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ON THE NUMBER OF REAL ROOTS
OF POLYNOMIALS

THOMAS CRAVEN AND GEORGE CSORDAS

A general theorem concerning the structure of a certain
real algebraic curve is proved. Consequences of this theorem
include major extensions of classical theorems of Pόlya and
Schur on the reality of roots of polynomials.

1* Introduction and definitions* Throughout this paper, all
polynomials are assumed to have real coefficients. In 1916, George
Pόlya wrote a paper [6] in which he considered two polynomials,
/(«) = ΣΓ=o diX*, am Φ 0, and h{x) — Σ?=o MS K Φ 0, where n ;> m,
both polynomials have only real roots and the roots of h are
all negative. Under these hypotheses, he proved the following
theorem.

THEOREM 1.1 (Pόlya [6]). The real algebraic curve Fix, y) =
hf(y) + b&f'iy) + + bmxmf{m){y) — 0 has m intersection points
with each line sx — ty + u = 0, where s ^ O , £ ̂  0, s + ί > 0 and
u is real*

Pόlya then noted that this theorem gives a unified proof of
three important special cases regarding composite polynomials:

(1.2)(a). Setting x = 1 gives a special case of the Hermite-
Poulain theorem [5, Satz 3.1].

(1.2)(b). Setting y = 0 gives a theorem of Schur [5, Satz 7.4].
(1.2)(c). Setting x — y gives a theorem of Schur and Pόlya [7,

p. 107].

Our main theorem, proved in § 2 establishes some of the prop-
erties of F(x, y) = 0 when we drop all restrictions on / and require
only that all the roots of h be real (of arbitrary sign). In the
last section, we apply this theorem to obtain an extension of
Theorem 1.1 which states that, for h restricted as in Pόlya's theorem,
there are at least as many intersection points as the number of
real roots of /. As corollaries, we then obtain the full strength
of the Hermite-Poulain theorem and extensions of the theorems of
Pόlya and Schur to arbitrary polynomials /. Pόlya states that his
theorem is one of the most general known theorems on the reality
of roots of polynomials. We believe this statement is still true
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today, more than sixty years later, especially for our much more
general version of it. The generalizations that this provides of
(1.2)(b) and (c) are used in [2] to solve an open problem of Karlin
on characterizing zero-diminishing transformations which he says
"seems to be very difficult." They also are used in [1] for many
further applications to polynomials and entire functions. For the
known results on theorems of this type, the reader is referred to
[4] and [5].

Because the subject of algebraic geometry deals almost exclu-
sively with algebraically closed fields, we have found it necessary
to develop some new terminology. As much as possible, we follow
Walker's book "Algebraic Curves" [8]. In particular, we use the
word component to refer to an irreducible factor of the curve F(x, y).
Since we deal only with the real points of a (not necessarily irredu-
cible) algebraic variety, we need a term to refer to the individual
parts of the curve F(x, y) = 0, even though these parts may not
be components, or even connected components since two parts may
intersect. For this we shall use the word branch. Classically,
branches are only defined in a neighborhood of a point on the curve
[3, p. 39] where they have the usual analytic meaning. We shall
use the word branch in the following global sense: the branch of
the curve F containing a given point on the curve is obtained by
travelling along the curve in both directions until reaching a
singularity or returning to the starting point; at a singularity
travel out along the other arc of the same local branch on which
you arrived. Thus the branches are the "pieces" into which a
circuit in the protective plane [3, p. 50] is broken by removing the
line at infinity. We shall see in the next section that the branches
in which we are most interested will always go to infinity in both
directions. In particular, if / has simple roots, the curve F(x, y)
in Theorem 1.1 is nonsingular and the branches are just the con-
nected components. As is usual in algebraic geometry, all roots,
branches and components will be counted including multiplicities,
with the exception of Lemma 2.1.

2* The main theorem* We begin with a lemma which describes
the variety F(x, y) = 0 when the polynomial h(x) has degree one.
It will be used in an inductive step in the proof of the main
theorem.

