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BEST APPROXIMATION PROBLEMS
IN TENSOR-PRODUCT SPACES

J. R. RESPESS, JR. AND E. W. CHENEY

This paper concerns an existence problem for best ap-
proximations of bivariate functions. The approximating
functions are taken from infinite-dimensional subspaces
having tensor product form. Problems of this type arise,
for example, in approximating the kernel of an integral
equation by a degenerate ("separable") kernel. A sample
of our results is this: let G and H be finite-dimensional sub-
spaces in continuous function spaces C(S) and C(T) respec-
tively. If one of these subspaces has a continuous proximity
map and the other a Lipschitzian proximity map, then
G ® C(T) + C(S) ® H is proximinal in C(S x T); i.e., best
approximations exist in this subspace.

Practical problems in numerical analysis, especially in solving
two-point boundary value problems or integral equations, often
require the approximation of a bivariate function by a combination
of univariate functions. For example, if f(s, t) is defined for seS
and teT, an approximation to / of the following form may be
required:

(1) /(*, t) ~ Σ a*(β)Λi(«) + Σ l/i(*)ff*(β)

Here the base functions gt and ht are prescribed, and the coefficient
functions χt and yt are at our disposal.

The problem of finding a best uniform approximation of the
form (1) when all the functions involved are continuous is a difficult
one, the difficulties being both theoretical and algorithmic. In the
special case n = m = 1, with gx{s) = h^t) — 1, the problem reduces
to finding x e C(S) and y eC(T) which minimize the expression

(2) | | / _ 3 - ^ 1 = supsup|/(8,<)-α?(«)-»(ί) | .

The existence of minimizing pairs (x, y) and an efficient algorithm
for determining one of them were established by Diliberto and Straus
[3]. See also [1, 8, 5, 10, 9] for later work.

The general case of best approximation in (1) with uniform norm
remains open. In this paper, the existence of optimal solutions to
problem (1) is studied. Ideally, we would like to have constructive
proofs of existence, but in general the available proofs are non-
constructive.
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If U is a linear subspace of a normed space X, the distance from
x to U is

(3) distfe U) = inf \\x - u\\ .
ueU

If the infimum in (3) is attained for each xeX, then the subspace
U is said to be proximinal. A mapping A:X-^U such that
|| a; — Ax\\ — dist (x, U) for all x is called a proximity map for ?7.
Every proximinal subspace has a proximity map, but not necessarily
a continuous one.

The following result from [13, p. 130] will be useful:

THEOREM 1. If U, V and U + V, are closed subspaces of a Banach
space, then there is a constant c such that each element of U Λ- V is
expressible as u + v with ue U, veV, and \\u\\ + ||i;|| ^ c\\u + v\\.

THEOREM 2. For a pair of closed subspaces U and V in a Banach
space the following properties are equivalent:

(1) U + V is closed
( 2) U1 + VL is closed
( 3 ) U1 + V1 is weak""-closed
(4 ) U1 + V1 is proximinal.

Proof. The implication 1 => 3 is proved as follows. H. Reiter
showed in [12] that if U, V, and U + V are closed subspaces in a
Banach space, then U1 + V1 = (Uf) V)1. Since the annihilator of a
subspace is weak*-closed, [13, p. 91], 1 => 3. The implication 3=>4
is an observation made by Phelps [11]. The implication 4=>2 is
trivial, since every proximinal set is closed. The implication 2 ==> 1
is another result of Reiter [12]. Π

THEOREM 3. Let U and V be weak*-closed subspaces in a conju-
gate Banach space X*. If U + V is norm closed, then it is weak*-
closed and proximinal.

Proof. Since U and V are weak*-closed, they satisfy U= (UJ1

and V = (VJ1, where U± = {xe X: (x, u) = 0 for all u e U). By
Theorem 2 (in particular the implications 2 => 3 => 4), our conclusion
follows. •

THEOREM 4. Let U and V be subspaces in a normed space X.
Assume that U is proximinal, and that for each xeX there cor-
responds a weakly compact set K(x) c V with the property

inf dist (x — v, U) = inf dist (x — v, U) .
veK(x) veV
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Then U + V is proximinal.

