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FIXED POINT CLASSES OF A FIBER MAP

CHENG-YE You

Let (E, p, B) be a fiber space with £, B and all fibers
compact co_nnected ANR’s. Let f: E—E be a fiber map, then
f induces f: B>B. For each fixed point b of f, we define
fo=Flp71(d): p~1(b)—>p~'(b). Then pof=fep and wofy=Ffc%,
where 4, is the inclusion map. We have Nielsen numbers
N(f), N(f) and N(f;). A product formula relating these
Nielsen numbers was published by Brown in 1967. There
have been several improvements of the formula since that
time.

In this paper, we study the structure of the fixed point
classes of f, and prove some theorems about the product
formula of the Nielsen number of a fiber map, which imply
results of Fadell and of Pak.

Throughout this paper we assume all spaces are path-connected
and all fiber spaces are Hurewicz fiber spaces.

I am grateful to Professor Boju Jiang (Po-chu Chlang) for some
important suggestions.

I would also like to thank the referee for his help.

1. Fixed point H-classes. The concept of fixed point H-classes
is presented in [8] and [7]. For convenience of calculation, we give
its definition a precise algebraic formulation.

Let X be a space, and H be a normal subgroup of 7,(X) (which
means that for each xe X, a normal subgroup H(x) of 7,(X, x) is
defined, such that for any path w in X from z to z’, we have
w,(H(x))=H(x'), where w,: 7(X, ) —7(X, «') is defined by w,({a))=
{w™law), for any {a) e 7(X, x)). Two paths ¢,d in X are said to
be H-homotopic and written ¢ =~ ,IZ d, if ¢(0)=d(0), cA)=d(1) and {ed ") e
H. One can easily see that When c= £ d, then d=¢, ¢ ~ d* and

also uc g ud, cv g dv if uc and cv are well-defined.
Let xe€X, we can think of every element of x,(X, x)/H (x)

a g equivalence class of loops based at z. Let <a)y denote the =
equivalence class of the loop a. For each path w in X from 2 to
z', let wy: (X, x)/H(x) > (X, «')/H(x') be the homomorphism in-
duced by w,, that is, wyz({a)y) = {wlaw)y.

Suppose that a map f: X — X satisfies f,(H)C H (it means that
for any zeX, f.(H(x)) c H(f(x)) where f.: m(X, x) — 7 (X, f(x)) is
the induced homomorphism). Then, for each zeX, fu: 7 (X, x)—
7(X, f(x)) induces a homomorphism fy: 7,(X, x)/H(x) — 7,(X, f(x))/
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H(f(x)).

Let @(f) be the set of fixed points of f. Any two fixed points
z, ' € O(f) are said to be in the same H-class, if there is a path ¢
in X from x to «’ such that ¢ z feoc. Then O(f) is divided into a
finite number of equivalence classes, called nonempty fized point
H-classes of f. Let @4(f) denote the set of nonempty fixed point

H-classes of f. 1

Let z,€ X and let w be a path in X from z, to f(z,). We define
a homomorphism f, = wz'e fu: (X, x,)/H(x,) — w(X, 2,)/H(x,), s0
Falladn) = {w(foa)w™>y. Any two elements a, o' of 7,(X, x,)/H(x,)
are said to be “~ equivalent” (written a ~ ') if there is a 7ve
7(X, )/ H(x,) such that &’ = vafz(v™). Let Vu(f; %, w) denote the
set of ~ equivalence classes, and let [a] denote the ~ equivalence
class of a.

LEMMA 1.1. For each x € d(f), the set {{c(foc™ W™ Dy| for any
path ¢ from x, to x} 1s exactly a ~ equivalence class, so x determines
an element of Vg(f; %, w). Two fixed points determine the same
element of Vy(f; x,, w) 1f and only if they are in the same H-class.

Proof. We take a path ¢, from z, to 2. For any path ¢ from
x, to «, cc;' is a loop based at x,. Then

e(foe) w™yy = Leereo( foea)(fo cw“)uf‘) -
= {eeiDgleo( fo e W™z fu({ees™) x)
~ el feesHw ™)y .

Hence {{e(foe ™ )w™) 5| for any path ¢ from 2, to x} C [{e)(focsH)w ™) 4]
On the other hand, if ¥ = (), then (writing ¢ = 7¢,)

le(foe ™YWy = Ve fo e Yw ™D g fu(¥™) .

Hence [{¢y(focs)w gl C{e(foe™w™)y| for any path ¢ from z, to
x}. Thus we get the first conclusion.

Let z, 2’ € 9( f)Hbe in the same H-class. Take a path d from «
to 2’ such that d = (fod), and a path ¢ from 2, to . Then ¢d is
a path from z, to 2’, and

{ed(fe(ecd)™Hw™) g = {ed(fod ) feeHw ™)y = {e(fee™Hw™), .

Hence x, 2’ determine the same element [{¢(foc™Hw ™), €V x(f; X0, W).

Conversely, if z, '€ @(f) determine the same element, then,
according to the first conclusion, we can find paths ¢, ¢’ from =z, to
x, «' respectively such that

o(foe w2 ¢!(fooYw .



FIXED POINT CLASSES OF A FIBER MAP 219

H .
It follows that ¢™'¢’ =~ fo(c™%’). Since ¢'¢’ is a path from 2 to 2/,
we get that «, «' are in the same H-class. O

Lemma 1.1 permits us to define an injection p(x,, w): @5(f) —
Va(fs oy w) by 0(20, w)(F) = [{e(foc™Hw ™)), where xe Fe@y(f) and
¢ is a path from z, to x.

The set V,(f; %, w) depends on the pair (x, w). Let (x, w) and
(x', w') be two such pairs. If x =2, w=w’, then w, = w), and
fu, ~ equivalence are the same, so V,(f;x, w) = V. (f; 2, w). In
general, however, V,(f;x, w) is different from F,(f;«’, w'). We
now show the relation between them. It is easy to prove that:

LEmMMA 1.2, (a) If <ayg {a'dpem(X, x)/H(x) are ~ equivalent
and % ts a path from x to x', then

™ taw( fow)w Dy ~ (uTdw(fou)w' ™, .
Thus we can define a transformation v: Vi (f;x, w) —Vy(f;«, w') by

(1) V([{aynl) = [KuTaw(feou)w ) n] .

(b) v is independent of the choice of path u.

(¢) When v =2 and w =~ w’, then v is the identity.
(d) If we have another pair (x”, w'”), then the diagram

Vu(f; ', w')
v,/

i m, 0) <
N

Vu(fsa”, w'")

is commutative.
(e) We have a commutative diagram

Va(fse, w)

o@, w),”
o)<

o(@’, wIN\,

Vulf; o', w') . ]

The conclusions (¢) and (d) show that v is bijective and that
we can identify all 7,(f;z, w) by v to get an abstract set denoted
by 7u(f). Then (e) shows that we can identify all p(x, w) to get
an injection p: @5,(f) — Vy(f).

