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ON THE BOUNDARY CURVES OF
INCOMPRESSIBLE SURFACES

A. E. HATCHER

Let K be a knot in S3, and consider incompressible (in
the stronger sense of πi-injective), d-incompressible surfaces
S in the exterior of K. A question which has been around
for some time is whether the boundary-slope function SH-»
msISs, where ms and Ss are the numbers of times each circle
of dS wraps around K meridionally and longitudinally, takes
on only finitely many values (for fixed K). This is known
to be true for certain knots: torus knots, the figure-eight
knot [4], 2-bridge knots [2], and alternating knots [3]. In
this paper an affirmative answer is given not just for knot
exteriors, but for all compact orientable irreducible 3-mani-
folds M with dM a torus. Further, we give a natural
generalization to the case when dM is a union of tori.

To state this more general result it is convenient to use the
projective lamination space &£f(dM), defined in [4]. If dM is the
union of tori Tί9 , Tn, then &*£f(dM) is the join ^*Sf(Γ^ * *
&*£f(Tn) = RP1 * . . . * RP1, a sphere S2n~\ More concretely, suppose
coordinates are chosen for each Tt. Then isotopy classes of finite
systems of disjoint noncontractible simple closed curves on T« are
parametrized by the set Z2/± of pairs (α, δ) e Z2, where (a, b) is
identified with (—α, — 6). So systems on dM are parametrized by
(Z2/±)n. Restricting to nonempty systems and projectivising by
identifying a system with any number of parallel copies of itself,
yields (Z2/±)n - {0}/(v~\v). This is the same as (Q2/±)n - {0}/(v~Xv).
The natural completion of this space is &*£f(dM) = (R2/±)n - {0}/
(v ~ Xv), clearly a sphere of dimension 2n — 1. (We shall not be
concerned with the geometrical interpretation of the points added
in forming this completion.) A change of coordinates for the Γ/s
produces a projective transformation of this S2n~\ so &*Ji?(dM) has
a natural projective structure. (For surfaces of higher genus, &£f
has only a natural piecewise projective structure.)

THEOREM. Let M be orientable, compact, irreducible, with dM a
union of n tori. Then the projective classes of curve systems in
dM which bound incompressible, d-incompressible surfaces in M form
a dense subset of a finite {projective) polyhedron in &*Jί?{dM) — S271"1

of dimension less than n.

COROLLARY. If dM — T2, there are just a finite number of slopes
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realized by boundary curves of incompressible, d-incompressible sur-
faces in M.

Returning to the case of a knot KczS*, this means that if the
peripheral torus dN(K) is the only closed incompressible surface in
S3 — K, up to isotopy, then all but a finite number of Dehn surgeries
on K yield irreducible non-Haken manifolds. More generally, for
links LaS3 of n components such that Ss — L is irreducible (i.e.,
L is nonsplit) and contains no closed nonperipheral incompressible
surfaces, the theorem implies that the coefficients (pjq19* ,pn/Qn) s Tn

of the Dehn surgeries on L which yield either nonirreducible or
Haken manifolds lie in a piecewise smooth finite subcomplex of Tn

of dimension less than n. Thus, "most" surgeries on L yield ir-
reducible non-Haken manifolds.

One may compare the assertion of the theorem with the fact
(a consequence of duality) that the image of the boundary map
H2(M, dM) -> Hx(dM) has rank equal to half the rank of HtfM).
Thus, passing to the sphere S271"1 of rays through the origin in
Hx(dM\ R), the image of the homological boundary map is a sphere

The proof of the theorem will follow fairly easily from a recent
fundamental result of [1] about branched surfaces in 3-manifolds,
i.e., closed subsets locally diffeomorphic to the model in Figure la.

FIGURE 1

A branched surface B is said to carry a surface S if S lies in a
fibered regular neighborhood N(β) of B (indicated in Figure lb) and
is transverse to all the fibers of N(B); S has positive weights if it
meets all the fibers of N(B). The result of [1] is that in a compact
irreducible 3-manifold M with incompressible boundary there exist
a finite number of branched surfaces (Bif dB%) c (M, dM) such that
the surfaces carried by these .B/s with positive weights are exactly
all the incompressible, 3-incompressible surfaces in M, up to isotopy.

Let BcM be one of the branched surfaces of [1]. Then dB =
B Π dM is a branched 1-manifold in dM with two key properties:

(1) There is no smooth disk DczdM with D f] dB = dD.
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(2) There is no disk D c dM, smooth except for one outward
cusp point in dD, with Df]dB = dD.
Condition (2) is explicitly given in [1], If condition (1) failed, then
any surface carried by B with positive weights would have a
boundary circle which was contractible in dM, This circle would
then bound a disk component of the (incompressible) surface, con-
trary to the construction of B in [1].