Proof. By the Hahn-Banach theorem,

d i s t (x, U) = s u p {(φ, x ) : φ β U\ \\φ\\=ΐ\.

This shows that the function x H* dist (x, U) is weakly lower-semi-
continuous, since it is the supremum of a family of weakly continuous
functions. Therefore, if x is fixed, the expression dist (x — v, U)
will attain its infimum at some point v'eK(x). Select ur e U as a
best approximation to x — v'. Then for any veV and u e U we have

|| x - u' - v'\\ = dist (x - v\ U) ̂  dist (x - v, U) <; || x - v - u || . •

THEOREM 5. Let U and V be proximinal subspaces in a Banach
space X. Assume that U + V is closed, and that V has a proximity
map A such that for each c e X, the map u H» A{C — u) is weakly
compact from U into V. Then U + V is proximinal.

Proof. Let c be any element of X, and select zn e U + V so that
Ik "~ zn\\ —* dist (c, U + V). The sequence {zn} is bounded. Since
U + V is closed, Theorem 1 implies that zn can be expressed as
wn + vn with un 6 Z7, vn e F, and {uj bounded. Put v'n = A(c — u j .
Since {̂ n} is bounded, {v'n} lies in a weakly compact subset K of V.
Then for each w,

inf dist (c - v9 U) <* dist (c - <, Z7) ̂  ||c - wn - < ||
veK

^ IIo -un-vn\\.
Hence

inf dist (c - v, U) ̂  dist (c, ί7 + F) = inf dist (c - v, U) .
ve K veV

Thus Theorem 4 is applicable, and ?7 + F is proximinal. •

The uncompleted tensor product of two normed spaces X and Y
is the set of all finite sums of the form Σ #< ® 2/ί with ^ e l and
2/< e y. An equivalence relation is introduced by stipulating that
ΣjiXi®Vi is (equivalent to) 0 when Σ (f, %i}Vi - ° f° r all / e l * .

A norm α o n l ( x ) F is termed a cross-norm if α(a (g) y) = ||x \\ \\y \\
for all x e X and all y eY. A cross-norm a is said to be a uniform
cross-norm if

α ( Σ ^ <8> ̂ ) ^ IIA || || J? | | α ( Σ »< Θ y<)

for any bounded linear operators A and B.
The completion of the normed linear space X 0 Y with a cross-
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norm a is denoted here by X(x)α F. For other matters concerning
tensor products, see Schatten [14], Gilbert and Leih [9], or Diestel
and Uhl [2]. In particular, we use the isometric identification
&>(X, F*) = (X®r F)* [14, p. 47].

The following theorem resulted from discussions with Professor
John E. Gilbert, to whom we are indebted.

THEOREM 6. Let G and H be complemented subspaces in Banach
spaces X and Y respectively. For any uniform cross-norm a,
(G ®α Y) + (X (x)α H) is complemented (and therefore closed) in
X(χ)αF.

Proof Let P be a (bounded linear) projection of X onto G. Define
P' on the uncompleted tensor product X(x) Y by putting P'(Σ χi ®
Vi) — Σ P%i Θ Vi- By the uniform property of the cross-norm a, we
have α[P'(Σ χi ® Vi)] ̂  II P| |α(Σ %i ® #*)• T l l u s ^ ' i s uniformly con-
tinuous on a dense subset of X(x)α F and has therefore a unique
continuous extension to X(x)α F. Thus extended, P' is a projection
of X(x)α F onto G(x)α F. In the same way, starting with a projec-
tion Q of F onto i ϊ we define a projection Q' of X(x)α F onto X(x)α if.
One verifies easily that P' commutes with Q'. Hence [see 4, p. 481]
P' + Q'-P'Q' is a projection of X®a Y onto (G (g)α F) + (X(x)α H). •

In the following discussion, T will denote an arbitrary compact
Hausdorff space. Then G(T) is the usual space of continuous real-
valued functions on T.