LEMMA 2.1. Let f(y) = Σ? = o

 α<lΛ an =£ 0> be any polynomial
with real coefficients and let a be any nonzero real number. Set
F{x, y) = af(y) + xf'(y). Assume that f has r real roots alf , ar

and that f has s real roots βu •• ,/3β, listed with multiplicity if
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and only if they are also roots off. Then the real variety F(x, y) = 0
satisfies the following;

(1) The variety consists ofs + 1 one-dimensional branches
(not necessarily distinct), exactly r of which cross the y-axis.

( 2 ) The branches are disjoint unless f has a multiple real
root. At a root at of multiplicity k, we have k — 1 components
coinciding with the line y = at and one other branch through (0, at).
Other than coincidental lines y = aif branches can only intersect on
the y-axis.

(3) Each branch which intersects the y-axis will intersect it
only once and will also intersect each line x = c, where c is a con-
stant.

(4) All branches are asymptotic to straight lines from the set
y = βif i — 1, 2, , s and y — —na~ιx — an_xa~ι.

Proof. Since F(x, y) — af(y) + xf\y) = 0, we can write

(2.2) x = - U . 2 M whenever f(y) Φ 0 .

If / has a root at of multiplicity k, then F(x, y) has a factor of
(y — oίiY'1. Canceling this from the numerator and denominator in
(2.2) shows that there is still a branch passing through (0, at).
Other than this situation, it is clear from (2.2) that the branches
are all disjoint so that claim (2) of the lemma holds. From (2.2)
we also see that for large values of y, the graph is asymptotic to
the line y = — na~λx — an_xa~λ. Thus this line together with the
lines y = β< (arising from f'(βt) — 0) form the set of asymptotes and
claim (4) holds. Since there are s points βif claim (1) will follow
from the arguments above and (3). Now consider the interval (y19

y2) where yγ and y2 are two consecutive roots of / ' which are not
roots of /, or y1 — — oo if / ' has no such root less than y2, or y2 —
oo if / ' has no such root greater than yle To prove claim (3), we
need only consider the case where there exists a point y0 in (yl9 y2)
such that f(y0) = 0. Note that there can be at most one such point
by the choice of yx and y2 and Rolle's theorem. Assume first that
f'(yQ) Φ 0. Then / ' has constant sign on (yu y2), so that / is mono-
tonic on the interval. Since y0 is a simple root of /, equation (2.2)
implies that x ranges from — oo to oo (or vice versa) as y ranges
from yx to y2. Thus this branch intersects each line x — c where
c is an arbitrary constant. Now assume that y0 is a root of / of
multiplicity k. The k — 1 components y — y0 satisfy (3). The re-
maining branch through (0, yQ) behaves as in the case where f'(y0)
is nonzero since f\y) can be factored as (y — yQ)k~~ι times a function
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which has constant sign on (ylf y2) and f(y) factors as (y — y^)k~ι

times a polynomial which has a simple root at y0. Since / is mono-
tonic on each subinterval (yl9 y0) and (yQ, y2), equation (2.2) implies
that for this branch, x ranges from -oo to ^ (or vice versa) as
y ranges from yx to y2. This concludes the proof of the lemma.

We now proceed to our main result. The main point of this
theorem is to guarantee that no branch of F(x, y) = 0 can pass
through two distinct roots of f(y) on the y-axis.

THEOREM 2.3. Given h{x) = Σ?=o hx*, n^l, boφ 0, bn = 1, with
only real roots and f(y) an arbitrary polynomial, form F(x, y) =
Σ f ^ o W 1 ^ ) ' Each branch of the real curve F{x, y) — 0 which
intersects the y-axis will intersect the y-axis in exactly one point
and will intersect each vertical line x — c, where c is an arbitrary
constant. If b0 = 0, the conclusion still holds for all branchs which
do not coincide with the y-axis. Furthermore, if two branches
which cross the y-axis intersect at a singular point (x0, y0) not on
the y-axis, then these branches are in fact components of the form
y — y0 = 0, and thus coincide as horizontal lines.

Proof The theorem follows from the following somewhat
stronger statement which we shall prove:

(2.4)(a). In the graph of F(x, y) = 0, there does not exist a
pair of disjoint paths from the y-axis to any point (x0, y0) off the
y-axis; (We say two paths are disjoint if their interiors have no
point in common.)