The elements of 7,(f) are called fixzed point H-classes of f. A
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pair (x, w) with x€ X and w a path from x to f(x) is called a refer-
ence pair for f. Each element of Vy(f;x, w) is called the represen-
tation of the corresponding element of Fi(f) in the reference pair
(@, w). We will identify each element F of @,(f) with o(F), and
think of @%(f) as a subset of V,(f).

When H is trivial, then the fixed point H-classes are the ordinary
fixed point classes, and fy = fr, Wy = Wy, fa= f=. In this case, we
abbreviate 7,(f) to F(f), Ba(f) to '(f), = to =~ and so on.

We now state some results about the fixed point H-classes
without proof.

Let G: f = g: X — X be a homotopy, where f satisfies f.(H)CH
(so g.(H)c H). The following lemma shows the relation between
Va(f) and Vy(g).

LemMA 1.8. (a) Let (z, w) be a reference pair for f, and (x', w')
be a reference pair for g. Let u be a path from x to «'. If {a)y,
{a"Y g €Vy(f; z, w) are ~ equivalent, then

uTlawd(G, ww' ) g ~ uTa'wd(G, ww' "y,

where 4(G, w) is the diagonal path defined by A(G, w)(t) = G(u(t), t).
Thus we can define a transformation pig: Va(f; x, w) — Vy(g; o', w') by

(2) tea([Ka)u)) = [KuT'awd(G, ww') ] .

Since Vu(f; ¢, w) and Vy(g;«', w') are representations of Vy(f) and
Vu(g) respectively, we can think of g as a transformation from
Va(f) to Vu(f).

(b) e does not depend on the pairs (x, w), (x', w') and the path u.

() e s a bijection.

(@) Let x € Foe@y(f) and x, € F, € Py(g). Then ps(F,) = F, if

and only if there is a path ¢ from x, to x, such that ¢ = 4(G, c).

REMARK. Since the representation (2) of y, depends on the
pairs (x, w), (¢', w") and the path u, we may get a very simple
representation by choosing suitable pairs and path. We will fre-
quently use ¢’ =2, w = wG, (where G, is the trace of G at z,
that is, the path defined by G.(t) = G(z, t)), and u is the constant
path at 2. Then 4(G, u) = G, and (2) becomes

(2a) te([{ayx]) = [{a)x] -

(Note that the [{a)] on the left hand side is in Fy(f; 2, w) and
the other one is in Vy(g; «', w').)

Let X, Y be spaces and let 1 X—> X, g: Y—>Y and : X—> Y
be maps so that the diagram
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x-1.x

hl g lh
Y—Y

is commutative. Then we have h(@(f)) C @(g9). Furthermore, if H
and H’ are normal subgroups of z,(X) and 7 ,(Y) respectively, and
f(H)Yc H, g.(H"YC H', h.(H)C H', then we have

LEMMA 1.4. (@) If (x, w) is a reference pair for f, then (h(x),
how) 18 a reference pair for g. We can define a tramnsformation
hy: Ve(f; ¢, w) — V(g; h(x), how) by

(3) hy([Ca)n]) = [Khoa)x] .

Thus we get hy: Vg(f) — Vg(9).

(b) hy is independent of the choice of (x, w).

(¢) If o' e Fe@y(f), then h(z') e h,(F) e @4(9).

(d) If Z is another space, H" is a normal subgroup of w(Z),
and k: Y —Z, ¢: Z — Z are maps such that kog = 7ok, k(HYC H",
/(H"Yc H”, then we have (keh), = kyohy. O

COROLLARY 1.5. Let X, Y, H and H' be as above. Suppose that
h:X—Y and h': Y — X are maps such that h.(H)C H', h(H"YCH.
Let f=hoh:X—>X and g=hobh": Y—-Y. (f, g are called a pair
of commuting maps.) Then the diagrams

x-I.x x-I.x
hl lh and h']‘ [h'
vy-2,v vy-2.,v

are commutative, and hy: (Vu(f), Pu(f)) — Fu(9), Pu(9)), hy: (W a(9),
Du(9) — Tulf), Pu(f)) are defined. Moreover h,oh, and h,oh, are
both the identities, so h, is a bijection with inverse h,. ™

COROLLARY 1.6. Let H, H' be two mormal subgroups of m,(X)
such that H' c H. Then for any map f: X — X satisfying f-(H)CcH
and f.(H")C H', we have the transformation id,: (Vy(f), @u(f)) —
T u(f), Du(f)), where id is the identity map of X. In particular,
we have idy: 7 (f), @'(f)) — Fu(f), Pu(f))- 1

Note that id, is surjective.

2. Fixed point classes of a fiber map. The transformation
Ts. From this section on, let A be a regular lifting function of a
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fiber space (E, p, B) with E, B and all fibers path-connected. For
any path ¢ in B from b to b’, we define a map (translation) z;: p7(b)—
p7(d") by (%) = n(x, ¢)(1). Note that if ¢ is a constant path, then
Ta = id.

LEMMA 2.1. For any path d in p~(b), we have in E
Tsod = Md(0), ¢)*dn(d@), ©) .

Proof. We define a map H:I x I — E by
H(, s) = Md(@), ¢)(s) .

The restrictions of H to the four sides of the square I x I are
paths A(d(0), ¢), Md(1), ¢), d and 7;od. From this we get the con-
clusion of the lemma. ]

For each be B and xep'(b), let K,(x) denote the kernel of the
homomorphism (%,).: 7,(p~'(b), ) — 7,(E, x), where 4,: p~(b) — E is the
inclusion. Then K,(x) is a normal subgroup of z,(p™(b), ). For
any path < in p7'(b) from x to o', it is easy to prove /. (K,(x)) =
K,(x'). Thus we get a normal subgroup of =,(p *(b)) denoted by K,
(or K briefly). Note that for two paths d and d' in »7'(d), d g d
if and only if d =~ d’ in E.

Let ¢ be a path in B from b to ', and let x e p™(b), ' = z:(x).
It follows from Lemma 2.1 that the diagram

T.(p(b), ®) 2, 7B, w)

(Ta)n‘[( ‘ll(x é)*
(), o) 25 7 (B, o)

is commutative. Since (7;). and \(x, ¢), are both isomorphisms, we
get (z)(Ky(®) = Kp(2'). Thus (7a)(K,) = K.

Let f: E— E be a fiber map inducing f: B— B, let be @(f) and
let f, be the restriction of f to »*(b). For any z € p~'(b), the com-
mutative diagram

7,(p(b), ) ~25, 1B, z)

(fmj lf,,
7.(070), F@) 25 n(B, 1))

implies (f,):(Ky(®)) C Ky(f(®)), so (fi)«(Ky) C K, and Vg(f), Px(f;) are
defined.
Let F={f,}: E x I - E be a fiber homotopy from f to g, and
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let F = {f,}: B x I— B be the homotopy induced by F. Let be @(f),
b’ € 9(g) and let i be a path in B from b to b’ such that A(F, w)=w.

