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EXTREME POINTS
IN THE HAHN-BANACH-KANTOROVIC SETTING

HARALD LUSCHGY AND WOLFGANG THOMSEN

This paper presents an existence and characterization theorem for
the extreme points of the convex set of all extensions of a linear
operator from a real vector space into an order complete real vector
lattice which are dominated by a sublinear operator. This result is applied
to positive extensions, contractions, and dominated invariant extensions.

The paper falls into four sections.

Section 1 is reserved for preliminaries.

In §2 we consider the convex set of all extensions of a linear operator
defined on a vector subspace of a real vector space X with values in an
order complete real vector lattice Y which are dominated by a sublinear
operator P from X into Y. We present a characterization of the extreme
points of this set being useful for applications. This part is related to
papers of Kutateladze [7],[8] and Portenier [15].

In §3 we give two applications of the preceding result. The first one
yields another proof of an existence and characterization theorem due to
Lipecki [10], [11] concerning extreme positive extensions of a linear
operator which is defined on a subspace of an ordered vector space. The
second one yields a new characterization theorem for extreme contractions
from a separable Banach space into the space of real valued continuous
functions on a compact extremally disconnected space.

In §4 the results of §2 are extended to P-dominated extensions which
are positive on a given cone in X, and we apply them to P-dominated
extensions which are invariant with respect to a set of mappings from X
into X. Furthermore, we obtain a refinement of a dominated extension
theorem for positive linear operators due to Luxemburg and Zaanen.

1. Preliminaries. We adhere to the notation of Schaefer’s mono-
graph [16]. Throughout X stands for a real vector space, M for its vector
subspace and Y for an order complete real vector lattice. P: X - Y
denotes a sublinear mapping, i.e. P is positively homogeneous and subad-
ditive. The space of all linear operators from M into Y is denoted by
L(M,Y). Given a vector subspace Nof XwithM C Nand T € L(M,Y),
we put

Ey(P,T)={SEL(N,Y): S<P|Nand S|M=T)}.
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The notation E,(P,T) is abbreviated to E(P,T) and E(P) stands for
E4(P,T), provided M = {0}, i.e.

E(P)={S€L(X,Y):S<P).

Finally, ex Ey(P, T) denotes the set of all extreme points of the convex
set Ey(P, T).

PROPOSITION 1.1. ( Hahn-Banach-Kantorovi¢ Theorem, [6,2.5.7, 2.5.8]).
If TEL(M,Y)and T<P|M, then E(P,T) # J. In particular, given
x € X and y € [-P(-x), P(x)], then there exists an operator S € E(P)
such that Sx = y.

Bonnice, Silverman [3] and To [21] (cf. also Ioffe [S]) have proved that
a preordered vector space is order complete, if it has the Hahn-Banach
extension property according to Proposition 1.1. Thus the order complete-
ness of Y is indispensable in our investigation of extreme extensions.

2. Existence and characterization of extreme extensions. With P:
X - Y sublinear and S € L(X,Y) (and the linear subspace M) we
associate the map P%: X > Y U {~o0} defined by

P5(x) =inf{(P — S)(u+ z + x)
+(P—S)u—z—x):z€ M, u € X}.

LEMMA 2.1. The following conditions are equivalent.

(i) S <P,
(i) 0 < PS< P — 8),
(iii) PS| M = 0,

(iv) PS(0) > —oo0,
(v) P5: X > Y is sublinear.

The simple proof is left to the reader. (The fact that matters subse-
quently is that (i) implies the other statements.) Moreover, if S < P and
S| M = P| M, then the definition of P reduces to

PS5(x)=inf{(P - S)(u+x) +(P—S)(u—x):u € X}

forall x € X.

If T€L(M,Y)and T < P| M, then the existence of extreme points
of E(P,T) is known, see the sophisticated result of Vincent-Smith
[22, Addendum to Theorem 1] and recent results of Kutateladze [7],[8]
and Lipecki [11]. We shall give a proof using the characterization of
extreme extensions stated in part (b) of the following theorem. This
characterization turns out to be useful for applications. For Y = R and
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M = {0} it follows from Proposition 2.2 in Portenier [15] and for M = {0}
some other characterizations may be found in [7], [8].

THEOREM 2.2. Let T € L(M, Y).

(@) If(andonly if YT < P| M, thenex E(P,T) + &.

(b) Suppose S € E(P,T). Then S € ex E(P, T) if and only if PS(x)
= 0 for each x € X.