(In the terminology of [4], dB would be a train track in dM,
were it not for the fact that some components of dM — dB can be
digons.)

Let S be a surface carried by B with positive weights. No
component of dS can be contractible in dM, since otherwise there
would be a smooth disk D c dM with dD c dB, and somewhere inside
this disk condition (1) or (2) would be violated. Thus in each com-
ponent Ti of dM which B meets, dS consists of a number of parallel
nontrivial circles.

LEMMA. There is an orientation & on dB with the property
that all the circles of Tt Π dS, with the orientations induced from
&, are homologous in T*. Hence the ^-oriented class [dS] e Hx{dM)
determines the class of dS in &*Jϊf(dM), by simply forgetting the
orientation and then projectivising.

Proof. Let SQ be a surface carried by B with positive weights.
We can construct a fibered regular neighborhood N(dS0) of dS0 in dM
from a fibered regular neighborhood N(dB) of dB in dM by slitting
N(dB) along certain circles and arcs in N(dB) transverse to the fibers.
Inverting this construction, we see that N(dB) is obtainable from
N(dS0) by adding certain fibered rectangles and annuli in dM — N(dS0),
as shown in Figure 2. (Annuli would be necessary if dS0 contained
pairs of circles which were parallel in N(dB).)

N(dSo)

FlGUEE 2

No fiber of a rectangle of N(dB) — N(dS0) can join a component of
dN(dS0) to itself, since this would violate condition (2) above. Hence
all the fibers of N(dB) can be coherently oriented, as follows. On
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each component Tt of dM which dB meets, choose parallel orientations
for all the circles of dS0 Π Tt; then an orientation for Tt determines
an orientation for the fibers of N(dS0) Π Γ, which extends to
N(dB) n r«.

We may choose an oriented simple closed curve 7* in Tt meeting
N(dB) in union of fibers of N(dB), such that the orientation of γt

agrees with the orientation of the fibers. To construct such a yif

start with any fiber of N(dB), continue across a rectangle or annulus
of Tt - N(dB) to another fiber of N(dB) on the opposite side of
this rectangle or annulus, and so on. Eventually the curve so con-
structed must either close up or come arbitrarily close to closing up,
in which case by rechoosing part of the curve in Tt — N(dB) we
can make it close up. From the existence of 7̂  the first statement
of the lemma clearly follows, since all the points of 7* Π dS have
intersection numbers of the same sign. The second statement of
the lemma is then immediate. Π

Proof of the Theorem, The surfaces carried by B are determined
by assigning nonnegative integer weights to the components of
B — B', where J3' is the branching locus of B. These weights at

must satisfy certain equations of the form at + % = ak, coming
from the branching at Bf. Thus the protective classes of surfaces
carried by B correspond to the "rational" points of a convex poly-
hedral cell which is the intersection of the (N — l)-simplex [0, co)^ —
{0}/(v ~ \v) with a linear subspace of RN, for some N. The same
is true if one restricts to projective classes of boundary curve
systems of surfaces carried by B: they are parametrized by the
rational points of a convex polyhedral cell, cB say. Restricting to
surfaces of positive weights corresponds to taking cB to be an open
cell. Moreover, by the lemma, the open cell cB maps into &*J*f(dM)
by a projective linear map. (Regarding dB as an oriented 1-complex,
then a weighting of its edges by integers α* satisfying the branching
conditions at + α, = ak determines a 1-cycle, which obviously depends
linearly on the α/s.)

It remains to see that aim cB<n. Let S1 and S2 be two surfaces
carried by B with positive weights. If dS± and dS2 are oriented by
#*, then the intersection number dSλ dS2 is zero, provided dM is
oriented as the boundary of M. To see this, perturb St and S2

slightly to be transverse (and still transverse to the fibers of N(B)).
There are two possible configurations for the ^-orientations of 3S±

and 3S2 at the ends of an arc a of Sλ Γi Sz, as shown in Figure 3
below (where the fibers of N(B) are in the vertical direction). In
either case the two ends of a give points of dSλ Π dS2 with opposite
intersection numbers. So dSt dS2 — 0.
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Thus, the classes dS for surfaces S carried by B with positive
weights belong to a self-annihilating subspace of HSβM) ̂  Z2n. By-
linear algebra, this subspace has rank ^ n, and the theorem follows.

D

or

FIGURE 3

Questions.
(1) Is there a generalization of the theorem to 3-manifolds

having boundary components of higher genus?
(2) For knot exteriors in Ss, must the boundary slopes of in-

compressible, d-ineompressible surfaces always be integers?
(3) Are there nontrivial knots for which all the incompressible,

3-incompressible surfaces have the same boundary slope?
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