LEMMA 2.2. There is a bijection Tu from Vi(f;) to Vg(gy).

Proof. Define maps

h = T47,m-1° gy o Tw: (b)) — p7Y(b) ,
b = tgoT47,m-100y: () — p7'(}) ,
' = T4F,m ° TaF,m-1°9y: P (0) — p7'(b") .

The maps k and A’ are a pair of commuting maps. Since (73).(K;)=
Ky and (z45,9-1°03)(Ky) C (T47,m-0:(Ky) = K;,, by Corollary 1.5,
we have a bijection (zz)y: V(h) — V(h').

For a path ¢, let ¢:(», s€I) denote the subpath of ¢ defined by
ci(t) = e(r + (s — r)i).

Let D = {d,}: w ~ A(F, w). We construct homotopies H: p~'(b) X
I—p™() and H', H": p7'(b’) x I — p7'(b’) by

H(wy t) = TA(T’,E)?(A(Fy k'(x; w))(t)) ’
H'(z', t) = Ta, °T 47, m-1° 9u(®') ,
H"(«, t) = Ta7,2i (Moo (@), 4(F, ©)™)(1 — 1) .

Then H is from f, to h, H' is from A’ to A" and H” is from A" to
g». By Lemma 1.3, we have bijections gz, ¢tz and .. Let

Tu = turotla o (Ta)r o la: V(o) — Ve(gy)
then T is a bijection. O

In calculation we always use a representation of 7. We can
indeed get an extremely simple representation by a special choice
of reference pairs. Thus let (x, ) be a pair for f;,. The special
choice for & is (z, rH,) (cf. the remark following Lemma 1.3); the
special choice for A’ is (&', 750 (rH,)), where z' = 75(x) (cf. Lemma
1.4); the special choice for r” is (2’, (tz°(rH,))H,), and the special
choice for g, is (¢’, (zwo(rH,))H, H,), where H,, H,., H]. are traces.
Let 7 = (o (rH,)H, . H,:.. Then («, 7') is called the induced pair
Jrom (x, r) and w. By (2a) and (8), T5: Vx(fy; x, 7) — Ve(gy; &, 7') is
given by

(4) To([{ax]) = [Taca)g] -
LEMMA 2.3. Let (x, r) be a reference pair for f,, and let (', ')

be the induced pair for g, from (x,r) and w. Let w = Mz, W), then
wm B
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(5) ' ~wrd(F, w) .

Proof. We construct maps G;: I X I—E, 1 =1,2,3, by

Gi(t, 8) = MA(F, w)(®), A(F, m))(s) ,
G.(, 8) = Mh(), d:)(s) ,
Gi(t, 8) = MMgy (@), 4(F, By ™)L — ¢), AF, D)) -

Calculating the paths defined by restricting the G, to the four sides
of I x I, we get in K

Hz = A(Fy w))"(gb’(x’), A(Fy ,w)-—l) ’
H,, = Mh(x), ©)Mh(@), AF, @) ,
2 = Mh(x), A(F, @) Mew (), AF, B)7) .

By Lemma 2.1, we have in F
Ty o (rH,) = w™rH N h(x), @) .

Applying the four formulas to the definition of 7, we get (5). [

Note that w™*r4(F', w) does not depend on D, so (7>, does not
depend on D. Moreover, the representation of 7% in (x,r) and
(a’, ") does not depend on D either. By (¢) of Lemma 1.2, we get:

COROLLARY 2.4. The function Ty does mot depend on the choice
of the homotopy D wused in its construction. O

LeMMA 2.5. The diagram
()= Palow)
(ib)yl 2%
7(f) 5 p(g)
18 commutative.

Proof. We need only to prove the diagram

Tw ,
Ve(foy %, 1) — V(gy; &', 77)

m»l J(in')y

7(f; e, v) -2 pg; o, 1)

is commutative, where (x, ) is a reference pair for f; and (a/, ')
is induced from (x, ) and w. For any [{a)x] €V (f3; =, 1),
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(@)r o To([Kape]) = (@pdr([{Tmoadx]) (by (4))

= [{tu°a)] (by (3))
= [{w™aw)] (Lemma 2.1).
On the other hand, since w is a path from « to z’,
Lo ()r([Kayx]) = px([ad]) (by (3))
= [{w™ard(F, w)r'*)] (by (2))
= [Kw™aw)] (by (5)). |

We will often apply 2.2-2.5 in a special case, namely when F
is a constant homotopy f,=f. In this case, b, are in the same
class of f, A(F, @) = fow, A4(F, w) = fow, (5) becomes

(5a) = wr(fow)

and the diagram in Lemma 2.5 becomes

Pl ) — V()

N "
(%)V\I / (%)p
46))

We now add two properties of T in this special case. Before
this, we first prove

LEMMA 2.6. Let v be a path inm E such that v(0), v(1) € p~*(b)
and {pcv) i8 the unit of w (B, b). Then there is a path < in p~(b)
from v(0) to v(1) such that /= v in K.

Proof. We first take an arbitrary path <’ in p7%(b) from 2(0)
to v(1). Then v/’ is a loop based at #(0), and p.((v/'*)) is the
unit. By the exactness of the sequence

—1 ()= Pz
7, (p7'(b), v(0)) — 7,(E, v(0)) — 7,(B, b)
we can find an element v of 7 (p7'(b), v(0)) such that (3,).(7)={ws' ™).
Let wev. Then, in B, uw = v/'*, and the path «= us’ meets the
need of the lemma. 1

LemmA 2.7. If @' = w, then Ty = T,.

Proof. Let (x,7) be a reference pair for f,, let (2, ') be the
induced pair for f,, from (x, ) and w, and let (x”, »") be the induced
pair for f,, from (x, ) and @’. Let w = \(z, @), w' = Nz, @w'). We
need only to prove that the diagram
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Ve(fos o', ")
Tw/‘
Ve(fo; @, 7) < v
N
Ve(fos 2, 1)
is commutative. Since {(po(w™'w’)) is the unit of 7 (B, '), we can

find a path ~ in p~'(d’) from z’ to x” such that » ~ ww’ (Lemma
2.6). For any [{a)x] €V,(fi; z, ), Wwe have

vo Ty([Kays]) = v([{Tuoa)x]) (by (4))
= [ rwea)r'(fo)r" gl  (by (1)) .