(2.4)(b). Two coincidental paths from the y-axis to a point
(x0, y0) with x0 Φ 0 are necessarily horizontal lines y = yo;

(2.4)(c). Multiple straight line components can intersect no
branches off the y-axis that are not coincidental straight lines.

If b0 — 0, let br, r > 0, be the first nonzero coefficient in h and
write g{y) = fr\y). Then F(x, y) = xrΣΛΐ=obi+rx

ίg{ί)(y) has r compo-
nents which coincide with the y-axis and the new polynomials which
replace h and / satisfy the hypotheses of the theorem. Thus we
may assume b0 Φ 0.

Note that it suffices to prove statement (2.4) for points with
x0 > 0. For if we replace h(x) by h( — x), these points are reflected
about the y-axis and the new polynomial h will still have only real
roots.
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We now prove the theorem by induction on n, the degree of
h. If n = 1, the conditions of (2.4) follow from Lemma 2.1. Now
assume n > 1 and that (2.4) holds for polynomials h of degree less
than n and arbitrary polynomials /. Assume now that h has degree
n. Since h has only real roots, we can factor h(x) = (x + aQ
(x + an). Let α = αn and g(x) = (x + αx) -(α? + αΛ_i), so that fc(a?) =
(a? + a)g(x). Write g(x) = ΣS=o dtx

im, the induction hypothesis says
that the real algebraic curve

F^ix, y) = dof(v) + dxxf{y) + - + d^x^ψ^iy) = 0

satisfies statement (2.4).
Next we define a variety in three variables by

(2.5) G{x, yy t) = αίVΛί, y) + xJ-F^t, y) = 0 .

For any fixed value of ί = to> we can apply Lemma 2.1 to G(x, ?/, to)
where the polynomial in question is F^^U, y). In particular, the
intersection of each plane t — t0 with the variety G = 0 satisfies
condition (2.4) with the i/-axis replaced by the line x = 0 = t — t0.
We shall refer to this algebraic curve as Gt(x, y) = 0. For any fixed
value of x — x0, we obtain

, ί) = aFn_γ{t, y) + x^F^t, y)
oy

Σidtt^Ύι=o dy

By applying the induction hypothesis to g(t) and the polynomial
<xf(y) + Xof\y)f we see that the intersection of each plane x = x0

with the variety G = 0 also satisfies condition (2.4) in the variables
£ and y with the #-axis replaced by the line x — x0 = 0 = t. We
shall refer to this curve as Fn_ltXo(t, y) = 0. Finally, we consider
the intersection of (? = 0 with the plane x = t, and note that a
straightforward computation shows that G(x, y, x) — Fn{x, y) for all
values of x and y, where Fn(x, y) = F(x, y) = 0 is the curve involv-
ing the polynomial fc(α?) that the statement of the theorem is con-
cerned with. Thus it will suffice to show that the curve obtained
from the intersection of G — 0 with the plane x — t satisfies condi-
tion (2.4). We identify the curve in the plane x = t with the
variety Fn = 0 and the curve Fn_1>0 in the ^/ί-plane with the curve
Fn_x = 0. For the remainder of this proof, we shall write 'Vaxis"
in quotes to mean the appropriate line in any of the above planes
with x or t constant, for which we know that the curve induced
by G = 0 satisfies condition (2.4).
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Now we assume that condition (2.4)(a) is violated by the curve
Fn = 0, but (2.4)(b) and (2.4)(c) both hold. Choose paths Pt and Pz

in the x = t plane which give the contradiction to the theorem in
such a way that the area enclosed by the paths and the ?/-axis is
minimal; in particular, the points yx *z y2 where the paths intersect
the y-axis are consecutive roots of /. We also allow the possibility
that the paths begin at a multiple root y1 = y2 of / with the path
Px through 2/1 having greater y~values for x near zero than the path
P2 through y2. We may also assume that (x0, y0) is a point for
which x0 is the maximum value taken on by x in both paths.

We shall consider the algebraic curve Gt = 0 for each fixed t.
The points of the paths Pi are obtained from the intersection of
the branches of Gt with the plane x = t. Unfortunately, these
branches do not always vary continuously with t. The following
lemma describes how discontinuities can occur.