The special cross-norm λ is defined by the equation

λ ( Σ a?i (x) Vi) = sup || Σ {ft Xi)Vi II

where / ranges over the unit cell in X*.
The next theorem has been given in [6]; the proof is included

because it is brief.

THEOREM 7. If there exists a continuous proximity map from
the Banach space X onto a subspace G, then C(T) ®λ G is proximinal
in C(T) ®λ X.

Proof. By a theorem of Grothendieck, [15, p. 357], C(T)®λX
is isometric with C(T, X). The latter is the Banach space of all
continuous maps / from T into X, normed by putting | | / | | =
suPί \\f{t)\\x. If A is a continuous proximity map from X onto G
then let A! be defined from C(T, X) onto C(T, G) by the equation
A'f — A° f. It is elementary to prove that A! is a continuous prox-
imity map. •
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THEOREM 8. If G is a subspace of C(S) such that G(x);. C(T) is
proximinal in C(S x T), then G is proximinal.

Proof. Assume that G0λC(T) is proximinal. Let x be any
element of C(S). Put x\x, t) = x(s) for all (s, t)eS x T. Note that
for any g e G,

d i s t ( x \ G ® λ C ( T ) ) ^ \\x' - g ® l \ \ = \\x - g\\

whence dist(cc', G(g)λC(T)) fί dist (x, G). Let 2 be a best approxima-
tion to x' from G(g)λC(T). Select zeT so t h a t | | α ' - - s | | =
sup s \x'(s, z) — z(s, z)\. P u t g(s) = #(s, τ) . Then g eG, and ̂  is a
best approximation to # since

II x - # II = sup I x(s) - g(s) | = sup | x\s, z) - z(s, z) \ = \\x' - z \\

= dist (a;', G (x), C(Γ)) ^ dist (x, G) . •

The following result is called "The Sitting-Duck Theorem" because
it is thought to be true under weaker hypotheses on H, and is there-
fore vulnerable to generalization.

THEOREM 10 ("Sitting Duck"). Let G be a finite-dimensional sub-
space of C(S) with a continuous proximity map. Let H be a finite-
dimensional subspace of C(T) with a Lipschitzian proximity map.
Then G (x) C(T) + C(S) (x) H is complemented and proximinal in
C(S x T).

Proof. By Theorem 7, the subspaces U = G (x) C(T) and V =
C(S) (x) H are proximinal. By Theorem 6, U + V is complemented and
closed. Let A be a Lipschitzian proximity map of C(T) onto H, and
put (A'/)(s, t) = (Afs)(t). Then A' is a proximity map of C(S x T)
onto F. Define Γ: U-> V by Γu = A'(/ - u), where / is now fixed.
By the following lemma, Γ is compact. By Theorem 5, U + V is
proximinal. (Note: /8(ί) = /*(s) = /(s, ί).) Π

REMARK. Instead of assuming that G has a continuous proximity
map, we can assume that G(£)C(T) is proximinal in C(S x T).

LEMMA. The map Γ: U—>V defined in the proof of Theorem 10
is compact.

Proof. Let B = {ue U: \\u\\ <, k}. We will show that Γ{B) has
compact closure in V. By the Ascoli theorem, it suffices to show
that Γ(B) is bounded and equicontinuous.
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If u e C / t h e n \\Γ(u) || = || A'(f - u)\\ ̂  2\\f - u\\ ^ 2 | | / | | + 2k.

Hence Γ(B) is bounded. The remainder of the proof addresses the
equicontinuity. Assume that \\Ax — Ay\\ ̂  λ||sc — y\\ for x, yeC(T).
Let n denote the dimension of G.

