I7^) ίAew, S(C, 0) = S(C, #).
(b) C 6 C-Chain (2^) is α compact chain iff || Λ/flr |]oo < oo for all

heS(C,g).

Proof, (a) has been established.
(b) C is compact iff μ(g, Ao) > 0 where Ao = inf (C).

In this case ll^/g]^ = \\(gXJg)(β(g9 A))'1^ = μ(g9 A)'1 ^ μ(g9 Ao)'1.
As a result || h/g ||«> <; μ(#, A Γ 1 for all h e conv {gA: A e C}. By conti-
nuity, || h/g I!*, ^ μ(0, Ao)"1 for all h e S(C, #). Conversely, if μ(g, Ao) = 0
then \\gA/g\\™ —> °° as A decreases in C. Choose a decreasing sequence
{At} in C with 0 < μ(g, A,) ^ 2~2ΐ for all i. Set Λ - ΣΓ=i 2 " V e S(C, g).
One may verify that h/g ̂  2* on «At for all i so ||Λ/flr||oo = °°. Π

Let C 6 C-Chain (2^) be compact with infimum Ao and supremum
X. The map ί̂ : fc -> fc/flr is 1-1 from cone (0, S(C, g)) into L°°(X, 2', /i).
The image of cone (0, S(C, g)) consists precisely of those/6 L°°+(X, Σ, μ)
so that {/ ^ t}eC for all 0 ^ t ^ ||/||oo. In [2] it was shown that
the σ(L°°, L1) closed convex hull Sc of {1A: AeC} consists precisely
of those / 6 Π + with {/ ^ t} e C for 0 < t ^ || / ||oo hence for 0 ^ t ^
||/Hoc. From this it follows that Φx(cone(0, S(C, g))) is cone (0, Sc).
The map ΦΓ1 is easily seen to be continuous for σ(L°°9 L

1) and ̂ (L1, L°°).
There is an affine homeomorphism Φ2 from ^f+(C) with the topology
σ(^T(C), ^(C)) to cone (0, So) with the topology (j(L°°, L1), [2] Prop-
osition 3.2. The function A -» [̂ (̂ r, A)] is an element of ^(C) which
is never 0 by Lemma 2.1. The map Φ3: v —> μ(g, A)v is a homeomor-
phism of ^T + (C) for <TC^T(C), ̂ (C)). The mapping ψ = Φϊ1 oφ2oφ3

maps ^€+(C) in a 1-1 continuous fashon onto cone (0, S(C, g)). If
AeC then ψ(S A) is easily verified to be gA. Consequently, ψ(^ίί+(C))
is the (/(I/, L°°) closed convex hull of C(g) which is S(C, g) since
σ(Lx, L°°) and the norm topology agree on S(C, g). Since ψ is 1-1
and continuous it is a homeomorphism from ^C + (C) to S(C, g).
ξ(S(C, g)) = t ( ^ ί + ( C ) ) = C(flf).

PROPOSITION 2.4. If C is a compact chain in C-Chain (2^) then
S(Cf g) is a Bauer simplex under the norm topology and
ξ(S(C, g)) - C(g).

Proof. When XeC this has been established. Otherwise C is a
closed subset of the compact chain C U {X} hence S(C, g) is a closed
face of the Bauer simplex S(C U {X}, g). •
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The mapping Φϊ1 assigns to each f eSc the pf e ^£[+(C) defined
by pf{A: AeC, {/ ^ t) a A} = t = dPf({f ^ £}) where dPf is the left
continuous distribution function of pf on C. One may deduce that
if AeC then the essential infinum, ess inf^ (/) = df(A) of / on A is
dPf{A). These remarks extend to the case where / e cone (0, SG)
where pfe^€+{C). If AxeC one may consider the order interval
CAι = {AeC:A1cA}. The restriction of pf to CAί has distribution
function which is the restriction of df to CAι. The measure P/\cA

may considered as an element of ^t+(C) in the usual manner. Its
distribution function is the extension df1 of df\CA to C described by
dp(A) = d,(A) if A1aA and by d^(ii) == df(A\) otherwise. This
corresponds to the function / Λ df(A) in cone (0, SCAi)) C cone (0, SG)).
Since pf -» pf \OjL is a continuous linear surjection from ^+(C) to
*^*(CAj) the map / —> / Λ ώ/(^i) is a continuous linear sur jection
from cone(0, Sc) onto cone (0, SCAI). AS a result the map ft—>ftΛ
[ffdh/gίAi)] is a continuous linear sur jection from cone (0, S(C, g)) to
cone(0,S(CΛl9g)).

If C is a noncompact complete chain and h e cone (0, S(C9 g)) we
may define dh/g(A) = ess inf̂  (fe/flr) if AeC. The map QA: h —> ft Λ
[ί/c?λ/g(A)] is again a continuous linear map onto cone (0, S(CAl, g)).
Furthermore, if Aλ c A2 are in C then ζ^2 o QAχ = Q 2̂. For any ft in
cone (0, S(C, g)) QA(h) increases to ft as A decreases in C The func-
tion dh/g is decreasing and left continuous on C. For each AeC, one
assigns to ft the measure QA(h) e ^f+(CΛ) corresponding to the restric-
tion of dh/g to CA. The mapping QA: ft -> ̂ (gr, A)Q (̂ft) is a continuous
linear sur jection from cone (0, S(C, g)) to ^f+(CA) such that if AιdAly

are in C then QA% o ^ 1 o Q* i == Q* 2 where ^ is the affine isomorphism
from ^P+(CAJ to cone (0, S(CAl9 g)). The norm of QA(h) is equal to
the norm of hΛ[gdh/g(A)]. As A decreases in C, QA(h) (considered
as elements of ^/th

+(C)) converges to an element Q\h) of
whose restriction to any CA is QA(h). Furthermore Q*(ft)e
iff heS(C, g). If μe^fb

+(C) one may find, for an AeC, the image
ψA(μ) of the restriction of μ to C^ under ψA in cone (0, S(CA, g)) a
cone(0, S(C, g)). For any j « e ^ + ( C ) , Qi °^*O) is the restriction of
μ to C .̂ As A decreases in C, ψA(μ) converges to an element ψ\μ)
of cone (0, S(C, g)) which satisfies QKψXμ)) = ^. Conversely if ft e
cone (0, S(C, »)) then ψ\Q*(K)) = ft.

PROPOSITION 2.5. Lei CeC-Chain^) .
(a) S(C, g) is affinely isomorphic to ^/P+iC) under Q*.
(b) ξ(S(C, g)) = C(g).
(c) // C is a complete subchain of C then S(C, g) is a norm

closed face of S(C, g).
(d) Any norm closed face F of S(C, g) is the σ-convex hull of its
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compact subfaces and is S(CF, g) for some C1 a complete subchain
of C.