Proof. Both parts (a) and (b) are proved simultaneously. In Step 1 and
Step 2 we show the existence of S € E(P, T) such that P’ = 0 by means
of the Kuratowski-Zorn lemma; Step 3 proves the “if” part and Step 4
proves the “only if” part of (b) which completes the proof.

Step 1. By M we denote the class of all pairs (N, R), where N is a
vector subspace of X with M C N and R is in L(N,Y) such that
R|M=T, R<P|N and PR=0 (PR(x):= inf{(P — R)(u + z + x)
+(P—R)u—z—x):z€M,u€ N}, x €N). Let < be an ordering
in M defined by (N, R|) < (N,, R,) if and only if N, C N, and R, | N,
= R,. Given (N, R) € M and x, € X, we shall show that (N,, R,) EM
and (N, R) <(N,, R,), where N, =lin(N U {x,}) and R,: Ny~ Y is
defined by

Ry(v + txy) = Ro + ty,
(v € N,t € R) with
Yo = inf{P(v + x,) — Rvo:v € N}.

As easily seen we have R; € L(N,, Y) and Rj|N = Rand Ry < P|N,. It
remains to show that PRo = 0. In view of 0 < P®| N < PR = 0 we get

0 < PRo(v + tx) < PRo(v) + PRo(1x,) =|1| PRo(x,)
=|1|PRo(w + xo) <2|t]| (P — Ro)(w + x)
for all v, w € N and ¢ € R. This yields P®° = 0, since
inf{(P— Ry)(v+ x5):vEN} =0

by the definition of y,.

Step 2. Let M, C M be a chain and put N; = U {N: (N, R) € M}
and R,|N =R for all (N, R) € M,. Then (N,, R;) in M is an upper
bound for M, since 0 < PRo(x) < P®(x) for all x € N and (N, R) €

M,. Thus, by the Kuratowski-Zorn lemma, M has a maximal element
(N, R) and we obtain N = X by Step 1.
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Step 3. Let S € E(P,T) with PS =0 and S, € L(X, Y) such that
S*=S,€ E(P,T). Then S;| M =0 and =S, <P — S. Hence, for each
u,x € Xand z € M we have

28,x = Sy(u+ 2z + x) — Sy(u — z — x)
<(P-S)u+z+x)+(P—S)u—z—x)
which implies 2S5, < P’ = 0. Therefore, S, = 0 whence S € ex E(P, T).

Step 4. Given S € ex E(P, T) and x, € X, there exists S, € L( X, Y)
such that Sy(x,) = P5(x,) and S, < P* by Proposition 1.1. Thus,

+8,x = Sy(*x) < PS(=x) = PS(x) =2(P — S)(x)
for all x € X which implies S * 1S, < P. Moreover, S,z < P5(z) =0
for all z € M whence S * 1S, € E(P, T). Therefore, P5(x,) = 0.
The proof of Theorem 2.2 suggests to associate with P: X > Y
sublinear and T € L(M, Y) the map P;: X - Y U {—oo} defined by
P (x) =inf{P(x +z) — Tz: z € M}.

LEMMA 2.3. Suppose T € L(M,Y).
(a) The following conditions are equivalent.
HT=<P|M,
(i)) T = Py| M,
(iii) P7(0) > —oo,
(iv) Pr: X - Y is sublinear.
(b) Suppose S € L(X,Y). Then S € E(P,T) if and only if S < P;.

The simple proof is left to the reader. It is worth mentioning that PS
and ( P;)S coincide for each S € E( P, T). Especially, this implies
PS(x) =inf{(Py— S)(u+x) + (Pp— S)(u—x): u € X}

for all x € X. Moreover, if T € L(M,Y)and T < P| M, then E(P,T) =
E(P;) holds by Lemma 2.3 and according to Proposition 1.1 we obtain

(Sx: S € E(P,T)} =[-P;(-x), Py(x)]

for all x € X. Following up these ideas, we obtain

COROLLARY 2.4. Suppose T € L(M,Y) with T<P|M and x € X.
Then

ex[-Pr(—x), P7(x)] C {Sx: S €E ex E(P, T)} C [-Pr(-x), Pr(x)].



EXTREME POINTS IN HAHN-BANACH-KANTOROVIC SETTING 391

Proof. We only have to show the first inclusion. Given y €
ex[—P,(-x), Pr(x)], we define

H={SE€E(P,T): Sx =y)
and
O(u) =sup{Su: SEH}, ueX.