Select {gl9 , gn) c G and {&, , φn) c C(S)* so that <&, g^ = ^

ll^ll = ll^ll = 1 ("biorthonormality"). If u(s, t) = Σ?=i SiOffcOO t h e n

l»i(*)l - I <&,"*> I ̂  \\U*\\ £k.

Let (s0, t0) be a point of S x Γ at which equicontinuity is to be proved.
Let ε > 0. By the equicontinuity of the unit cell in G there is a
neighborhood N± of s0 such that for all s e Nλ and for all g e G,
\g(s) — g(so)\ ^ ε||flr||. Similarly, there is a neighborhood N2 of ί0 such
that for all ίeiV* and for all heH, \h(t) - h(tQ)\ <e | |Λ | | . By the
equicontinuity of {/*: t e T} we can shrink the neighborhood Nt if
necessary so that | f\s) - f%s0) | < ε for all s e Nx and all t e Γ. Then
\\fs-fso\\<ε. LetN^^xN*. If (β, t) e N then

\(Γu)(s, t) - (Γu)(s0, to)\

^ \(Γu)(8, t) - (Γu)(s0, t)\ + \(Γu)(s0, t) - (Γu)(sQ9 ίo)l

= \A(f8 - u8)(t) - A(f80 - u^)(ί)| + \A(f8Q - % ) ( ί ) - A(/80 - uSQ)(t0)\

^ \\A(f3 - u.) - A(f80 - u80)\\ + ||A(/S0 - u80)\\ε

. - u.) - (/8 0 - t O H + 2 H A - ^ | | e
Λoll + \\u. - u8Q\\] + 2 { | | / | | + \\u\\}ε

^ λ{ε + || Σ [ft« - Λ(βo)]«.||}

^ λ{ε + ̂ ε&} + 2||/||ε + 2kε .

In a separate paper, we have given examples of subspaces having
Lipschitzian proximity maps in a space C(T). These can be of any
finite dimension or infinite dimensional. The situation is rather com-
plicated, however, and the topological structure of T must be taken
into account.

In several of the following theorems we require the equation

X* (X), Γ* C J^(X, Γ*) - {X®r Y)* .

The identifications made here are as follows. With an element
Σ Φi ® ψi ίn X* ® Y* (uncompleted tensor product) we associate an
operator Ae£f(X, Y*) whose defining equation is Ax = Σ (Φi> x)Ψi-
With an arbitrary operator B in £f(X, Y*) we associate a functional
Φ in (X(x)r Γ)* by putting Φ(Σ a?, <8> 1/i) = Σ <5a?<, ^>.

The weak*-topology in -Sf(JC, 3Γ*) is the weak topology induced
by the duality of X®rY with (X(x)r F)*. Convergence of a net 4̂α

to 0 in this topology means (Aax, y) -> 0 for all xeX and y eY.
This topology is also called the weak*-operator topology.
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THEOREM 17. Let P be a projection on a Banach space X. Let
Y be any other Banach space. Then the subspace

M^ {AoP:Ae£f{X, Y*)}

is complemented, weak*-closed, and hence proximinal in J*f(X, Y*).

Proof. For i e ^ ( I , Y*), define p(A) = A<>P. Then p is a
bounded linear mapping of J5f(X9 Y*) into M. Since p(AoP) =
AoPoP = AoP, it follows that p acts like the identity on M. There-
fore p is a projection and M is complemented.

In order to show that M is weak*-closed, we note first that M
is the null-space of i — p, where i denotes the identity map on
J*f(X, Y*). Next we observe that p (and hence i — p) is weak*-
continuous. Indeed, if Aa is a net in J*f(JX9 Y*) which converges in
the weak*- topology to 0, then (Aax, y) —> 0 for all (x, y) e X x Y.
Hence (p(Aa)x, y} — (AaPx, y) —> 0 for all (χ9 y), and p(Aa) converges
to 0 in the weak*-topology. •

A completely analogous proof establishes the next result.

THEOREM 18. Let Q be a projection on a Banach space Y. Let
X be any other Banach space. Then the subspace

N= {Q*oA:A

is complemented, weak*-closed and hence proximinal in £?(X, Y*).