(e) If Ce C-Chain {Σμ) then S(C, g) n S(C, g) = S(C Π C, g).

Proof, (a) has already been established.
(b) is immediate from the fact that the extreme points of Λ%.+(C)

are the dA with AeC which correspond to gΛ for A e C.
To establish (c) it is only necessary to note that Q# assigns to

the probabilities on C giving full measure to C" the subset S(C, g).
Since these probabilities on C are a face of ^ Ί + ( C ) , S(C\ g) is a
face of S(C, g) which is norm closed.

If F is a compact face of S(C, g) then ξ(F) is a compact set in
C(g) of the form {gA: A e C"} for a compact chain C aC hence I*7 —
S(C", #). Conversely, if C" is a compact chain in C then ^[+(Cr) is
a face of * ^ + ( C ) which corresponds to S(C, gr) under Q*. Hence
S(C", g) is a compact face of S(C, g).

Let Λ, 6 S(C, g) and let {An} decrease to 0 in C. For any ^ set
K = hΛ(gdh/g(An))9 X, = ||ΛX |U, and λΛ = ||ΛΛ - Λ»-i ||x if n > 1. Set
^x - ΛΛΓ1 if λi ^ 0, set h" = (ftΛ - K^X'1 iί n > 1 and if λw ^ 0,
and set /&*' = 0 if λ̂  = 0 for j ^ 1. It is easily verified using Lemma
2.3 that hn e S(CAn, g) for all n if hn Φ 0. We have h = Σϊ=i λnfe

Λ

and Σ?=iλ»Λ = 1. Thus, h is in the σ-convex hull of the union of
the compact faces {S(CAn, g):neN} of S(C, g).

Let F b e a norm closed face of S(C, g) and let heF. Let {AM}
and {hn} be as in the preceding paragraph. The face F Π S(CA%, g)
of .F and S(CAn, g) is compact and h is in the σ-convex hull of the
union of these faces as n ranges over N. For each n, ξ(F Π S(CAn, g))
is of the form Cn(g) for a compact subset Cn of CAn. Furthermore
Cn Π CAn^ = C^"1 for all % > 1. Thus, F is the σ-convex hull of
CF = UneivC* which is a complete subchain of C. This establishes
(d).

(e) is immediate from Lemma 2.3. Π

We recall from [2] that a simplίcial subdivision of J is a col-
lection £S of simplexes which cover Δ, so that if Sλ Φ S2 are in 3^
then Sλ Π S2 is a proper face of Sx and of S2. A K-simplicial sub-
division, under a topology on Δ, is defined to be one whose elements
are Jf-simplexes. A simplicial precomplex on Δ is a collection ^
of simplexes covering Δ such that {Su S2} c «5^ then Sx n S2 is a face
both of Sx and S2. A simplicial complex, under a topology on Δ, is
a simplicial precomplex which if it contains a simplex S also contains
all closed faces of S. If S? is a iΓ-simplieial subdivision then the
ensemble ^ of closed faces of elements of S? is the associated sim-
plicial complex.
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PROPOSITION 2.6. £fg = {S(C, g): C e Λf-Chain (Σμ)} is a K-simpli-
eial subdivision of A whose associated simplicial complex is cέ?g —
{S(C, g):CeC-Gham(Σμ)}.

Proof. By Proposition 2.5, it is evident that S^g is a cover of
A by jδΓ-complexes and that <^g consists of all norm closed faces of
,9%. The only condition not immediately apparent to verify that ,9%
is a ϋΓ-simplicial subdivision of A is the condition that if Cλ Φ C2 are
in M-Chain (Σ,t) then S(Cl9 g) n S(C2, g) is a proper face of both S(Clf g)
and S(C2, g). This is a consequence of Proposition 2.5. (e) and the
maximality of Cx and C2. Π

The mapping Q* transfers the metric || ||x on S(C, g) to a metric
Dg on ^ + ( C ) in the natural fashion so that Dg{Q\K\ Q\h2)) =
llfti —fe2||i Actually, Q# is extendable so that it is defined on
L(C9 g) = cone(0, S(C, g)), — cone (0, S(C, g)) and is a Banach lattice
isomorphism from the L-space L(Cf g) to the L-space ^fSh{C). The
norm of the L-space L(G, g) is not || ||3 but the Minkowski functional
pg of conv {S{C, g) - S(C, g)) and pg ^ || 1̂  on L(C, g) since Q*"1 is a
contraction from . ^ ( C ) into L\X, Σ, μ). Since S(C, g) is || ^-closed
. /^!+(C) is Incomplete.

If Ax c cz An are in a complete chain C and p = Σ?-=i \ ^ ^ e

, ^f "(C) then dp(A) = ΣΓ=^ λ< if A is in the order interval (Ak_lf Ak] c C

where A = 0 and An+1 = X If Λ = Σ r = ι λ^4* so that Q#(fc) = p

then 4/,(^) - ΣΓ=* λ^(flr, A,)'1 = ( (̂flr, B^pidB) if A e (A,,,, AJ.

For any fc, -λ f c = K/,(A/Ctl) - dh/g(Ak)]μ(g, Ak) so dp(A) - -ΣiUKo,

Ak)[dh/g(Ak+1) - 4/,(A,)] = \ (̂flr, B)dh/g(dB) where the latter is a

Lebesque-Stieltjes integral. By continuity, whenever p e ̂ + ( C ) is

Q%h) for h 6 cone (0, S(C, g)) one has dp(A) = ( μ(g, B)dh/g(dB) and

(

PROPOSITION 2.7. Let C be a complete chain. If {pίy p2) c

μ(g, dA)

where the outer integral is Lebesgue-Stίeltjes with respect to the
monotone function μ(g, •)• Dg yields a complete metrization of vague
and weak convergence on ^f^{C).