Since in E (by (5a) and Lemma 2.1)

N Ty (fo )"t = www aww r(fow)(fow W )(fow )r-w'
~ W lgw ~ Tt50a

SO

M Tgoa)r (fo )" g = (Taoayx

and
vo Ty([{a)k]) = [tw o adx] = To([{adx]) - ]

Similarly, we can prove

LEMMA 2.8. Let b, b, 0" c@(f) be in the same class, and @' be
a path from b to b, @ from b to b’ such that @' = fow' and

— 1 ="

W'~ fow". Let w = w'w'. Then

Tw":Tﬁ//OT;,;». D

3. The structure of fixed point classes of a fiber map. Let
(E, p, B) be a fiber space with E, B and all fibers path-connected,
and let f: B — E be a fiber map. Since pof = Fop and iy0f, = foi,,
by Lemma 1.4, we can define p,: (7(f), 9'(f)) — (), '(f) and
()2 Tx(fo), Pu(S) = (P (S), @'(f)) (for any bed(f)). Note that for
any Fe@%(f,), the fixed point class p, o (%,),(F) € @'(f) contains b.

THEOREM 3.1. Let b, b’ e ®(f), and F,eV(f), Fys €V (f,). Then
(1) (Fy) = (ib,)V(FO’)_'if and only if there is a path @W in B from b to
b such that @ = fow and T, (F,) = F,.

Proof. “If” is implied by Lemma 2.5. We now prove “only if”.
Let (x, ) and (2/, ') be reference pairs for f, and f;, respec-
tively. Suppose [{(a)x] is the representation of F, in (x,r) and
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[{a’>] is the representation of F, in (2/, #'). Since (4,),(F;)=(1,). (Fy) €
V(f), its representation is [{a)] in (z, ) and is [{a)] in (2, 7'). Let
v be a path in E from x to 2/, then by (1), [{a')]=[{v""ar(fov")r')].
Thus we can find {u) e (¥, 2') such that in E

(@’ = Cup<v" " ar(f o v (" o fl{up™)

= {uv tar(fo(wu))r' ) .

Let v = v and @ = powv. Then the above formula implies w =
foib.

It remains to prove T,(F,) = F,. To do it, we calculate the
representation of T,(F,) in (x’,7'). Suppose (x”,7”) is the pair for
fv induced from (z, ) and w. By (4), the representation of T4 (F)
in (&7, 7") is [{(zsoadg]. Let w = A\(x, w). Since {(po(w'v)) is the
unit of z,(B, b’), we can find a path ~in p7(d’) from z” to a’ such
that /=~ w™» in E (Lemma 2.6). Then by (1), the representation
of T,(F,) in (2, 7) is [{/ " (z,oa)r"(fo/)r"Dg]. By Lemma 2.1 and
(5a), in E

CHrgoa)(fo ) = v ww  aww r(fow)(f o)™
= v tar(fevyr' ™ = a

S0 (/Mryoa)r'(fo)r g = <adx and T (F,) = [{a")x] = F,. |

Let X be a compact connected ANR, H be a normal subgroup
of 7(X), and let f: X — X be a map such that f.(H)c H. Then
for any Fel,(f) we define its index i,(F) as follows: if Fe®L(f),
then 4;(F) is the usual fixed point index (as in [3]), otherwise,
1,(F)=0. A fixed point class Fe/V,(f) is said to be essential if
17(F) % 0. The number of essential fixed point H-classes of f is
called the H-Nielsen number, denoted by N(f).

Let G: f = g: X — X, where f has the property f.(H)c H. Then
adopting the method used in [3] (cf. p. 98, Theorem 3), we can
prove that if Fe @,(f), then

1,(tte(F)), if po(F) e @1(g) ,

C(F) —
U(E) 0 otherwise.

Thus ¢, preserves index.

Let X, Y be compact connected ANR’s, let H and H’ be normal
subgroups of 7,(X) and #,(Y), respectively, and let maps h: X — Y,
h':Y — X be such that h.(H)C H', h.(H')C H. Let f="h'oh, g =
hoh'. Then by Corollary 1.5, hy: (7,(f), @u(f)) — Tu(g), Dy (g)) is a
bijection. By the commutativity of the fixed point index (ef. [3],
p. 82), if Fe®,(f), then i,(F)=1,(h,(F)). If F¢®,(f), then h,(F)¢
05,.(9), and 1,(F)=0=1,(h,(F)). Thus we conclude that h, preserves
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index.

From now on in this paper, let (&, p, B) be a fiber space with
E, B and all fibers compact connected ANR’s, and let f: E — E be
a fiber map. From the above discussion, we get

LemMA 3.2. The bijection T; defined in Lemma 2.2 is index-
preserving. (|

COROLLARY 8.8. If b,b c®(f) are in the same class, then
NK(fb) = NK(fb’)'

Proof. Let @ be a path from b to b’ such that @ = fow. Then
we have T;: Vi(f,) — Vi(f,), which preserves index (by Lemma 3.2).
Thus Nx(fy) = N(fy)- 1

From Theorem 3.1 and Lemma 3.2, we get some corollaries.
Let #S denote the cardinality of a set S.

COROLLARY 3.4. Let Fel(f) so that p,(F)e®'(f). Then for
any bep,(F) the number #(¢,);"(F) (i.e., the number of elements in
(@), (F)) ts a constant, and for any bep,(F), any F,e (3,),"(F), the
index i;,(F,) is also a constant.

Proof. By Theorem 3.1, for any b, b’ € p,(F), and for any F,c
(@), "(F), F; e (i,),"(F), we can find a path % in B from b to b’ such
that @ = fow and Tu(F, = F,. Since T, preserves index, then
i7,(Fo) = is,(F7). Again by Theorem 3.1, T5((i,);*(F)) = (4);(F), so
$(0); (F) = #(3); ' (F). O

DEFINITION 3.5. For each Fel(f) satisfying p,(F)C®'(f), we
define j(F) = i;,(F,) and Kk(F) = £(3,);(F), where be p,(F) and F,¢
(1), (F).

COROLLARY 3.6. If Fed'(f) with j(F) =+ 0, then
(a) k(F) is a positive integer,
(b) as a set, p,(F) = p(F).

Proof. (a) Since Fe®'(f), we know that p(F) + @. We take
bep(F). Then p7'(b) N F # @, so (4,);*(F) is nonempty. It follows
that k(F) > 0. Since j(F) # 0, the elements of (¢;);'(¥) are all
essential, so k(F) is finite.

(b) By Lemma 1.4, one can easily see that p(F)c p,(F), and
we need only prove p,(F)C p(F). Let bep, (F), then F contains
k(F) essential fixed point K-classes of f;, so FNp™'(b) # @ and be
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p(F). Thus p(F) D py(F). O

4. The essential fixed point classes of f. In this section we
prove

THEOREM 4.1. Suppose Fe@'(f). Then i,(F)+ 0 if and only
if J(F) # 0 and t7(p,(F)) # 0.

To prove it, we first give several lemmas.