THEOREM 19. Let P and Q be projections on Banach spaces X
and Y respectively. Then

is complemented, weak*-closed, and proximinal in J*f(X, Y*).

Proof. It is sufficient to verify that the projections p and q
defined by p(A) = AoP and q(A) = Q*° A commute with each other.
But this is obviously true:

p(q(A)) = (Q* o A) o P = Q* o (A o P) - q(p(A)) . Q

REMARKS. Theorem 19 was suggested to us by an anonymous
referee for the Mathematical Proceedings of the Cambridge Philoso-
phical Society. We had, prior to his suggestion, established only the
following theorem by a different argument.

THEOREM 20. Let G and H be finite-dimensional subspaces in
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conjugate Banach spaces X* and F* respectively. Then G (g) F* +
X* 0 H is complemented, weak*-closed, and proximinal in J?f(X, F*).
It is therefore complemented and proximinal in X* (xh Y*.

Proof. We prove first that G(g) F* = {AoP: Ae jS^(X, F*)} for
an appropriate projection P: X-» X. Indeed, select a basis {gl9 , gn}
for G and then select xlf •••,»„ in X so that (gif Xj) — δtj. Put
P# = Σ <̂> 0i>β< If Σ & ® ih i s a n y element of G ® Y*, let A be
an element of £f(Xf Y*) such that Axt = ψ*,. Then A ° P = Σ Λ ® ih
Conversely, if Aej^(X, F*), then AoP = Σ Qi <8) ^ ^ G ® F*.

A similar argument applies to X * ® i ϊ , and then Theorem 19
establishes the desired conclusion. •

In approximation problems, it is a fortunate circumstance when
a subspace of functions being used as approximants has a linear
proximity map. Of course, this is the rule in Hubert space, but the
exception in other spaces, although proximinal hyperplanes always
have linear proximity maps in any normed space. In spaces C(T),
a finite-dimensional subspace can have a linear proximity map, but
if this happens, T must possess isolated points.

If a proximity map P from a normed space X onto a subspace
V is linear, then P is a projection (i.e., a bounded, linear, idem-
potent, surjective map.) It is elementary to prove that for a pro-
jection P the properties of being a proximity map and satisfying
the equation | |I — P\\ — 1 are equivalent.

Another elementary result is that if P and Q are projections on
a normed space X, and if QP = PQP, then P + Q — PQ is a projec-
tion onto the vector sum of the ranges of P and Q. This vector
sum must then be complemented and closed. We can now prove:

THEOREM 21. If P and Q are linear proximity maps, then the
same is true of the Boolean sum P + Q — PQ, provided that
PQP = QP.

Proof. It is only necessary to verify that || I — P — Q + PQ || = 1.
This follows from writing the operator in question in the form
(I - P)(I - Q). •

LEMMA. If Ae£f{X,X) and Be£?(Y, Y) then the operator
A® B defined on X® Y by the equation

(g) By

has a unique extension A®aB in £f{X®a F, X®a Y), for any
uniform cross norm a.
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THEOREM 22. If G and H are subspaces having linear proximity
maps in Banach spaces X and Y respectively, then G ®α Y + X®aH
is proximinal in X®a Y, for any uniform cross-norm a.

Proof. Suppose that P: X-*> G and Q:Y-»H are linear proximity
maps. Then P^)aIγ and IΣ®aQ are linear proximity maps from
X(x)α Y onto Cr®α Y and X®aH, respectively. They commute, by
the lemma which follows. Hence by the preceding theorem, their
Boolean sum is a linear proximity map. Its range is the sum of the
ranges of the constituent maps, i.e., G(x)α Y + X®aH. •

LEMMA. Let Ax and A2 be commuting elements of SfiX, X).
Let Bt and B2 be commuting elements of £f(Yf Y). Then A1®aB1

commutes with A2 ®α B2 for any uniform cross-norm a.
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