Proof. Let Dg(pit p2) denote 1 \ μ(g, B)~1p1(dB) — \ μ(g,
JC }ϋΛ _ JCA

μ{g, dA) for the time being. Let us verify that Dg(ply p2) is
finite for all {pu p,}cz^/fb

+(C) or that Dq(p) = f
Jc

μ(g, X
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μ(gf dA) < co if p — p1 — p2 e^/?b(C). Suppose that C is compact then
Dg is a continuous convex function of p for σ(^/fb(C), ^ ( C ) ) . Dg

attains its supremum at extreme points p = δAl — δA2, say with Aλc:A2.
Here Dg(p) may easily be computed to be μ{g9 A^~x[μ{g9 A2) — μ(g, Aj)] +
[μ(g, Λ)" 1 ~ μ(g, AJ-^μίg, A,) = 2(1 - μ(g9 A,)μ(g, A,)"1) ^ 2. Thus,
Dg{p) S 2]]p]| for all pe^€b{G) if C is compact. If C isn't compact
-Dff(p) is the limit, as A decreases to 0 in C, of I \ μ(g9 B)~Lp(dB) x

μ(g, dA'). Hence, Dg{p) ^ | |p|] even in this case. Since μ(g9 •) is
continuous and strictly increasing on C, Dg(plf p2) = 0 implies

S r
«(flr, B^p^dB) = «(g, By^p^dB) for a dense set of 4 in C

hence that fex = fc2 where Q%h3) = p^ for jι = 1, 2. Thus, ^ — p2.
This suffices to show that Dg is a metric on ^ ^ + ( C ) . If {̂ )n} is a
jDg-Cauchy sequence in conv (0, ^£Ί+(C)) and A e C one may select a
subsequence {pJJ whose restrictions to CA are σ(^ί(CΛ)9 ^(CA)) con-

vergent to p i . Then \ μ(g B) ιp'n(dB) — \ jM(gr, B) ]

Jc^ }cA

verges to 0 as n —> co. Since {pn} is jD^-Cauchy \ /i(gf,

\ «(gr, B)~ιpn(dB) converges to 0 for μ(g, dA) almost

con-

A

deduce that

converges to 0 for μ(gf dA) almost all A. We

\ μ(g9 B)~ιpn(dB) — \ μ(g, Bylp'A{dB) converges to 0
)cA )cA

for μ(g, dA) almost all A. As a consequence p'Λ is the o{^£b

+{CA)J
r^(CA)) limit of the restrictions of {pn} to CA. Thus, there is a pf e

conv (0, ^Ci+(C)) whose restriction to each CA is p'Λ. For this p' we
have \ fdpn -> 1 fdp' for all continuous / on C with compact sup-

JC J

port. That is, {p2} converges vaguely to p. Conversely, if {pn}a

conv (0, ^yfλ

+{C)) is vaguely convergent to p then \ (̂gr, B)~ιpn{dB) —

//(flr, Byip(dB) — > 0 as π —> co for all A G C from which it follows

that Dg(pn,p)->0 as w -> co if {Pn} c conv (0, . ^ + ( C ) ) . Thus, the

metric JD^ is complete on conv (0, ^Γi+(C)) and gives the topology of

vague convergence. If p3 = ΣΓ=i λfδ^, for At cz c An and for

j — 1, 2, are in ^//yiC) and equal Q%hά) where h3 = Σ?=i ^ ί ^ 2 then

Σϊ=i

1 is equal to ΣΓ=Λ \>μ(g, A,)'1 on AΛA^! so Dg(plf p2) = Wh - h,

( - Σ ? ^ λ5

Ak) - μ(g,

μ(g, By'pMB) μ(g, dA) = Ds(plt p2). Thus, h°Λ Q%h) is an iso-

metry from cone (0, S(C, gf)) to ^ + ( C ) with the metric i?ff at least
on simple functions h. By continuity Q* is an isometry from
conv (0, S(C, g)) onto the vaguely complete conv (0, ^/C+(C)). Thus,
Dg = D 3. Since S(C, g) is norm complete, c ^

+ ( C ) is Dg complete.
That is, Dg is a complete metrization of vague convergence. It is
well known that the weak topology σ C ^ + ( C ) , ^b(C)) and the vague
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topology agree on ^€λ

+(C) so Dg is a complete metrization of the
weak topology as well. •

REMARK. If f(B) = μ(g, By1 then

Dg(plf Pi) = \ \dfPl(A) - df92(A)\μ(g, dA)
J C

where dfp. is the distribution function of fpde ^^f+(C).
Under the homeomorphism H: A —> μ(g, A) of C into (0, 1] the

simplex ^[+(C) is assigned to the simplex ^ ^ + ( ί ί ( C ) ) under an affine
homeomorphism for the weak topologies. The affine homeomorphism
is t h e unique one sending δAe^f1

+(C) to δμ{g>A)e ^^{HiC)). The

metric Dg on ̂ /?b

+(C) induces a metric JD* on ^/fb

+(H(C)) in the usual
fashion.

COROLLARY 2.7.1. // pl9 p2 are in ^^(HiC)) then D]{pu p2) =

I Γ (Hs)p1(d8) - [ (l/s)p2(ds) dt = \ I d1/tPl(t) - d1/tpβ) \dt where
C) I Jt Jί JH(C)

dt is Lebesgue-Stieltjes integration with respect to the restriction of
f(t) = t to H(C).

PROPOSITION 2.8. (a) If μ is a non-atomic measure then all of
the simplexes in S^g are a finely isometric.

(b) If μ is not non-atomic there are two simplexes in ,9% which
aren't affinely homeomorphic.

Proof, (a) If μ is non-atomic then H(C) = (0, 1] for all C e

S i

\d1/tPl(t) — d1/tP2(t)\dt yields the same met-
ric on ^ + ( ( 0 , 1]) for all Ce M-Chain (Σμ).

(b) If C, and C2 in M-Chain (Σμ) were to have S(Clf g) and
S(C2, g) affinely homeomorphic, then ^C+(CX) and ^C+(C2) would be
affinely homeomorphic under the vague topology so Cx and C2 would
be homeomorphic. In the proofs of Propositions 6.1 and 6.2 of [2]
it is shown that if μ isn't non-atomic there are maximal chains in
Σμ which aren't homeomorphic. The same procedure is applicable to
complete chains in Σμ\{0}. •

REMARK. In the terminology of [2], ,9% is homogeneous iff μ is
non-atomic.

COROLLARY 2.8.1. // g1 and g2 are two elements of A so that
FQl = Fg2 = A and C e C-Chain (Σμ) then S(C, gt) is affinely homeomor-
phic to S(C, g2).
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Proof. Both are afϊinely homeomorphic to t ^
+ ( C ) with the weak

topology. •

REMARK. (1) This affine homeomorphism probably isn't attain-
able as an affine isometry unless C is connected.

(2) This states a strong equivalence between the simplicial
subdivisions ,9%x and ,5^2 of Δ.

Of some interest is the question of which Hausdorff locally convex
topologies τ on L\X, Σ, μ) induce on each simplex in S^9 its norm
topology.

PROPOSITION 2.9. The Hausdorff locally convex topologies on
Lι(X, Σ, μ) which induce the nom topology on simplexes in S^ are
precisely those coarser than the norm topology.