LEMMA 4.2. Let F:f~g:E x I— E be a fiber homotopy, and
let Fed'(f), F' = p(F). Then 50, (F))=13(p,(F"). Suppose
Sfurther that p,(F') e @'(g). Then j(F) = j(F') and k(F) = L(F’).

Proof. Let F:f~=g:B x I— B be the homotopy induced by
F. It is easy to check that the diagram

7(f) 25 r(g)

p,,l i l:o,,
7(f) 5 @)

is commutative. Then f3(py(F)) = po(ptr(F)) = py(F"), 50 ir(p(F)) =
15(py(F")) (because y7 preserves index).

If p(F')e®(g), we take bep,(F) and b cp,(F'). By (d) of
Lemma 1.8, there is a path @ in B from b to b’ such that w~4(F, ).
By Lemma 2.5, T5((3,);'(F)) = (%),"(F"). Since T, is a bijection
and preserves index, we get j(F) = j(F') and k(F) = k(F'). |

LEMMA 4.3. Let (E, p, B) and (E', p’, B') be fiber spaces with
E, E’, B, B’ and all fibers compact connected ANR’s. Let h: E— E'
and h': E' — E be fiber maps, and set f =h'oh, g =hoh'. Suppose
Fed'(f), F' = hy(F). Then jF)=j(F'), k(F)=k(F") and i7(py(F))=
(0, (F")).

Proof. Let maps h: B— B’ and &': B’ — B be those induced by
h and k', then f=h'oh and § = hoh'. Since h is a fiber map, by
Lemma 1.4, p,oh, = (p'oh)y = (hoD), = hpop,. Since k, preserves
index,

i5(PH(F")) = 43(0; o e(F)) = i5(hp o Dp(F)
= 17 (0y(F)) .

Let bep,(F). Then b’ = k(b) c p,(F’) and ') = f(b) = b. Let
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by = k| p7'(b): p~(0) — p"'(}") ,
hy = B |97} (b"): p" (") — p~X(b) .

Then f, = hyoh, and g, = hyoh,. Let K be the kernel of (3,).:
7w, (p7}(b)) — 7 (E) and let K’ be the kernel of (i,).: 7, (p" (b)) —x,(E’).
The equations 4, oh, = hoi, and 4,0h;, = h'o4, imply (h,).(K)c K’
and (4;)-(K')c K. By Corollary 1.5, we get the Dbijection (h,):
V(fy) — Vg (g,) which preserves index. By Lemma 1.4, the diagram

(hs)
V(fy) —5 V(g3

(ib)pl j(ibl)p
P(f) 25 r(g)

is commutative. It follows that j(F) = j(F') and k(F) = k(F'). []

A space X dominates a space Y by maps Y 2 X Syif gon) =~
id: Y— Y. We say that a fiber space (E’, p’, B') fiber dominates a
fiber space (K, p, B) by fiber maps E 5L g SR it £o7 is fiber homo-
topic to the identity of K.

The following Lemmas 4.4, 4.5 and 4.6 are due to Boju Jiang.

LEMMA 4.4. Let (E, p, B) be a fiber space with E, B and all
fibers compact connected ANR’s, let B’ be a compact connected ANR,
and let E:B'— B be a map. Let (E',p', B’) be the fiber space
induced from p by E. Then E’' and all the fibers of (E', p', B') are
compact connected ANR’s.

Proof. By definition (cf. [10], p. 98), E’ is the closed subspace
{(®', e)|E(b") = p(e)} of B’ x E. For any b’ e B’, the fiber p'7*(b’) is
{b'} x p~HE®"). Since p~*(£(0’)) is a compact connected ANR, so is
P (b'). From the connectedness of B’ and all fibers of (E’, p’, B')
we can easily see that E’ is also connected.

It remains to show that E' is a compact ANR. Since B’ and
E are compact ANR’s, so is B’ x E. The closed subspace E’ of
B’ x E is certainly compact. To show E'’ is an ANR, we need only
prove that E’ is a neighborhood retract of B’ x K.

According to the uniform local contractibility of the ANR B
(cf. [3], p- 39), there exists ¢ >0 and for every pair (b, b,) of
points of B with d(b,, b,) < 0 there exists a path (b, b,) from b, to
b, such that (b, b,) depends continuously on b, and b,, and (b, b,)
is the constant path if b, = b,. Now define

r{(¥’, e)|d(E®D'), p(e)) < 6} — E'
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by
r®’, e) = ¥, Trpe,zenle) -

It is easy to check that 7 is a retraction and {(¥, ¢)|d(E(D"), p(e)) <6}
is open in B’ x E. Hence E’ is a neighborhood retract of B’ x E,
and therefore it is an ANR. O

LEMMA 4.5. Let (E, p, B) be a fiber space with E, B and all
fibers compact connected ANR’s. Then (E, p, B) is fiber dominated
by another such fiber space with polyhedral base space.

Proof. There is a compact connected polyhedron B’ which
dominates B by BLp B Let (&', p’, B') be the fiber space
induced by & from p. The map & lifts to a fiber map & E' — E.
Lemma 4.4 shows that E’ and all fibers of (E’, »’, B’) are also com-
pact connected ANR’s. It remains to show (E’, p’, B’) fiber domi-
nates (K, p, B).

Let (E”, p”, B) be the fiber space induced by 7 from »’ and
lift 7 to n: E” — E’. Then (E”, p”, B) is the fiber space induced
by €07 from p. But o7 ~id, so (cf. [10], p. 102) g¢on: E" - E is
a fiber homotopy equivalence with a fiber homotopy inverse {: K —
E”. Now EZSE' S E is a domination of B by E'. |

LEMMA 4.6. Let (E, p, B) be a fiber space with E, B and all
fibers compact connected ANR’s, and let fi E— E be a fiber map.
Suppose B is a polyhedron, and f: B— B has an isolated fixed point
b which lies in some maximal open simplex ¢ CB. Let AC O(f,)
be both closed and open in @(f,), then

15(A) = i7(b)-15,(4) .
Proof. For any two points b, b,c0, let (b, b,): p7'(b,) — p(b,)
stand for the translation determined by the linear path from b, to
b,. Note that z(b, b,) = id, if b, = b,.

Pick a Euclidean neighborhood U of b such that U U f(U)Co
and b is the only fixed point of f on U. Define maps

6:6 X p7(b) — E by «(b', y) = (b, b')(») ,
and
@: p(T)—— & x p7(b) by P(e) = (fople), for(n(e), b)(e)) .

There are homotopies {h;}:¢co® = f: p™(U) — E and {k.}: f X f; = Poc:
U x p~'(b) — o, defined by
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he) = t(f (1 — )b + tple)), Fop(e)) o for(nle), (1 — )b + tp(e))(e)
and
kb, y) = (F), for((L — )b + tb', b)oz(d, (1 — )b + tb')(¥)) .

