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ALTMAN’S CONTRACTORS AND FIXED POINTS
OF MULTIVALUED MAPPINGS

K. BALAKRISHNA REDDY AND P. V. SUBRAHMANYAM

Let P: Dc X, X---xX X,— CL(Y;) be multivalued mappings
where X,, Y, are Banach spaces and CL (Y,) is the set of all
nonempty closed subsets of Y, 1=1,---,n. We prove a
theorem ensuring that 4, € P(x,, - - -, x,) for some (x, - -+, 2,) €D
and deduce the fixed point theorems for multivalued map-
pings proved earlier by Czerwik, Nadler and Reich as corol-
laries. Besides, generalizations for multivalued mappings of
the existence theorems proved by Altman using his theory of
contractors are also obtained.

1. Introduction. In [2] we showed how the fixed point theo-
rems of Altman [1] and Matkowski ([5], [6]) can be unified in the
set-up of Banach spaces. The present paper studies further the
relationship between Altman’s theory of contractors and Matkowski’s
fixed point theorem and offers an existence theorem for the multi-
valued operator equation # € Px on subsets of a Banach space. We
deduce as a corollary a comprehensive fixed point theorem proved
by Czerwik [4] for multivalued mappings. Czerwik’s fixed point
theorem generalized the earlier fixed point theorems for set valued
transformations on metric spaces obtained by Nadler [7], Covitz and
Nadler [3] and Reich [9]. Apart from Czerwik’s theorem, our main
result obtains as corollaries generalizations to multivalued mappings
of Altman’s existence theorems and Matkowski’s fixed point theorem.
Section 3 gives the main result of the paper, while §2 provides
preliminaries basic to § 3.

2. Let X be a Banach space. We employ the following notation
of [7] and [8]:
(2.1) CL (X) = {C: C is a nonempty closed subset of X} .
(2.2) N, C) = {xe X: ||x — ¢|| < € for some ceC},
e>0, CeCLX).

infe >0, AcCN(, B) and BCN(, A) ,
(2.3) H(A, B) = if the infimum exists,
oo, otherwise ,
A, BeCL (X) .
The function H is called the generalized Hausdorff distance for
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CL (X) induced by the norm of X.
2.4) D(x, A) = inf {||x — al:a € A}.

The lemma given below is well-known and is used in § 3.

LemMmA 2.1. Suppose A, BeCL (X) and acA. Then, for ¢ > 0,
there exists an element be B such that

d(a, b) = H(A, B) + q .

A point xe X is said to be a fixed point for the multivalued
mapping f: X — CL (X) if xe f(x).

We follow the notation of [6].

Let (a;;) be an » X » nonnegative matrix. Define

Qg 1=k,
(2.5) ah =1 . k=1 -, n.
1 —_ aik ) 1 = k y
1l ! ! .
2.6) gl = {allai+lk+1 + OO, TFEK
: ik T Iyl ! 1 .
O ipsr — Q@i y =K

l=1---,n—1; 4, k=1 ---,n—1
Matkowski ([5], [6]) proved the following

LeEmMMA 2.2. Let @}, >0, 4,k =1, ---,n. The system of in-
equalities

@.7) Sawn <r, i=1-m,
=1

has a solution v, >0, 1 =1, ---, n if and only if the following in-
equalities hold:
(2.8) at; >0, l=1 -, m; t=1,---,m+1—1.

Using this lemma he obtained the following fixed point theorem.

(Actually Matkowski proved this theorem in the setting of complete
metric spaces.)

THEOREM 2.1. Let X, be Banach spaces and T;: X; X -+ X X, —
X, 1=1, ---, m be mappings such that

1T, -y @) = Tl -, v | = 3 aallws — el

7::17"':%, xk’ykeXk; IG':].,"',’)’L,

(2.9)

where a; >0, 1,k=1,--- n. If the numbers al, 1 =1, - n;
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t, k=1, .-, m+1—1 defined by (2.5) and (2.6) fulfill (2.8), then
the system of equations

X, = Ti(xly "';wn)9 7':1’ e, M,
has exacty ome solution x,€¢ X;, 1 =1, ---, n. Moreover,
2, =limay, ¢=1,---,7n,
m-—>00
where xI = Tyap, ---, 2™, 4,€ X;, 1 =1, - -+, m is arbitrarily chosen.