Proof. Let τ be a Hausdorff locally convex topology on
Lι{X,Σ,μ) coarser than the norm topology. Let CeM-Chain (Σμ).
Regard the linear span of S(C, g) as being linearly isomorphic to

If AeC then S(CA, g) is norm-compact, hence τ is compact,
with its weak topology is linearly homeomorphic to the linear

span of S(CAf g) with the topology τ. That is, τ induces on each
^ ( Q c ^ C ) the weak topology. The vague topology on ^£h{C)
is the coarsest such topology. Thus, τ is finer than the topology
induced by the vague topology on S(C, g). On S(C, g) the norm
topology is that induced by the vague topology. Thus, τ must be
the norm topology on S(C, g).

Conversely, suppose that τ induces on each S(C, g) the norm
topology. To show that τ is coarser than the norm topology on
L\X, Σ, μ) it is only necessary to show that the τ-dual of L\X, Σy μ)
is a subspace of L°°(X, Σ, μ). Let λ be in the τ-dual of L\X, Σ, μ).
Define the additive function λ' on Σμ by X'{A) = X(gXA) for A e Σμ.
If {An} is an increasing sequence in Σμ then lim^oo Mg%An) — MO^AJ —
λ'(Aoo) where ATO = \J«=ιAn. Thus, λ is countably additive on Σμ.
Hence, X(A) = \ hλdu for some hλeL\Xy Σ, μ). Let A+ = {hλ ^ 0}
and A" = {hλ < 6}. If / is such that fgeL\X, Σ, μ) with SfcA+

then λ(/flf) = ( fhλdμ. Thus, if heL\X,Σ,μ) with ShaA+ one

S JA +
hg~ιhλdμ. If it were true that ess sup^ (hλg~λ) = ^

A +

there would exist an h e L1+(X, Σ, μ) such that {h Φ 0} c A+ and

oo = \ hg~xhλdμ = X(h). Since X(h) e (— oo? co) hλg~ι must be bounded
JA +

on A+. Similarly, hλg~ι must be bounded on A". That is, gλ =
hλg~ιeLι(X, Σ, μ). This establishes the proposition. •

3* The non-σ-fϊnite case* The results obtained here are basi-
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cally the same as in § 2 with the exception of the fact that if μ
isn't cr-finite there is no equivalent probability measure gμ with
geΔ. That is ΔφFg for any geΔ. In this case it turns out to
be impossible to give a barycentric subdivision of Δ whose zero-
skeleton contains a point in each norm closed face of Δ which has a
barycenter. The subdivision simplexes we do obtain turn out to be
affinely homeomorphic to i£-simplexes ^£^{C) where C is a closed
subset of (0, co) rather than of (0, 1], again where these IΓ-simplexes
are endowed with their weak (= vague) topologies.

We let Chain/ (Σμ) denote such that C e Chain {Σμ)μ(A) < oo for
all AeC. C-Chain/ (Σμ) and M-Chain/ (Σμ) are similarly defined.
If C e Chain/ (Σμ) we let S(C) be the norm closed convex hull of
C(l) = {ZiMA)]-1: A e C}. If sup (C) - Ao exists and g = lA,[μ{AQ)Y'
then S(C) = S(C, g).

PROPOSITION 3.1. (a) If Ce Chain/ (Σμ) and if C is the smallest
element of C-Chain/ (Σμ) containing C then S(C) = S(C).

(b) If Ce C-Chain/ (Σμ) then an he A is in S(C) iff {h>t}eC
for all 0<.t< \\h\\oo.

(c) // C e C-Chain/ (Σμ) then S(C) is the o'-convex hull of {S(CΛ):
AeC} where CA - {A' e C: A! c A}.

(d) If Ce C-Chain/ (Σμ) then ζ(S(C)) = C.
(e) The maps A —> ̂ [/^(A)]"1 —> μ{A) are homeomorphisms from

C to C(l) to (0, oo) if Ce C-Chain/ (Σμ).

Proof. The proofs are analogous to those of the corresponding
facts in Lemmas 2.1, 2.2, 2.3 and Proposition 2.4. •

From Propositions 2.5 and 2.9, if Ce C-Chain/ (Σμ) and AeC then
S(CA) is affinely homeomorphic to ^f^(CA) equipped with the weak
or vague topology under a unique map, say Q\, which assigns to
δA> e^//x

+{CA) the element lA,μ{A!)-γ of S(CA). This remains true if
QA is regarded as an affine bijection of ^fb

+(CA) onto cone (0, S(CA)).
If Ax c A2 are in C then ^fb

+(CAή is injected into ^fb

+(CA2) in the
natural fashion. The restriction of QA2 to ^fb

+(CAL) is just QAχ. If
p e ^£^{C) then {p\A: AeC} converges to p in norm as A increases
in C. We have QA(p\A) converging in S(C) to an element h = Q%p)
with Q*(pU) = [h — ess inf̂  /*,] V 0. The map Q% is an affine bijection
and agrees with QΛ on ^€h

+(CA) when Ĉ 4 is regarded as a subset of

PROPOSITION 3.2. (a) If C is in C-Chain/ (Σμ) then ^fb

+(C) with
the weak topology is affinely homeomorphic with S(C) under ζ>#.

(b) The norm closed faces of S(C) are of the form S(C) where
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C <zC is in C-Chain/ (Σμ) and S(Cλ) n S(C2) = S(CX Π Q .

Proof. The proofs are analogous to those of Propositions 2.4
and 2.5. •

PROPOSITION 3.3. S^f = {S(C): Ce M-Chamf (Σμ)} is a K-sίmpli-
cial subdivision of A whose associated simplicial complex is cέ?f —
{S(C): Ce Chain, (£„)}.

Proof. The only thing to establish, given the result of Proposi-
tion 3.2 is that S^f covers A. lί he A, then Co = {{h ̂  t: 0 < t <
\\h\\oo} 6Chain/ (Σμ) and heS(C0). Consequently, heS(C) for any
C e M-Chain/ (Σμ) with C o c C . Π

The metric on ^s€b
+(C) induced by Q* from the norm on

L\X, Σ} μ) will be denoted by D for a Ce C-Chaπv (Σμ). Below we
denote by H the continuous function A —> μ(A) on C and by H(dA)
the measure on C arising by Lebesgue-Stieltjes integration with
respect to the continuous function H. With this terminology Prop-
osition 3.4 is an immediate corollary of Proposition 2.7.