LEMMA 2.7. Set ft(y) = Fn_x(t, y), so that for fixed t equation
(2.5) becomes

(2.8) Gt(x, y) = aft(y) + xft(y) .

In Gt(x, y) — 0, the 'partition of the points of the curve into branches
for fixed t varies continuously with t except possibly at a point
t = s such that fs or // has a multiple real root.

(a) // fs has a double real root at y0, then for values of t
near s, the curve Gt(x9 y) may have two branches crossing the y-axis
near y0 or may have two branches coming close to (0, yQ) and con-
tained entirely on opposite sides of the y-axis. If f8 has a root yQ

of multiplicity m > 2, then for values of t near s, the curve Gt

has r ^ m branches crossing the y-axis near yQ; the number m — r
is even; and there are at most (m — r)/2 branches contained entirely
in the half plane x > 0.

(b) If fs has a real root of multiplicity m > 1 at y0 with
fs(Vo) =£ 0, then the curve G8 has a (multiple) horizontal asymptote
y = y0. For nearby values of t, the asymptotes can separate, creat-
ing new branches (not crossing the y-axis) or disappear in pairsf

causing adjacent branches which were separated by an even number
of asymptotes to join into a single branch. (We shall refer to this
as ζ<joining at infinity.'9) Note that f[ must have an odd number
of roots between any two consecutive roots of ft, so two branches
crossing the y-axis cannot join at infinity.

Proof. The lemma follows almost immediately from Lemma 2.1
and Rolle's theorem. By Lemma 2.1, two branches can only meet
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at the i/-axis, corresponding to a multiple root of ft, or at infinity,
corresponding to a multiple asymptote of even multiplicity (i.e., a
multiple real root of //). Thus discontinuities can only occur in
cases (a) and (b). The analysis of the individual cases is clear from
Lemma 2.1 and a consideration of how multiple roots of a poly-
nomial and its derivative may vary as the polynomial varies con-
tinuously.

We now continue the proof of the theorem. Assume first that
Vι = 2/2 and, as t increases, the branches of Gt which generate the
paths in Fn trace out straight lines y = y1 = y2 in Fn_±. For the
two paths P1 and P2 to meet at (x0, y0, x0), the corresponding branches
of Gt must vary to become a pair of straight lines y = yQ = yι in
GχQ(%, V) = 0; but then Lemma 2.1 implies that there is at least one
more branch of GH passing through (0, y0, x0). Thus the straight
lines in Fn_x meet another branch at (0, y0, xQ), in contradiction to
(2.4)(c). Therefore, using (2.4)(b) and (c), we can conclude that as
t increases from zero, the branches of Go through y1 = y2 must
separate, continuing to cross the 2/-axis, for small values of t, at
the points where the branches of Fn_x through yx = y2 meet the
constant t planes.

As we analyze the behavior of the branches of Gt, we shall be
looking for a contradiction in one of the curves Fn_1>c where c is
a constant with 0 ̂  c <^ xQ. The branches of Go passing through yx

and y2 give points (c, y^c), 0) in the plane x = c for i = 1, 2, respec-
tively. If there is more than one choice for ^(c), let y^c) denote
the set of y-values in the plane x = c corresponding to y^

From equation (2.5) and the induction hypothesis on Fn_ιy we
see that the branches through yx and y2 in Go cannot continuously
vary to join (or rejoin if yx = y2) each other at the "y-a,xis" as t
increases, for this would create a path in Fn_x contradicting the
induction hypothesis. By Lemma 2.7(b), they also cannot join at
infinity since there are an odd number of roots of / ' between yι

and y2 by Rolle's theorem. On the other hand, they must somehow
vary so that the two paths in Fn meet at (xOf y0, x0), which must
be a point of GXQ at which (d/dy)GXQ = 0 . By Lemma 2.1, this point
will either lie on a single branch of GXQ or will lie on a set of
multiple straight lines y = y0 (in the plane t = x0). Thus the
branches of Go through yt and y2 must first join with other branches
(which did not cross the #-axis at t — 0 or else this would again
lead to a contradiction in Fn_^).