Considerations of some of the fundamental problems of numerical
analysis and operator theory led Altman [1] to the concept of con-
tractors.

DEFINITION 2.1 [p. 8, [1]]. Let P: D(P) ¢ X — Y, D(P) being the
domain of P, be a nonlinear operator from a Banach space X to a
Banach space Y and I'(x): Y — X be a bounded linear operator associ-
ated with e X. We say that P has a contractor I'(x) if there is a
positive number ¢ <1 such that

(2.10) | P+ I'@)y) — Px—y|| < alyl,

where x € D(P), ye Y are defined by the particular problem.

DEFINITION 2.2 [p. 10, [1]]. A contractor I'(x) is called regular
if (2.10) is satisfied for all y€ Y and D(P) = I'(x)(Y).

DEFINITION 2.3 [p. 6, [1]]. An operator P: D(P)c X — Y is closed
on D(P) if x,e D(P), %, — « and Px, — vy imply x ¢ D(P) and Px = y.

Altman proved the following theorem:

THEOREM 2.2 [p. 13, Theorem 5.1, [1]]. Suppose that the closed
nonlinear operator P:D(P)C X—Y has a bounded contractor I
such that

(2.11) (a) x+ I'(®)ye D(P), whenever x€D(P), yeY;
(211) (b) ||P@ + I'(®)y) — Pr —y| = qllyll, yeY, 0<qg<1;
(2.12) |F'@)|| < B for all zeDP).

Then the equation Px =y has a solution for yeY. When I’ is
regular, the assumption (2.11)(a) 1s readily satisfied and further,
the solution is unique.
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3. We generalize the notion of a closed operator to multivalued
mappings as follows:

DEFINITION 3.1. A nonlinear multivalued operator P: D(P)cC
X - CL(Y), X, Y being Banach spaces, is closed on D(P), if z, — =,
Y, € Px, and y, —y imply that x e D(P) and y ¢ Px.

Let X,,Y,, i=1, ---, n be Banach spaces and b,, ¢, =0 1, k =
1, ---,mn. Let a,=b,+c¢y 4, k=1, ---,n, be positive and the
numbers a!, defined by (2.5) and (2.6) fulfill (2.8). Then, by Lemma
2.2, there exists a positive solution », ---, », of the system of in-
equalities (2.7). We define

3.1) ¢ = max <r; Y amm) .
k3 k=1
Clearly, 0 < ¢ < 1, and

(3.2) i Qe = qry, 1=1,---,m.
=

THEOREM 3.1. Suppose that the closed nonlinear transformations
P:DcX x ---x X, —»CL(Y), i=1, ---, n fulfill the following:
there exist bounded linear operators I'(x): Y, — X;, z,€ X,,
(3.3) 1=1, -+, n such that
| Iz)l| =B, (@, --,x)eD, i=1--,mn;
(34) <a) (xl + Fl(xl)yly Tty Uy + rn(xn)yn) €D whenever
(xly"'yxn)eD and yieYiy 1::1,"',%;
(3'4) (b) HZ[P1<‘/'U1 + Fl(xl)yla ) xn + Fn(xn)yn)y Pi(xly Tty xn) _!_ yz]
= Z;lbm}}yk I+ kZzlcka[yk, Y, — Py, -+, 2,)]

+ C'Di[yu yz
- Fz(xi)Pz(x1 + F1<x1)y1, e, Xy + Fn(xn)yn)]
for (x, ---,z)eD, y,e¥,, i=1 -+, n,

where a,, = by, + ¢y 1, k=1, -+, m are positive and the numbers al,
defined by (2.5) and (2.6) satisfy (2.8);

(3.5) ¢ 18 a constant such that 0 <eB<1—gq.