PROPOSITION 3.4. // Ce C-Chaπv (Σμ) and {pl9 p2} c ./T6

+(C) then

Jc 3cΛ H{B) icA H(B)

= \c\dJIU)~iPι{A) ~ dIIίA)-iP2(A)\H(dA) .

If one maps C in C-Chain/ (Σμ) homeomorphically into (0, co) via
the map H assigning μ(A) to A a homeomorphism is established
between ^/fb

+(C) and ̂ /fb

+(H(C)) for vague or weak topologies. The
metric D' on K,/fb

+(H(C)) is that induced by D. This corollary is
analogous to Corollary 2.7.1.

COROLLARY 3.4.1. // {pl9 p2} c ^//b

+(H(C)) then D%ply p.) =

(l/8)p2(ds) dt.

PROPOSITION 3.5. (a) If μ is non-atomic the simplexes in ,^f

are mutually ajfίnely isometric.
(b) If μ is not non-atomic there are two simplexes in S^f which

aren't affinely homeomorphic.

Proof, (a) is immediate from Corollary 3.4.1 where H(C) is (0, - ).
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(b) is established in the same manner as was (b) of Corollary
2.8.1. •

PROPOSITION 3.6. The Hausdorff locally convex topologies on
Lι(X, Σ, μ) inducing the norm topology on all elements of S^f are
precisely those coarser than the norm topology.

Proof. If τ is a Hausdorff locally convex topology on Z/(X, Σ, μ)
coarser than the norm topology it may be shown, in the same man-
ner as the proof of Proposition 2.9 that τ agree with the norm
topology on each element of S^f.

Conversely, suppose that τ is a Hausdorff locally convex topology
on L\X, Σ, μ) inducing the norm topology on each element of £^f.
To show that τ is coarser than the norm topology it suffices to show
that each τ-continuous linear functional λ is of the norm λ(ft) =

[ hgλdμ for h e L\X, Σ, μ) for some gλ e L°°(X, Σ, μ). If A e Σμ with

0 < μ(A) < co regard L\A, Σ, μ) as a subspace of L\X, Σ, μ). The
trace, &*/ η L\A, Σ, μ) = {S Π L\A, Σ, μ)} is the simplicial subdivision
S^g of the positive face of the unit ball of L\A, Σ, μ) with g —
XA[μ(A)]~\ The norm and τ topologies agree on all elements of S^g.

Thus, there is a gA in L°°{Af Σ, μ) so that λ(ft) = \ hgfdμ if he
JA

L\X, Σ, μ) with {h Φ 0} c A. It must be the case that gf = g* on
A Π B if {A, B) c Σμ with 0 < μ(A), μ(β) < oo. Thus, there is a
gλ e LToc(X, Σ, μ) = L°°(X, Σ, μ), \{h) = j /ί̂ c2μ if h e L\X, Σ, μ) with
μ{h Φ 0} < co. (L^C(X, I7, //) consists of functions whose restrictions
to sets of finite measure are bounded.) If μ{{h Φ 0}) = co then X(h) =

r
limε_>0 λ(fe — fc Λ e) = Πme_0 λ(fe — ft Λ ε) = lim£_0 \[h — (ft Λ ε ) ] ^ / * =

S J
hgλdμ since r agrees wi th t h e norm topology on elements of £ff.

This establishes t h e proposition. •

PROPOSITION 3.7. (a) Let (X, Σ, μ) be an infinite measure space.
There is no g e Δ such that gA = Z^μ(A)-1 if 0 < μ(A) < co.

(b) Let (X, J, jtί) be non-o-finite there is no collection {gA:
μ{A) > 0, Aσ-finite) in A such that gA = gBlAμ{gB, A)~ι if A c B are
σ-finite elements of Σμ.

Proof, (a) is only non-trivial if (X, Σ, μ) is σ-finite. In the σ-
finite case the condition on g is that it be constant on any set of
finite measure so g is a constant λ on X. In this case we have
1 = ||0 Hi — λμ(X)e{0, co} which is impossible.

(b) Let {Aa} be a maximal disjoint collection of σ-finite elements
of Σμ. Define the measure va on Aa as gAaμ. Let v be the positive
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measure on 2^ equal to va on each Aa. The map /—>Σ/ΛΓ1't is
an isometry from &{μ) to L\v) which assigns to each gΛ« the
function XAa = XAa(v(Aa))~~ι. Actually, for all A <j-finite for μ, gA is
assigned to XA[v{A)Y1. Choosing countably many distinct Aa%, setting
A = U»-i &*«,, a n ( i 9 'the image of gA we are led to a contradiction of
(a). " D

REMARKS. This proposition shows that it is impossible to have
a barycentric subdivision of A when (X, Σ, μ) is non-σ-finite using
barycenters of all norm closed faces of A which have barycenters if
the barycenters are to be chosen in the coherent fashion we have
used. However this section guarantees barycentric subdivision utiliz-
ing barycenters of some norm closed faces of A. Even in the α-finite
case the barycentric subdivision S^f is definable and will not utilize
barycenters of all norm closed having barycenters.

4* Barycentric subdivisions of octahedra. By an octahedron
we mean a unit ball of a Kakutani ί/-space with its norm topology
or any affinely homeomorphic image of such a ball. We will deal
with octrahedra represented as the ball O of L\X, Σ, μ) where
(X, Σ, μ) is a positive localizable measure space. Since <> is centrally
symmetric its center 0 is natural barycenter of O to use in a bary-
centric subdivision of <>. The convex hull of 0 and the positive
face A of O is the positive unit ball <>+ of L\X, Σ, μ). With the
norm topology O + is a if-simplex with 0 an extreme point. O + *s

affinely homeomorphic to the positive face of the unit ball of
L\Xf, Σ', μr) where Xf is obtained from X by adjoining a new point
co, Σr is the (T-algebra on Xf generated by Σ and {oo} and μf is the
measure on Xr with μ'{^} = 1 and whose restriction to Σ is μ.

PROPOSITION 4.1. (a) ,v^+ = {conv (0, S): SeS/7+} is a K-simplί-
cίal subdivision of ζ}+ whose associated simplicial complex is S^f U
{conv(0, Sy.ReS"}.

(b) If C e C-Chainy (Σμ) then conv (0, S(C)) is affinely homeomor-
phic with the weak topology where co is adjoined as an isolated
point to C.

Proof. It is easily verified that .9%+ is a covering of <y~" by
iΓ-simplexes. If {Sl9 S2}a^f then conv (0, Sx) Π conv (0, S2) = conv (0,
Sx Π S2) is a norm closed face both of conv (0, Sx) and conv (0, S2).
Furthermore any norm closed face F of conv (0, S) with S e S^f is
either a norm closed face of S or is of the form conv (0, F) for some
norm closed face F of S. These remarks suffice to establish (a).