The analysis of what happens using Lemma 2.7, especially with
regard to behavior at infinity, requires that we know the sign of
a, which determines the slopes of the branches of Gt at the "y-
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axis." Henceforth, we shall assume a > 0. The analysis for a < 0
is similar and will be omitted. Since a > 0, branches can only be
joined at infinity if the lower one does not cross the ^/-axis. If
such a branch lies between the branch through yx and the branch
through y2, then joining it to the branch through yι has essentially
no effect, since the branch through yx could have been continuously
varied to obtain the same result. So let (0, y, t0) be the point on
the "y-axis" at which two branches of Gt come to the "?/-aχis," or
appear as a pair of straight lines through a root of ft as in Lemma
2.7(a), prior to at least one of them joining with one of our original
branches. Let yt(t) denote the ̂ /-coordinate at x = 0 of the branch
of Gt continuously obtained from the original branch through' yt\
this is well defined for t > 0 until the first time y^t) is a multiple
root of ft. Then we have three possibilities:

(A) y,{Q > y > y2(t0)

(B) y ^ y,{Q

(C) y £ y2(Q .

We consider the effect of each of these possibilities and show
that no combination of them can allow the paths in Fn to occur
without giving rise to a contradiction in one of the curves Fn_Uc,
where 0 ̂  c ̂  x0, which, as we have seen, must satisfy the induc-
tion hypothesis.

Assume first that situation (A) occurs alone. Then the only
way to have the paths Px and P2 meet each other is to have one
of the new real roots of ft vary to meet yt(t) and the other to
meet y2(t), and then subsequently joining these branches. (Note
that connections at infinity cannot be used since they require that
at least one branch being joined not cross the i/-axis. Also the
polynomial // has an odd number of roots between y^t) and j/2(t) )
But we obtain a contradiction as soon as both of the new branches
have joined to the original ones since this generates a path in Fn_x

from (0, yx) to (0, y2) passing through the point (<0, y). Indeed, more
than one application of (A) can do no better; to avoid leaving a
line between the branches and thus separating P1 and P2, the new
branches all must eventually join (prior to or at t = x0) to induce
a contradiction in the curve Fn_lt

No branch can connect via infinity with the branch through
y^t) since a > 0 (see equation (2.2)). Now we consider the effect
of situation (B). The new branch must meet yt(t) and pull off the
2/-axis as t increases. The new branch β thus formed cannot join
at infinity with the branch coming from y2 (again because a > 0),
hence to obtain the connection of Pί and P2, the branches must
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rejoin the "^/-axis" and part again. The lower one must then join
either with the branch through y2(t) or with the upper branch from
situation (A), while the lower branch joins with the branch through
y2(t). (As noted above, applications of (A) have no substantial effect
on the argument.) This use of (B) prevents a contradiction from
occuring in Fn^ by breaking the path which would otherwise be
generated from yx to y2. But, if we let xm be the maximum value
of x to which the branch β pulls away from the τ/-axis, say at
t — tm, and note that xm <^ x0 since a point is being generated on
Pλ by this branch, then the contradiction is to be found in the
plane x = xm. Indeed, in the curve Fn_UXm, a path will be gener-
ated between the smallest value of y^xj) and the largest value of
y2{xm) on the "y-a,xis" since in this plane it is not broken, but has
a singularity at t = tm. (The only way this could be avoided is
by having some other path joining two points of y^x*) or two
points of y2{xm), which again would contradict the induction hy-
pothesis.) If more than one application of situation (B) occurs,
the largest value of xm determines the plane in which a contradiction
occurs. Thus situation (B) has virtually no effect other than to
shift the plane in which a path is generated which violates the
induction hypothesis.

Situation (C) leads to a contradiction also as for (B) (or any
combination of (A), (B), and (C)) if the branches which leave the
τ/-axis later return to it as they had to for (B). The other possi-
bility is that they do not return to the ?/-axis, but rather connect
with a branch above (i.e., larger y-values: either a branch through
y^it) or one coming from applying (A) or (B)) by joining at infinity.
In this case the contradiction always occurs in Fn_1}Xo since, if no
other contradiction occurs with the points of yi(x0), i = 1,2, then
the paths through the smallest value of yx{xQ) and the largest value
of y2(x0) will meet at (xOf y0, x0). The meeting occurs either as the
branch in question pulls back from infinity to x0 (i.e., the point at
which (d/dy)Gt — 0 on the branch is the point fe, y0) when t = a?0);
or, if this happens for t < x0, then necessarily (A) has occured and
another point of Gt with (β/dy)Gt = 0 will be the last to pull back
to x = x0 at t — x0. Note that if a < 0, the arguments for cases
(B) and (C) must be reversed. This completes the proof of (2.4)(a).