Then there exists (a,, +--,x,) €D such that 0,€ PJ(x, ---,%,) ©=
1, ----, m, where 6, is the zero element of the Bamnach space Y,
1=1, .-, n.

Proof. Let (&, ---,%, €D be an arbitrary element. Choose
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Y; € P&y, -+, &), t=1,---,n. We can assume without loss of
generality that ||g|| < r, =1, 1=1, -+, n, since the set of solu-
tions to the system (2.7) is closed with respect to multiplication by
positive scalars. Define

(3.6) o =&, — T(&)g, 4=1,,mn.
Replacing 2, by #;, and v, by —%, in (38.4)(b) and using (3.6) we get,
(8.7 HJ[P(xi, ---, x), P&y, -+, &) — 9]
=< 35 balldnll + 3 caDil =ty — s — P, -+, &)
+ D —4;, —9: — ['(@)Pyzi, -+, 23)]
< 300l + 35 call el + €D, TPz, -, 2] -

As ybiePz‘(aO:l; Ct &n), 0iepi(&1; Tty "i:n) - ?;“ 1= 1, e, M. SO! fOI'
g > 0, by Lemma 2.1, there exists an element y;e P,(z}, ---, L), i =
1, ---, » such that

From (3.7) and (3.8) we have
193]l = 35 Ga + ea)ll9al + el Dzyill + q

< ZkHka + ¢Bllyill + ¢, by (3.3)

TM* TM&

1 —eB)|lyill = i_', @4y + ¢, Dby our assumption

<qr,+q, by (3.2
<27, as =1, 1=1,.---,n and 0<qg<1.

I

I

Hence

(3~9) ” H~—(l_ B)z: izlf"':”‘

We shall now construct inductively sequences {z'} and {y7}i =1, ---, »
such that

(3.10) (a) @, -, am)eD, yrePar, ---,ar)

(3810) ()  llurl s m+ 1 i=1m.

1-— B)m

For m = 1, the above hypotheses are true, in view of (3.4)(a), (3.6)
and (3.9). Assume the truth of (3.10)(a), (3.10)(b) for m — 1€ N,
ie.,
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3.11) (a) (@™ ---yapeD, yrrePar, ---, 2,

@11 ® [y = m(l —ch>m_1“" i=1, - m.

Define
(3.12) o =ap T — LeMyr™, i=1,---,n.
In (3.4)(b), replacing x;, by «7™*, y, by —y** and using (3.12) we have
(3.13) H[P(ar, ---, o), P, -+, a37) — yi ]
< 3 bulur ] + 3 caDd—yp ™, —up = P, e, 02 7)]
+ oD -y, —yr™t — La? )Pt -, 7))
= 3 bullvr |+ 3 cullr |
+ ¢eD,0;, I'(x7 ) P(xT, ---, xm)] .

Since 6, € P(ap, - -+, m™1) — ¢!, given q/(1 — ¢B)™™' > 0, there exists
yre P(xr, -+ -, o) such that

(3.14) llyi" — 0, ” = Hz[Pz(xIn, s, T, Pi(xi'”“l, ceeal Ty — YT

qm
+ 1 —eB)"

From (3.13) and (3.14) we get

l7ll S 5 Ga + eallvr | + eBlor | + =%

1 =Byl = m< g )m_l S aurs + R
- 1—¢B k=1 (1 — CB)M—I
m—1 m
< mar{ —2 ¢ by (3.2
—mcm(l——cB> + T =B’ y (3.2)
ie.,
m|| < qa _\. qa \".
e = (L) + ()™
é(m+1)<l~ch>m¢i’ as Ti;l’ /Lzl’,%
Hence by induction (3.10)(b) holds for all m =0,1,2, ---. From