(b) is immediate since 0 is not in the closure of C(l) for any
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CeC-ChB.inf(Σμ). Π

REMARK. If (X, Σ, μ) is σ-finite and geA with Fg = A then in
Proposition 4.1, ^S^7 may be replaced by 5^ to obtain a if-simplicial
subdivision of <>+

An isometry T of L\X, Σ, μ) carries the barycentric subdivision
S>%+ into a barycentric subdivision T(.9%Λ) = {T(S):Se^>+} of the
iΓ-simplex T(O>+) By suitable choice of isometries T a barycentric
iΓ-simplicial subdivision of <0> will be constructed as a union of the
subdivisions T(S%+). One isometry of L\X, Σ, μ) is that induced by
a /^-measure preserving automorphism of Σ. For such an isometry
T one has T{A) = A, T(O+) = O + In fact, T(S)eS<%+ if S e ^ - f
for T must be an order isomorphism of Σ hence preserve chains,
complete chains or maximal chains. Such isometries T can be ignored
for the purpose of constructing a simplicial subdivision of O> Any
isometry of &(X, Σ, μ) is the composition (on either side) of an iso-
metry arising from a measure preserving i^-automorphism and an
isometry of the form RE where EeΣμ and RE(f) is defined to be
(XE — y~Ec)f for any / e L\X, Σ, μ). This may be established in several
different ways, one being an appeal to the Banach-Stone Theorem.
We have E defined for the isometry T by the requirement that the
image of leZ/°°(X, Σ, μ) under the adjoint isometry T* be 1E — XEc

The image T(A) under an isometry T is a maximal proper face
of <0>, a one co-dimensional face in fact. T(A) is equal to {/eO
II / 111 = 1, (%E - %E°)f ^ 0} where EeΣμ is associated with T. The
image of <0+ under T has a similar characterization. The 1-codimen-
sional skelton of O> consisting of all 1-codimensional faces of <0> is
precisely the set of maximal proper faces of <0> by Lau in [5]. Lau
also shows that any maximal proper face of O is RE(A) for a unique
E in Σμ.

PROPOSITION 4.2. (a) {RE(ζ}+): EeΣμ} is a K-simplicίal subdivi-
sion of <y.

(b) // {Elf E2}aΣμ then REl(O+) n ̂ 2 ( O + ) - ^ ( O + Π RF(O+)) -
REί({f € O+: fXF° = 0}) where F is (E, Π E2) U {El Π Eϊ).

Proof. The proof of (b) is straight forward. To establish (a) it
is enough to show that if Eι and E2 are in Σμ then REl(ζ}+) Π -B 2̂(O

+)
is a face of 22^(O+) This is an isomorphic image of O + Π RF(O+) —
{/ e O + : f%F° = 0} where F = (JEί n E2) U (EinEi). Since this is a
face of O+, RESO+) Π ̂ 2 ( O + ) is a face of i ^ ( O + ) . D

PROPOSITION 4.3. &% = {J?£(S): S e ^ , jSeJ^} /orms α K-sim-
plicial subdivision of O
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Proof. It is only necessary to show that if {Eu E2) a Σμ and
S1Γ\S2e,9%+ then REl(Sύ Π RE2(S2) is a face of R^S,). By (b) of
Proposition 4.2, it may be assumed that Eλ = X so that R^S^ = Slβ

In this case Sx (Ί J2*2(S2) - & Π {/ e S2: fX^ = 0}. Since {/ e S2: fXE< = 0}
is a norm closed face of S2, Proposition 3.3 guarantees that Sλ Π RE2(S2)

is a face of Slβ Π

REMARK. In the ^-finite case one may obtain a barycentric sim-
plicial subdivision of O as in Proposition 4.3 starting with the sub-
division .ζfg of Δ rather than S^f for g e Δ with Fg = Δ.fg of Δ rather than S^ for g e Δ with Fg

5* iί'simplicial subdivisions of barycentric type* In this sec-
tion it is shown that the JΓ-simplicial subdivision S^f of a ^-simplex
Δ is the only type of barycentric subdivision possible satisfying
certain coherence and regularity properties.

PROPOSITION 5.1. Let S^ be a K-sίmplicial subdivision of Δ (the
positive face of the unit ball of L1(X9 Σ, μ)) and rέ? its associated
K-simplicial complex. ( i ) Assume that if Se.5^,

(a) S = cl conv (£(S))
(b) ξ(S) is linearly ordered by absolute continuity (gx < g* iff

Sβi a SS2 iff Ftl c FH)
(ii) If gl9 g2 are in the zero skeleton, °,5>̂  of S^ then gf = g2

Λ

if A = s9ί n sβt. "
Then, {0}{J{S9:ge°,9*} is an ideal in Σμ. If ge°<9* then the

trace r^ Π Fg is r^g.

Proof. We first note that (ii) implies that for an AeΣμ there
is at most one ge°S^ with Sg = A. The assumptions (i) and (ii)
assure that ζ(S) is a norm closed set in Δ which is locally compact
and, in fact, for which every bounded order interval is compact. If
So is the closed convex hull of a compact order interval in ξ(S) then
So is a compact face of S which is a Bauer simplex. The σ-convex
hull of the union all such SQ is a norm closed face of the i£-simplex
S, [3], [4], which contains ς(S) hence equal S. If F is any closed
face of S then F is the σ-convex hull of F f] So for such £0 hence
F is the closed convex hull of F Π ξ(S) = ζ(F). That is, <gf is the
ensemble {cl conv (K): K closed in ξ(S), S e S^}. If gQ e Δ is such that
g$* = g for all fir 6 &> with S9(zSgo the trace ^ n Fgo = {SΓίFgo, S e ^ }
is {S e ^9 S c Fg0} and is a subset of <g ô (the simplicial complex in
Proposition 2.6 with FffQ replacing Δ). Such g0 include all elements
of °^

If ge°S^ and AeΣμ\{0} is in Sg then gA eS for some S e ^
hence gΛ e S Γ) FgQ

rέ?g. This is only possible if gA eξ(S Π Fg) aξ(S).
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Thus, if sf6°y and 0 Φ AaSg then A = Sy, for some g' e°y". If
we are given C e C-Chain (Σμ) with supremum in Sg one may construct
an he Δ such that C = C(h, g). For h to be in S for some S e ^
it is necessary and sufficient that C(h, g) be a closed subset of ξ(S).
Since ^ covers Fg it is easy to deduce that ^ ίl FS o = ^V