Then @(h,) = @(f,) and @k, = b X @(f,), for all t.

Now take a neighborhood Wc p™(U) of A in E, such that
WNo(f) =A. Let Wy= Wnp'®d). Then by definition we have
15(4) = i(f, W), and 1i;,(A) = i(f,, W;), where ¢ denotes the fixed
index of a map on an open set. We have

W(f, W) =1iltop, w) (homotopy invariance of the index)
= (P o¢, T (w)) (commutativity of the index)
= i(po¢, U X W) (both sets contain the same fixed points)
=i(f X f;,, UX W, (homotopy invariance of the index)

= i(f, U)'i(fby Wb) .

The last equation is by Exercise V. 3 of [3].
The conclusion of the lemma now follows, because i7(b) =

il f, ). O

Proof of Theorem 4.1. By Lemma 4.5, we get a fiber space
(E', p’, B') with E’ and all fibers compact connected ANR’s, and B’
a compact connected polyhedron, which fiber dominates (&, p, B) by
fiber maps E — E'5E. We define fi=¢E&onofiE—E and f'= 7o
fo&: E'— E’'. By Hopf’s Approximation Theorem (cf. [3], p. 118),
7' is homotopic to a map f”: B’ — B’ such that f” has only a finite
number of fixed points each lying in a maximal simplex of some
triangulation of B’. By the homotopy lifting property of (E’, »', B’),
F" lifts to a fiber map f”: B’ — E’ which is fiber homotopic to f’.
The proof is in four steps.

Step 1. The theorem holds for f”.
Let Fed'(f”), and p,(F) = {b;, ---, b:}. Then

i (F) = 300 (F 0 p"(0)
= 2, 6700 1rnp-1ap(F 0 p"7(0:)) (Lemma 4.6)

= §(F)-F(F)- 3 i7u(b) (Definition 3.5)
= J(F)-k(F)-i7.(p,(F)) .
It follows that i,.(F) # 0 = j(F) = 0 and 47.(p,(F)) # 0.
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Step 2. The theorem holds for f’.

Let F be a fiber homotopy from f’' to f”’. For each Fe@'(f’),
let F’' = py(F). If i,(F) + 0, then i,.(F’) = i,(F) # 0. By Step1,
J(F") # 0 and i7.(p,(F')) # 0. Then, by Lemma 4.2, j(F) =0 and
i7(p,(F)) # 0. Conversely, if j(F)== 0 and i7(p,(F)) # 0, then by
Lemma 4.2 again, j(F') # 0 and ¢7.(p'(F")) # 0. By Step 1, i,(F) =
i (F") # 0.

Step 3. The theorem holds for f,.
To prove it, one can adopt the method of Step 2, using Lemma
4.3 instead of 4.2.

Step 4. The theorem holds for f.
The proof is similar to Step 2. O

5. The Nielsen number of a fiber map f. Let F, ---,F, be
the essential fixed point classes of f, where n = N(f). By Theorem
4.1, if Fel(f) is essential, then p,(f) is also essential, so for some
i, po(F) = F;. Let

¢ =#Fel(f)|i;F)+#0, p(F)=F}, 1<i<mn,
then

(6) N(f) = 3G .
Thus to calculate N(f), we need only calculate the C,.

DEFINITION 5.1. Let X be a space and let #: X — X be a map.
If xe®(h), then h.: (X, ) > (X, ). We define

Fix (h.), = {@ e 7(X, 2) | h(¥) = a} ,

which is a subgroup of 7,(X, x).

Let be®(f). Then we have Fix(f.),. If a = (@) ecFix (fo),
then @ =~ fow. Lemma 2.7 permits us to define T, = Tu: V(S —
V(fy). If a, a’ e Fix (f,),, then by Lemma 2.8 T,, = T, oT,. Thus
Fix (f;), is a transformation group acting on V.(f,) on the right.
Since T, preserves index, all elements of an orbit of Fix (f;), have
the same index. An orbit is called essential if it consists of essen-
tial elements.

LEMMA 5.2. For any be®(f) _a,nd any Felm((i,);), the set
(1,);'(F) s exactly an orbit of Fix (fz), acting on V(f,). Moreover,
if beF,, then the number of essential orbits is equal to C.,.
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Proof. By Theorem 3.1, two classes F,, F, eV (f,) are in the
same orbit if and only if (4,),(F,) = (4,),(F). Then the first conclu-
sion follows.

Now let be F;. By Theorem 4.1, FeIm ((3,),) is essential if and
only if (7,);'(F) is an essential orbit. Then (7,), induces an injection
from the collection of the essential orbits to {Fel(f)|i(F) =0,
py(F) = F}. It is also surjective, because any Fe{Fel(f)|i,(F)+0,
p(F) = F} contains k(F) essential elements of /.(f,). Hence we
get the second conclusion. 0

LEMMA 5.3. Let be®(f), F,ec®x(f,) and acFix(f.),. Then
TAF,)) = F, if and only if for any xc F, ac p.(Fix (f2).).

Proof. “If.” We take xeF,. Let <{v)eFix (f.), make p.({v))=
a. Then v = fov and @ = poveea, so T,=T,;. Take a reference
pair (z,e,) for f; (e, denotes the constant path at x). Then the
representation of F, in (z, ¢,) is [{e,>x] (Lemma 1.1). Let (2, ') be
the induced pair for f, from (z, e, and @, then the representation
of T,(Fy) in («/, v) is [{e,>x] (by (4)). Let w = Az, @), which is a
path from 2 to «'. Since {(po(w™'w)) is the unit of x,(B,d), by
Lemma 2.6, there is a path < in p~*(b) from «' to x such that <~
ww in E. Then by (1), the representation of T,(F,) in (z,e,) is
[/~#'(fo)x]. By (5), in E

77 (fod) = v ww T (fow)(few™)(fov)
~ v (fov) =e,,

80 (7' (f o))k = {e,)x and T (F,)) = F,.

“Only if.” For any x€F,, we take a reference pair (z, ¢,) for
fo- Let wea and (2/,7") be the induced pair from (z,e,) and .
Then the representation of F, in (z, ¢,) is [{e,>x], and the represen-
tation of T (F, in (', ') is [{e,)x] (by (4)). Since T (F, = F,, by
Lemma 1.1, we can find a path ¢ in p7'(b) from x to 2’ such that
{eH(foe)r g =<e,px. Then in K

cHfoe)r't=e, .
Let w = Ma, @). Then " = w™*(fow) in E (by (5)), so in K
we™ = fo(we™) .
Thus {we™*) € Fix (f3), and p.(dwe™))={b)=a, so a € p.(Fix (f2).). [
For any 2 € &(f), one can easily check that p.(Fix (f.),) € Fix (fo)s,

where b = p(x). Lemma 5.3 shows that the isotropy group of F, is
2:(Fix (fy).), for any z € F,.