(3.12), and (3.4)(a), it follows that (zr, ---, ) e D. By construction,
yre P(ar, ---, ™). Hence by induction (3.10)(a) holds. By (3.5),
0<4q/(1 —cB) <1 and it follows from (3.10)(b) that %™ —4,, as
m— oo, 1 =1,---, n. From (3.12),
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lop+t — o || = || ()t ||
< Bm +1 ( g )m'r .
< Bm + (1)
Hence {27} is a Cauchy sequence in X,, 1 =1, ---, n. Therefore,
2 —x,1=1 ---,n. As the operator P, is closed, y € P,(F, ---, 2&),

yr—@6, *r—x, t=1, -, n, imply that @, ---,0,)€D and 6,¢
P(x1,°°',xn),7:='1,"',’n. D

We now deduce Czerwik’s Theorem [4] as a corollary in the set-
up of Banach spaces. Czerwik proved his theorem for multivalued
mappings on complete metric spaces.

THEOREM 3.2 [Theorem, [4]]. Let X,, i =1, ---, n be Banach
spaces and by, ¢, =0 for i, k=1, ---,n. Let a; = by + ¢y, 1, b=
1, ---, n be positive and let the numbers a., defined by (2.5) and (2.6)
Sulfill (2.8). Suppose that the transformations Fy: X, X «-- X X, —
CL(X), 1=1, ---, n fulfill

(3'15) Hz[Fz(xly ° ', xn), Fi(zly ot .) zn)]
= k% birll @i — 2] + kZ___.l caDilwy, Fi(x,, - -+, ©,)]
+6Di[zi’ Fi(zh ) zn)]’ i=1, e, M
Jor x;,z;€X;, g=1,---,m, where ¢ fulfills the condition 0 < ¢ <
1 — q, q being defined by
g = max (fr;l Z%, ai,,'r,c> .
[3 k=1
Then the system (F, ---, F,) has a fixed point, i.e., there exist points

z,eX,1=1, -, n such that x,€ F(x,, -+, 2,), 1 =1, ---, m.

Proof. That the above theorem follows as a corollary for the
Theorem 3.1 can be seen if we put I',(x,) = I, (x,¢ X)), the identity
operator on X; and Pz, -+, 2,) =, — Fiy(%, ---,2,) 1 =1, ---, % in
(3.4)(b) and observe that it reduces to

Hlw, +y, — Fi®, + Yy -+, o + Ya)y & + Ys — Fyw, ---, 2,)]
= Iczz:'l birll |l + kZ.:l cuDilyi, Yr — 2, + Fi(y, -+ -, ,)]

+eDjfw, + vy, + Y, — @+ y) + Fy(a, + 4y, -0, &, + Y]
i.e.,

Hz[Fz(xl T Yy oy Tt yn), Fi(xly Tt .’L'n)]
= kZ.=l bl vl + I;_l CalYi, Y — T + Fi(w,, - -+, x,)]
+ c-Di[xi + Y, Fz(xl + Yiy + 00y Ty + yn)] .
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Taking ©, +y, =2, 1 =1, ---, n, we have
HF (2, -+, x,), Fi(z, -+, z,)]
= 3 ballew — 7l + 3 caDilen, Fie, -, @]
+ ¢Dj[z, Fi(z, ---, 2,)],

which is nothing but condition (3.15). It can be similarly shown that
(3.15) implies (3.4)(b) in this case. To prove that the operator F,,
1 =1, .-+, nis closed in the sense of Definition 3.1, observe that we
have shown in the proof of Theorem 8.1 that z” —x, and y”e
P(ay, -, 27, ie., yrear — F(", ---, 2™ =1, ---,n, and y* —0
as m — oo, ie., o —yr —a, 1 =1, ---, n. It remains to show that
x,eFyx, ---,2,), 1=1 -+, n.

Dz[xiy Fz‘(xly T xn)]
é [:xb - 9’/'1”“ + Dz[x'zm; Fi(xlr ) xn)]
é {;xi - x;n ]‘; + Hi[Fi(xin_I’ Tty x;n—l), Fl(xly Tty xn)]

n
= floe — ol || + X byllar™ — x|
k=1
%
+ kZL cz'ka[xZL_ly Fk<x’{n—1, ) x;n—l)] + cDi[xi, Fz(xly Tty x‘ﬂ)]
= floe — @bl + 25 bal[2F ™ — 2]

7
+ ]ZAL el 2 — ap || + eDfx,;, Fi(x, -+, 2,)] .