Next we prove (2.4)(b) and (2.4)(c) in a similar manner. For
(2.4)(b), assume that Fn has two coincidental paths from a point y0

on the 2/-axis. Then for each t > 0, there exists a pair of straight
lines in Gt which generate the path. These pairs of straight lines
generate coincidental paths in Fn_lf so by the induction hypothesis
the paths in Fn^ are horizontal straight lines. But then we must
have straight lines in Fn also. Finally, for (2.4)(c), we assume that
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Fn has m multiple straight lines y = yQ which intersect some other
branch of Fn at t = tQ > 0. Then, as above, we obtain m straight
lines y = y0 in each Gt, 0 <̂  £ < ίo> and at least m + 1 lines in G v

By Lemma 2.1(2), these generate m + 1 straight lines y = y0 in
.FV L which intersect another branch of F ^ at (ί0, yo)f contradicting
the induction hypothesis. This completes the proof of the theorem.

REMARK 2.9. All of the complications in the preceding proof
are caused by the fact that it is possible to have branches in Fn_t

which cross the y-axis and have more than one point with the same
ίc-coordinate. This sometimes happens when the degree of h is less
than the degree of /. We conjecture that this does not happen if
the degree of h is greater than or equal to the degree of /; it
certainly cannot happen if / has only real roots, for then a vertical
line would intersect the curve in more points than the degree. An
interesting example in this regard is obtained by taking h(x) to be a
power of x + 1 and f(y) = 11 - 16y + 8y2 - Ayz + y* (see Figure 2.1).
Then using the notation of the proof above, the curve F2(x, y) has a
branch which intersects some vertical lines in three points, but no
other Fn has such a branch. The curve F 4 is also interesting; it
comes very close to having a singularity near (.6, -1.5) causing one
of the branches to intersect some horizontal lines in three points.

V

Fj (X. T) = 0

F4tx, γ) = o

F5(X,Y)

FIGURE 2.1.
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Also of interest is the fact that, in going from F2 to F5, the number
of branches increases from two to four.

3* Applications* We begin with a direct extension of Theorem
1.1 of Pόlya to arbitrary polynomials /.

THEOREM 3.1. Let h(x) = Σ?=o M* be a polynomial of degree n
with only real negative roots and f{y) an arbitrary polynomial
with r real roots and degree at most n. The real algebraic curve
F(x, y) = Σ?=o &i^ί/ίί)(l/) = 0 has at least r intersection points with
each line sx — ty + u = 0 where s ^ 0, t ^ 0, s + t > 0 and u is
real.

Proof. Write f(y) — ΣΓ=o (&<#*, am Φ 0, m ^ n, and set y = tx
in the equation for the curve F(x, y) = 0; compute

a'1 Km x~mF(x} tx) = bQtm + mbλt
m-1 + m(m - l)b2t

m-2

(3.2) | |-~
+ ... +m!6»

We claim that this polynomial has only real negative roots. By
hypothesis h(t) = Σ 6ίί

ί has only real negative roots, and therefore

g(t) = bQ + bj

has only real negative roots by [4, p, 343]. But then tmg(m/t),
which equals the polynomial in (3.2), has only real negative roots.
This implies that each branch of F(x, y) — 0 is asymptotic to lines
with negative slopes, the possible slopes being given by the values
of t which make the expression in (3.2) equal to zero. For each
of the r real roots of /, Theorem 2.3 implies that there is a branch
of F(xf y) which passes through the root on the /̂-axis and for
which x goes from — oo to + °° as y goes from + oo to — oo since
the asymptotes have negative slopes. Thus by continuity each of
the branches must intersect every line with zero, positive or infinite
slope.

For many applications, we prefer to relax the conditions on
h{x) slightly and lose some lines in the conclusion. Note that we
remove the restriction on the degree of /.