FIXED POINT CLASSES OF A FIBER MAP 235

COROLLARY 5.4. Let be 0(f) and F,c @(f), then the length of
the orbit of F, is equal to the index of p.(Fix (fo).) in Fix (fo)s,
written [Fix (fo): p-(Fix (f2),)], where x € F\. O

We now discuss the product formula of the Nielsen number of
a fiber map. Its original form is

(7) N(f) = N(f)-N(f)) -

It does not always hold. Now we discuss the conditions which
imply (7), and improve (7).

THEOREM 5.5. The formula (7) holds, if one of the following
conditions is satisfied:

(i) N()=0, i

(ii) N(f,) =0, for any beF;,, i =1, ---, un,

(iii) N(fy) =1, for any beF, i=1,---, n.

Proof. According to Theorem 4.1, N(f) = 0 implies N(f) = 0.
Thus if (i) is satisfied, then N(f) =0 and (7) holds. If (ii) or (iii)
is satisfied, then N(f,) = Ng(f,) = C, for all beF, and (7) follows
from (6). (]

In general, N(f;) depends on b. But if (E, p, B) is orientable
in the sense that for any loop w in B based at b the translation
Ty =~ id: p7b) — p7(b), then both N(f,) and N.(f,) are independent
of the choice of be ®(f).

THEOREM 5.6. Let (E, p, B) be orientable, and f: E— E be a
Sfiber map such that N(f)# 0. Then (7) holds if and only if

(@) Ng(fy) = N(fy); and
(b) for any x € @(f) belonging to an essential class, p.(Fix (f:),)=
Fix (f.);, where b = p(x).

Proof. By Corollary 5.4, (b) is equivalent to the condition that
for any beF,, the length of every essential orbit of Fix (f.), is equal
to 1, for 1 =1, ---,n. Then by Lemma 5.2, it is equivalent to
C,= Ng(fy), i=1,---,n. Then from (6), (b) is a necessary and
sufficient condition for the formula

(8) N(f) = N(f)-Nx(f)

to hold. The conclusion of the theorem now follows. O

Theorems 5.5 and 5.6 show that, for an orientable fiber space,
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when conditions (a) and (b) are satisfied, the formula (7) always
holds.

CorOLLARY 5.7 (Fadell [4]). Let (E, p, B) be orientable, and
let f1 E— E be a fiber map. Suppose (EH, p, B) admits a natural
Jfiber splitting with respect to f. That is, for each x € E the follow-
ing conditions are satisfied:

(i) the sequence

0 — m(p0), 7) 2 7,(E, ) 2> 7,(B, b) — 0
is exact, where b = p(x);

(ii) . admits a right inverse o such that Imo is normal in
(&) and f.(Imo)Ccw,(Im o) for any path w in E from x to f(x)
(tn fact, w,.(Im o) is independent of the choice of w). Then (7) holds.

Proof. Condition (i) implies K is trivial and (a) of Theorem 5.6
is satisfied.

For any x € ®(f), let b=p(x). For any acFix (f.);, let g=0c(a).
By (ii), we have f:(8)€Imo. Let f(8) = ag(a’), then

o = p1r°f7r(,8) = f—n°p7c(ﬁ) = f_x(a) =a,

so fo(B) = o(a) = 8. Thus acp.(Fix(fz),). Hence (b) of Theorem
5.6 is also satisfied, and (7) holds. ]

COROLLARY 5.8 (Fadell [4]). Let (E, p, B) be orientable and let
fi E—E be a fiber map such that for any be@(f) which belongs
to an essential class and for any x e p~'(db)

(%)e: T(P7'(D), ¥) — 7 (K, )

is injective, and Fix (f.); is trivial. Then (7) holds.

Proof. Since (1), is injective, then (a) of Theorem 5.6 is satisfied.
Since Fix (fy), is trivial, then (b) of Theorem 5.6 is satisfied. 0

ExampLE 1. Let (E, p, B) be orientable and B=T", the n-torus,
then (7) always holds for any fiber map f: £ — E.

Proof. Since m,(T™) = 0, then (3,).: m,(p~'(d)) — 7 ,(E) is injective.
It follows that (a) of Theorem 5.6 is satisfied.

The group 7,(T") is free abelian with n generators. When the
generators are given, then each element aex,(T") can be denoted
by (&, ---, k), where the k, are integers, and f. z(T") — 7, (T
can be represented by an n X n matrix A with integer elements:



FIXED POINT CLASSES OF A FIBER MAP 237

File) = Aa .

By [1], N(f) = |det (4 — I)| where I denotes the identity matrix.
If 7. fixed only the unit, then by Corollary 5.8, (7) holds. Other-
wise, there is an a €z, (B) such that a is not the unit and f.(a)=a.
It follows that (A4 — Ia =0, and thus N(f) = |det(4 — I)| = 0.
By Theorem 5.5, (7) still holds. |

ExampPLE 2. Let S! denote the unit circle in the complex plane
C, that is S} ={z¢eC||z| =1}, and let S} ={zeC||z — 2| =1}. Let
B=S8S}US} E=BxS8! and p: F— B be the projection. Then
(E, p, B) is a trivial fiber space, so it is orientable and (a) of
Theorem 5.6 is satisfied. We define a fiber map f: F — E by

(@, by, if beSt,

b =
FON =14 ym, it best,

where 4 m are integers. Then &(f) = S} and N(f) = 1. The group
7, (B) is free with two generators. For any beS;, let ¢ be the loop
in B based at b which goes around S; once. Then Fix (f;), is ex-
actly the free cyclic group generated by <é). Let (b, ¥) e @(f), and
let a path (¢, e,) be defined by (¢, ¢,)(¢) = (¢(¢), y). Then (c,e¢,) is a
loop in K based at (b, y) and ((, ¢,)) € Fix (fo)a,,- But 9, ¢,))) =
(&>, so Fix (fo)y = 2:(Fix (fo)u.»). Thus (b) of Theorem 5.6 is satisfied
and (7) holds for f. |

Note that Example 2 does not satisfy the conditions of Corollary
5.8, and if (2 — m) t # it does not satisfy the conditions of Corollary
5.7.

When (H, p, B) is orientable, C; £ N(f;) < N(f,), so from (6),

N(f) £ N(f)N(fy) = N(F)-N(f,) -
If N(f) = 0, define rational numbers
(9) Pr(f) = (N(F)- N(Fi)INS)
(10) P(f) = (N(f)- NCS)/INCS) -
Note that P(f) = Px(f) = 1. We must calculate P.(f) and P(f).

THEOREM 5.9. Let (H, p, B) be orientable and let f: E— E be
eventually commutative, that is, (fO).(w(E)) is abelian for some
positive integer q (cf. [7], p. 61). If N(f) = 0, then for any x € O(f)
and b = p(x),

Pi(f) = [Fix (fo)s: p-(Fix (£).)] ,
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and Py(f) is a factor of Ng(f,).