As 0 < ¢ <1 and
Dz[xiy Fi(xly Tty xn)]

1 , u . | w _
= @ —af || + X5 bullar™ — &, || + X enllad™ — i ||
1—e¢ =1 k=1

it follows that D[z, Fi(x, ---, 2,)] = 0. Since F,/(x, ---,x,) is a
closed set, x,€ Fi(x,, ---, ©,). ]

Theorem 3.3 below is a generalization of Matkowski’s Theorem
2.1 to multivalued mappings.

THEOREM 3.3. Let X,, i =1, ---,n be Banach spaces and a
i, k=1, ---,n be positive and al, be defined by (2.5) and (2.6) and
fulfill (2.8). Suppose that the transformations F,: X, X --- X X, —
CL(X), t=1, ---, n satisfy

Hi[Fi<xly .t ‘y x'n), Fi(zly .t ‘) zn)] é :2:1 a/ikak - zk“
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for all x;,2;,€X;, 5=1, ---,n. Then the operator F = (F, ---, F,)
has a fized point, i.e., there exist points ;€ X,;, such that x;¢€
Fy(x, ---, 2, forall i =1, ---, n.

Proof. In Theorem 3.2, let ¢;, =0, b, =ay, 1, k=1, ---, n and

c=0. O

The following is the multivalued version of Altman’s Theorem
2.2.

THEOREM 3.4. Suppose a nonlinear closed operator P: D(P) C
X - CL(Y) has a bounded contractor I' satisfying

3.16) (a) =« + I'(x)ye D(P), whenever xc D(P), yeY,
D(P) being the domain of P ;

(8.16) (b) H[P(x + I'()y), Px + y] < qlly ||,
xeDP), yeY, 0<qg<1;

(3.17) IF'@| =B, zeDP).

Then there exists x € D(P) such that 6 € Px, where 6 is the zero ele-
ment of Y.

Proof. For m =1, Theorem 3.1 reduces to the above theorem
for the choice ¢;, =0, b, =ay, 1, k=1, ---,nie,b,=a,=q¢<1,
and ¢ = 0. O

Besides, Theorem 3.1 yields as corollaries several fixed point
theorems for single-valued mappings including the following theorem
proved elsewhere (Theorem 2.1, [2]).

THEOREM 3.5. Let X,, Y, i =1, ---, n be Banach spaces and
T:DcX,x:---xX,—Y,,i=1, ---, n be closed non-linear operators.
Suppose that there exist bounded linear operators I(z): Y, —X,,
v =1, ---, n such that

(@ + I'(2)yy, -+, 0 + Ta(2,)y,) €D

(3.18) (a) whenever (x,, ---,x)eD, y,eY,, i=1 ---,n;
1T, + D@y, -y @0+ La@)yn) — Ta(@y, -+, 22) — Ul

@18 ® =3 aulluel,

where the monmegative numbers a;, i, k=1, ---,n are defined by

(2.5) and (2.6) and fulfill (2.8);
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(3'19) ”Fz(wi)HéB’ ’13:1,-”,')?,, (xi’°”!xn)eD°
Then the system of operator equations
(3.20) Ti(xl, ) T.) = Y, ?’=1: e, M

has a solutiom in D for arbitrary y,€ Y, i=1, ---, n.

Proof. In Theorem 8.1,let ¢;, =0, by, = ay, 1, k=1, ---, » and
¢ =0. Define P, ---, ®,) = {Ti(x, - -+, x,)} for (@, -+, @)D, ¢ =
1, ---, m. Clearly the assumptions of Theorem 3.1 are satisfied and
hence the system of equations (3.20) has a solution in D. ]

The above Theorem proved in [2] unified, in the setting of Banach
spaces, Altman’s extension of the contraction principle and Matkowski’s
fixed point theorem.
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