To establish that {0} U {Sff: ge°S^} is an ideal in Σμ we need to
show that if {gu g2}d°S^ there is a # 3 e 0 ^ with S,3 = Sgi U S,2. It
may be assumed, without loss of generality, that SgiΠ Sΰi= 0.
Hence we may assume that, in F = i*7^ for #0 = (gx + #2)/2, i*7^ and
Fg2 are complementary split faces. If g e °.Ŝ  Π F then # is uniquely
expressed as a convex combination λ ^ + (1 — \)g2 where gx e F3l

and g2 e Fΰ2 are given by gά == grV^; = ^R»%- for j = 1, 2. lΐ SeS^
then JP Π S is cl conv (F Π ί(S)) where ξ(S) Π f is a closed initial
interval of the linearly ordered ζ(S). As g increases in ζ(S) Π F, Sg

increases in S9λ U S92 to SQ. An increasing cofinal sequence {gn} may
be found in ζ(S) Π F so that {λ̂ u} is convergent to λ0, say. Then
{gn} converges in norm to g^ = λoflrf̂ in5f° + (1 — Xo)gi0^So. Since f (S) Π ί7

is closed grTO e ζ(S) Π ί7. Thus, g^ is the maximum of f (S) n F. There
is an Se Sf so that g0 e S Π F. If there is an A £ Syi U Sff2 such
that SgaA for all g eξ(S) n i77 then S A c 4 for all heSf)F. Con-
sidering h = gQ this is seen to be impossible so such an A doesn't
exist. Thus, S9l U S92 = S^. Thus, we may set gz = ôo. This esta-
blishes the proposition. •

Any i£-simplicial subdivision £f of a iΓ-simplex Δ which satisfies
(i) and (ii) of Propotision 5.1 will be said to be of barycentric type.

PROPOSITION 5.2. Let 6^ be a K-sίmplicial subdivision of Δ of
barycentric type. There is a measure v on (X, Σ) so that Δ is a finely
isometric with the positive face of the unit ball of L\Xf Σ, v) under
an isometry Φ and so that Φ(°S^) consists of elements of the form
IMA)]'1 for 0 < v(A) < oo.

Proof. Select a maximal collection {ga} c °S^ with disjoint {SgJ.
Select gaQ. If a Φ a0 there is a unique ga e °<9* with Sga = S9a U S9a

and ga = Xa(gao + Ύaga) where λα(l + ya) = 1 with xa > 0 and τα > 0.

Set h = gao + Σ«*α0 0-hc^Qa and y = feμ so that I /dy = \
for all /. The map Φ: f —> f/h is a bipositive isometry from
L\X, Σ, μ) onto L\X, Σ, v) with Φ(gaQ) = Xs and (P(ffβ) - (l/7β)Z5flβ.
For all α, 0 < y(S, ) < co. If 0 ^ 4 ° c \ then Φ(gί) =

Suppose that a0, al9 a2 are distinct and that Aά is a non-empty
subset of Sg for j = 1, 2. The unique fce°y with S ^ Λ U Λ U A2
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is a convex combination ηog*o + yj^gii + %0«2

2 We ^ a v e hA^Aΐ =
[g'iγo^i = [gao + 7ajgaj]

A^Ai = (μ(gaQ, Ao)gAo + Ύajμ(gaj, A^giβμig^, Ao) +
7ajμ(gaj, Aj)]'1 for j = 1, 2. Also, Λ^u^' - (ηogi* + τ)sgip{η, + %)~ l for
j — 1, 2. Thus, the vector (%, ^, ) is proportional to the vector
(μ(gao, Ao), Ύajμ(9ajf Aa.)) for j = 1, 2. Thus, (rjθ9 ηlf τj2) is proportional
to (μ(ga, A*), Ύaiμ(9aof Λ), Ύa2μ(ga2, A,)). We have ft4^* - ft as the
unique element of °S^ with & = A1l)A2. hAγVjAl is a multiple of Ίaιμ{gaι,
A^gίi + Ίa2μ(Qa2, Az)gΛξ. Setting 7*0 = 1 we may deduce that if h is
any element of °S/P it may be represented as a countable convex
combination Σ « ηa9

s

gf
8^ when ^α is 7βi"(ί/β, Sβa Π SΛ)[Σi5 ̂ (fl̂ ,̂ S^ Π S*)]"1.

We have that Φ(h) = Σ α ^βΦ(flr2*n^«) = [Σ« Ίaμ{Qa, S9a n SΛ)[7αi«(^α,
S ^ n S ^ - ^ n . J t Σ ^ . M ^ , S^nS,)]-1 = X.JΣ^M^, S^nS,)]-1. Since
Φ{h) has norm 1 in L\X, Σ, v) we have v(Sh) = Σ^ 7^(^ , S^ Π SA) 6
(0, oo). That is, if h e 0 ^ then Φ(Λ) = X^Jv^)]-1 and 0 < v(Sh) < <*>.

The mapping Φ sends S? onto a simplicial subdivision Φ(£f) of
the positive face Δ(v) of the unit ball of L\X, Σ, \>) whose zero
skeleton Φ(°S^) is a subset of the zero skeleton of the simplicial
subdivision S^f(v) of Δiy) given by Proposition 3.3. Conditions (i)
and (ii) asssure that Φ{£^) c c^f(v) (the simplical complex associated
with £^f(v)). If v(A) < ex. then Z [̂̂ (A)]~1 belongs to some simplex
S in Φ{S^). Since S is a face of some simplex S in Jϊ^O;) and

-1 6 ξ(S), ^[v(A)]-1 6 £(S) hence is in Φ( 0 ^) . That is, Φ( 0 ^) =
If S e y then Φ(5(S)) is in Chain/ (Σu). If A 2 c 4 2 and

1 e Φ(f(S)) then ZJKΛ)] ' 1 e Φ(f(S)). If there is an A with
0 < v(A) < - with X^AO]'1 « U»(A)Γ for all Z ^ i J ] " 1 e Φ(S))
and ^[^(A)]"1 isn't in Φ(ξ(S)) we find that there is a simplex S in
£f with φ - ^ D CA)]"1 G S with S a proper face of S which is impos-
sible since £f is a simplicial subdivision. Thus, Φ(ξ(S)) must belong
to M-Chahv (Σp). That is, Φ(S)eS"(v) for any S e ^ 7 . For any
Se^f(v) there is an heL\X, Σ, v) so that the chain {{h > t}\ 0 <
£ < || ft ||} has closure <f(S). The simplex S is the smallest in r^yf(v)
containing ft. Since Φ(S^) covers Λ(v), heΦ(S) for some SeS^.
Thus, S = Φ(S). It follows that ^7 /(v) = Φ{S^). This completes the
proof of the proposition. •

COROLLARY 5.2.1. Let {Fa} be a disjoint collection of norm closed
faces of A. Let £S'a be a simplicial subdivision of Fa of barycentric
type. There is a simplicial subdivision S^ of A such that each S^a

is in the K-simplicial complex r^ associated with .9*.