Proof. First, we prove that [Fix (f.),: p-(Fix (f.).)] is indepen-
dent of the choice of « in @(f).

Let g be a positive integer such that (f9).(w,(&)) is abelian.
For any =z, 2’ € @(f), let v be a path in E from 2 to 2/, and let w=
frov. Set g = (v(fov ) em(E, 2), then (F).(8) = (w(fow™). If
a eFix (f2),, then a = (f9).(a) € Im ((f9.). Since Im ((f9).) is abelian,
then

w(few™Ha = (F):(8)(f)=(a) = (f)=(a)-(f)=(B)
= aw(few™)) .

Then
Fe(w (@) = (f ow)y(fo(@) = w({w(f ew™)Daw(f ew™))™)

= wy(a) .

Thus w,(Fix (f,),) C Fix (f.),. Similarly we have wz'(Fix (fx).)C
Fix (f2),. Hence w,: Fix (f7), — Fix (fz)., is an isomorphism.

Since p. is surjective, (f9):(7.(B)) = 0:((f)(7,(E))) is also abelian.
We can similarly prove that @,: Fix (f.), — Fix (f.), is an isomor-
phism, where b = p(x), b = p(x’) and @ = pow. Obviously, the
diagram

Fix (f), —= Fix (F2)
Fix (f). —= Fix (F)y
is commutative. It follows that
[Fix (fo): 2-(Fix (£),)] = [Fix (fo)y: p-(Fix (£).] -

Thus [Fix (f.): p-(Fix (f2),)] is a constant, denoted by m.

Then, from Corollary 5.4, for any be F;, i=1, ---, n, the length
of each essential orbit of Fix (f.), is equal to m. Hence N (f,) =
m-C, and m is a factor of Ni(f,). Then (6) implies

m-N(f) = N(F)-Nx(fy) -

Since N(f) # 0, comparing this equation with (9), we get Pg(f) =
m. [

For a space X, a map f: X— X and a point 2,€ X, let J(f, x,)
denote the Jiang subgroup of = ,(X, f(x,) consisting of the traces
of z, under cyclic homotopies f =~ f. Let J(X, x,) denote J(id,, x,) C
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(X, ). The group J(X, x,) is contained in the center of 7 /(X, x,),
hence it is a normal subgroup, so we may omit the base point and
talk about J(X)c #,(X). In general J(f, x,) is not necessarily a
normal subgroup of 7,(X, f(x,). However, given a normal subgroup
Hczn/(X), we shall use the statement H C J(f) to express the con-
dition that for some (hence all) z,e¢ X, H(f(x,) is contained in
J(f, ). For example, we always have J(X) C J(f). (Cf.[3], p. 101.)

LEMMA 5.10. Let X be a compact connected ANR and H be a
normal subgroup of w(X). Let f: X — X be a map such that HC
J(f) and fH)cCH. Suppose F,F' ecV(f) make id,(F) = id,(F")
(idp: P(f) =V u(f) 1s induced by id: X — X, ef. Corollary 1.6). Then
i (F) = i,;(F").

Proof. Let (x, w) be a reference pair for f. We need only to
prove the lemma by use of representations in (x, w). Take {(a),
by ew(X, x) such that <{a) e F, (b> e F'. Since id,(F)=id,(F’), then
[{a>n] = [(B)y], and we can find an element {r) of 7,(X, x) such that

{ayy = <7">H<b>HfH<<’r>1_11) = {row(ferHw™Hy .

Let ' = rbw(forHw™, then (b')e[b)] = F' and {(a'b’) ¢ H. Since
Hc J(f) by assumption, i.e., H(f(x))CJ(f, x), so {a b’y e H(x)C
wiJ(f, x). Now F’' =[{'>] =[{a){ad’)] differs from F by an
element of wi'J(f, x) so i(F) = i;(F"). (Cf. [6].) 0

THEOREM 5.11. Let (E, p, B) be orientable and let f: E— E be
a fiber map with N(f) = 0. Suppose 7, (E) and w,(p7' (b)) are abelian.
Then P(f) equals the order of the kermel of the following homomor-
phism induced by i,: p(0) > K

(in)p: (07 (O)/Im (1 — (f3)=) — 7, (E)/Im (1 — f2) .

Proof. Take xe®(f), b = n(x), and use (z, e,) as reference pair
for f, so that f. = f.. Consider the diagram

(o),
(S @, ) —5 P(f; 2, e,)

N e
N, Gl
Vil f; 2, e,)

Since =, (F) is abelian, V(f;zx, e,) = m,(&, x)/Im (1 — f;) is an abelian
group. Similarly V'(fy; x, e,)=7,(p7(b), 2)/Im (1 —(£,)-) and Vx(f;; @, €,)=
(m,(p7' (D), 2)/K)/Im (1 — (f,)x) are also abelian groups. Then, (3,), is
just the homomorphism specified in the theorem, and (3;), and id,
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are also homomorphisms. By Lemma 1.4, (3,); = (¢,)ycid;. But id,
is surjective (Corollary 1.6), so we get

#Ker (i,); = (#Ker (3,);)- (§Ker (idy)) -

According to Lemma 5.2, Ker (i), is exactly an orbit of Fix (f2).
Then by Corollary 5.4 and Theorem 5.9, we have

gKer (3,)r = Py(f) -

According to [5], Corollary 1 on p. 50, K, < J(p7'(0)). But J(p7'(b))C
J(f,), so, by Lemma 5.10, for any Fe/(f,), all elements of id;*(F)
have the same index. It follows that N(f,) = Ng(fy)-(#Ker (id),)
(because (id), is surjective). Then

#Ker (1) N(f) = (#Ker (id),) - (#Ker (4,)) - N(f)
= (#Ker (id),)Px(f)N(f) (Theorem 5.9)
= (#Ker (1d), ) N(F)N(f) (by (9)
= N(f)-N(f,) .

It follows that #Ker (3,);, = P(f) (because N(f) # 0). O

COROLLARY 5.12 (Pak [9]). Let (E,p, B) be orientable and
f: E— E be a fiber map such that N(f) # 0. Suppose that w,(E) s
abelian and the fiber satisfies the Jiang condition J(p~'(b))==(p7*()).
Then P(f)N(f) = N(FIN(S,), where P(f) is the order of the kernel

of (Ty)p- Ol

REMARK. If we assume that f and f, are both eventually com-
mutative instead of that =,(E) and =m(p~'(b)) are abelian, then
Theorem 5.11 still holds. We can prove that the condition “f, is
eventually commutative” is independent of the choice of b, that is,
if for some be®(f) the condition is satisfied, then for any other
bed(f) it is also satisfied.
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