THEOREM 3.3. Let h(x) — Σ?=o hx1 be a polynomial of degree n
with only real nonpositive roots and f{y) an arbitrary polynomial
with r real roots. The real algebraic curve F(x, y) = Σ?=oMί/(ί)(i/) =
0 has at least r intersection points with every line of positive slope.
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Proof. Assume first that zero is not a root of h. Then the
only difference in hypotheses from the previous theorem is that the
degree of / may be greater than the degree of h. The proof is
thus the same as the previous proof, except that the polynomial in
equation (3.2) may have zero as a root. That is, the branches of
F(xf y) may have horizontal asymptotes. Hence lines of zero slope
may miss the branches, but lines of positive slope will still intersect
any branch which crosses the #-axis.

If zero is a root of h, let bs, s > 0, be the first nonzero coeffi-
cient of h and write g(y) = fω(y). Note that g has at least r — s
real roots by Rollers theorem. Then F(x, y) - α?βΣ?=o bt+tfg^ίy)
has s components coinciding with the y-B.xi& and the remainder of
the curve has at least r — s intersections with each line of positive
slope. Since every line of positive slope must cross the y-axia, the
theorem holds.

We can now obtain the corollaries mentioned in the introduction.
The first is a corollary of Theorem 2.3.

COROLLARY 3.4 (Hermite-Poulain). Let f{x) be a polynomial
with real coefficients and h{x) = b0 + bλx + + bnx

n a polynomial
with only real roots. Then the polynomial g(x) = Σ?=o &*/(i) (χ) has
at least as many real roots as f. If f has only real roots, then
every multiple root of g is also a multiple root of f.

Proof. The real curve F(x, y) = Σ?=o MV { i> (2/) = 0 has a branch
crossing the /̂-axis for each real root of /. By Theorem 2.3, these
branches intersect the line x = 1. The polynomial Σ?=oδi/(<)(i/) has
a root for each intersection, and therefore has at least as many
real roots as /. If / has only real roots, then every branch of
F(x, y) intersects the τ/-axis. If g has a multiple root c, then F(x,
y) has a singular point at (1, c) where two branches intersect. By
the last assertion of Theorem 2.3, these branches are horizontal
lines, so that c is also a multiple root of /.

COROLLARY 3.5. Let h{x) = Σ?=o b^ be a polynomial of degree
n with only real roots, all of the same sign or zero, and let f(x) =
ΣS=otti«S m ^ n. Then the polynomial ΣίUίlαAίc* has at least as
many real roots as f.

Proof. If the roots of h are all negative, we set y = 0 in
Theorem 3.1 and note that f{i)(0) = i!α,. If the roots of h are all
positive, replace h{x) by h(—x), apply the theorem, and then switch
the variable again. If h(x) = x8 Σ?=o8 bi+8x\ bs Φ 0, then let g{y) =
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fs)(y) and apply Theorem 3.1 to Σ b^x'g^iy), setting y = 0. By
Rolle's theorem, the number of real roots of / is at most equal to
s plus the number of real roots of g. Thus the conclusion again
holds.

A slight change in the hypotheses of this corollary leads us to
Corollary 3.6 in which we obtain the result separately for the
positive and negative roots. In [2], Corollary 3.6 is used to solve
an open problem of Karlin.

COROLLARY 3.6. Let h(x) — Σ?=o bxx* be a polynomial of degree
n with only real negative roots and let f(x)==^T=oaix

i

f m <> n.
Then the polynomial ΣϊUϋαAff* has at least as many positive roots
as f has positive roots and at least as many negative roots as f
has negative roots. The multiplicity of zero as a root is the same.

Proof. This follows from the proof of Theorem 3.1; since the
asymptotes all have negative slopes, any branch which crosses the
τ/-axis at a positive root of / will cross the cc-axis at a positive
root of ^Σiilaibix

i

f and similarly for negative roots.

COROLLARY 3.7. Let h(x) = Σ?=o &«#* be a polynomial with only
real nonpositive roots and let f be an arbitrary polynomial with
real coefficients. Then the polynomial Σ?=o b^f^ζx) has at least as
many real roots as f.

Proof. Set y = x in Theorem 3.3.

This corollary is the starting point for our work in [1], where
it is used to obtain many results concerning polynomials and entire
functions.
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