Proof. Let A be represented as the positive face of the unit
ball of L\X, Σ, μ). For each a let Aa = \J{Sa: geFa] so Fa is
representable as the positive face of the unit ball of L\Aa, Σ, μ).
Let va be a measure on Aa so that Aa is S^f(va) as in Proposition
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5.2. Let Foo be the face of Δ complementary to \Ja Fa and A^ =
X\\JaAa (in Σμ) so that F* = \J{Sg:geA^}. Let v*, be the restric-
tion of μ to Aoo. Let y = Σ « ^ Λ α + ̂ coZ .̂ Z/̂ X, 21, v) is isometric
with L^X, Σ, μ) under a positive isometry Φ. The image of £^f(v)
under Φ is a ϋΓ-simplicial subdivision <9* oί Δ whose associated K-
simplicial complex contains \Ja£fa. D

We may improve Corollary 2.5.1 in Proposition 5.3 and provide
a basis for giving barycentric subdivisions of arbitrary iΓ-simplicial
complexes in Proposition 5.4.

PROPOSITION 5.3. Let {Fa} be a collection of norm closed faces
of the K-simplex Δ. Let S^abe a K-simplicial subdivision of Fa for
each a which is barycentric type. If the trace of S^a crnd S^β agree on
Fa Π Fβ for all a, β, then there is a K-simplicial subdivision S^ of Δ
with associated simplicial complex ^ such that S^a c

 rέ? for all a.

Proof. For any a there is a minimal collection {Fβ:βeΛa} so
that a 6 Λa and so that if 7 ί Λa then Fr is disjoint from the norm
closed face Δa generated by {(J Fβ: βeΛa}. The relation αx ~ α2 iff
a2 e Aaχ is an equivalence relation on the index set of {Fa}. Δa depends
only on the equivalence class of a. If ax ̂  a2 then ΔaιΓ\Δa2— 0 .
If we show how to give a simplicial subdivision £f of a Δa so that
^ c ^ if βeΛa we will be done upon appeal to Corollary 5.2.1.
Thus, without loss of generality it may be assumed that Δ = Δao for
some α0. We may enumerate {Fa} by ordinals a so that Fao = Fo

and so that if β is an ordinal then Fβ Π Fβ" Φ 0 where Fβ~ is the
norm closed face of Δ generated by {Fa: a < β}. Let F'β be the norm
closed face of Fβ complementary in Fβ to Fβ Π Fβ~. Let Sβ =
U {Sg: 9 6 Fβ), Sβ~ = U (S«: a < β), Sβ = Sβ~ U Sβ and S'β - Sβ\Sβ~. We
wish to construct a measure v on (X, J?) and a Banach lattice iso-
morphism Φ:L1(X,Σ,μ)->L\X,Σ,v) so that ΦG^) c ί f(y) . The
measure v and isomorphism Φ will be constructed by transίinite
induction by constructing va, the restriction of v to Sa, for each
ordinal α. Each va will be of the form hlSaμ for some positive
measurable h and Φ will be the map g —> g//?,. Suppose v̂  has been
constructed for all β < α so that vβ = /^Z^^ for some measurable ft
and so that Φ ( ^ ) c ^f(vβ) when <^?f(vβ) is the simplicial complex
on the positive face JF'3 = Fβ~ U F^ of the unit ball of L\Sβ, Σ, i>β).
Now %>at which is to be defined, must equal, on Sa~, the measure
hXsa-μ. va must be defined on Sά, if this is non-empty. By Proposi-
tion 5.2, there is a measure ωa on Sa so that ωa = haXSaμ for some
measurable ftα, and so that if Φα: g —> flr/ftα is the isomorphism of
Lx(Sa, J, j«) to L\Sa, Σ, ωa) then Φ(S^a)=S^f(ωa). In the construction
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of ωa one may actually set ωa = hμ on Sa' Π Sa to begin with. The
function h is defined only on Sa~. Extend h to Sa so that h ~ ha on
Si. Let va = hXs«μ. It must be verified that Φ(S^a) d^f(va). It
suffices to verify that Φ(°^ζ) c °^/(i^α). If gfeoyα, write it uniquely
as the convex combination Xag

sa + (1 — λα)#s«. We have Φ(g) —
Φa{g) = lSη[ωa{Sg)Γ = XSg[v«{S9)Ve^{va). Thus, Φ{,9ζ)a^{va). At
the termination of transfinite induction h is defined on all of X, v is
defined on Σ, and Φ is defined on I/(X, Σ, μ) to LX(X, I7, v) so that
Φ(.5>£) c ^ ( u ) for all a. This establishes the proposition. •

PROPOSITION 5.4. Let r<f be a K-simplicial complex. There is a
K-simplicial complex c^r such that

( i ) If S'erέ?' and Seϊf then Sf f] S is a face of S'.
(ii) If Se^ the trace, S Π ̂ ' , is the K-simplicial complex as-

sociated with a K-simplicial subdivision of S of barycentric type.

Proof. Enumerate i f as {Sa} where a ranges over an initial set
of ordinals. Suppose that for all ordinals 7 < a, Sr has been provided
with a if-simplicial subdivision ,9γ of barycentric type with associated
jδΓ-simplicial complex ^Ί. Suppose further that the traces of r^Ίχ and
r^7c) on STl ίΊ SΪ2 are the same. On Sa we have a collection of norm
closed faces {Sa Π Sr: 7 < a) each of which has the simplicial complex
ίfr Π Sa corresponding to a i£-simplicial subdivision Sr of Sa Π Sr of
barycentric type. Furthermore, if Ti Φ 72 then r^Ίχ Π (Sa Π Sh (Ί Sγ2) =
&"r2Π(SanSrinSr2). By Proposition 5.3, there is a if-simplicial subdi-
vision S^a of Sα of barycetric type so that the associated iΓ-simplicial
complex r<^a has trace equal to rtfy Π (Sa Π Sr) for all 7<α. By transfinite
induction each simplex Sa in ^ is simplicially subdivided in a bary-
centric fashion by Sfa. Let ^f = \Ja

 r^a.
 r^' is easily verified to be a

i£-simplicial complex which satisfies (i) and (ii) of this proposition. •
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