Then H #+ &, Q: X —» Y is sublinear, and E(Q) = H. By Theorem 2.2,
ex H + @&. Moreover, H is an extreme subset of E(P, T) by virtue of
y € ex[-Pr(—x), Pr(x)]. Thus ex H Cex E(P,T) which implies the
assertion.

REMARK 2.5. Both inclusions are proper in general. They provide
precise bounds for {Sx: S € ex E(P,T)} as will be shown by the
following examples. For this let (2, @, u) be a probability space. We put
X=L(p), Y=R, P(u)= [|u|dpand x = 1;. Then

E(P) = {f € Ly(n): |f]= 1o}

and

ex E(P) = {f€ L (pn): |f]|= 1},

and we have P(x) = 1 and —P(-x) = -1.

If p is the one-point measure §, in w € Q, then { [ fdu: f € ex E(P)}
= {-1,1} C[-1, 1] which shows that the first inclusion turns into equality
and the second inclusion is proper.

If p is non-atomic, then {[fdp: f € ex E(P)} =[-1,1]. Indeed,
given |y|= 1, let y, = (1/2)(|y| +1) €[0,1] and 4 € @ with p(A4) = y,.
Then f= 1, — 1, isin ex E(P) with [fdp =|y| . Thus the first inclusion
is proper and the second inclusion turns into equality.

REMARK 2.6. Obviously
{-Pr(—x), Pr(x)} C ex[— r(=x), PT(X)]

and this inclusion is proper in general. Indeed, let (2, &, n) be a probabil-
ity space, where p is not {0, 1}-valued, let X =R, Y = L_(p), P(u) =
|u| -1g for all u € X and x = 1. Then {-P(-x), P(x)} = {-1g, 15} g

ex[-1g, 1g] = {f € L(p): | f|= 1g}-
Suppose now that M, N are linear subspaces of X with M C N C X

and R € Ey(P,T). Theorem 2.7 and the succeeding counterexamples
clear up the connections between the sets ex E, (P, T), ex E(P,T) and
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ex E(P, R). In particular, it follows that S € ex E(P, T) implies S €
ex E(P, S|N), whereas S| N & ex Ey(P, T) in general. Conversely, S €
ex E(P,S|N)and S|N €E ex Ey(P,T) imply S € ex E(P, T).

THEOREM 2.7. Let M, N be subspaces of X with M C N C X. Suppose
TeL(M,Y)andR € E\(P,T). Then

(a)ex E(P,R) D E(P,R)Nex E(P,T).

(b) Suppose R € ex E, (P, T). Then

ex E(P,R)=E(P,R)Nex E(P,T).

Proof. (a) is obvious and as regards (b), R € ex E, (P, T') implies that
E(P, R) is an extreme subset of E(P, T) which proves the assertion.

ReEMARK 2.8. The inclusion in (a) is proper in general. Indeed, let
N=X=Y=R, M= {0}, P(x) =| x| and Rx = 0 for all x € R. Then
{R} = E(P,R) =ex E(P, R) and ex E(P) = {idg,—idg}.

The converse in (b) does not hold as the following example shows (cf.
also Singer [19, p. 106]). Let X = R?, Y = R, M = {(0,0)}, N = R X {0},
Rx =0 for all x €N and let P((x,, x,)) = max{|x,|,|x,|} and
pr,((x,, x,)) = x, for all (x;, x,) € R%. Then ex E(P, R) = {pr,, —pr,} C
ex E(P) = {pr,, -pr,, pr,, —pr,}, whereas R €& ex E,(P) = {pr; | N,
-pr, | N}.

In particular, this example yields an operator S € ex E(P) such that
S|N & ex Ey(P); put S = pr,.

3. Applications. By Theorem 2.2 we obtain immediately a result
due to Lipecki concerning extreme positive extensions of an operator
defined on a subspace of an ordered vector space with values in an order
complete vector lattice.

Al. (Lipecki [10, Theorem 1], [11, Theorem 2 and Remark 2}). Let X
be an ordered vector space with positive cone C, M a majorizing vector
subspace of X and 7: M — Y a positive linear operator. Then

(A)ex{SEL(X,Y):S|IM=Tand S|C =0} # 2.

(b) Suppose C is generating. Then S € {S" € L(X,Y): §'|M =T,
S’| C = 0} is an extreme point of this set if and only if

inf(Su: = (x+z)<u€X,zEM} =0
for each x € X.

Proof. Obviously, P: X — Y defined by
P(x)=inf{Tz: x <z € M}
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is sublinear and we have
E(P,T)={S€L(X,Y):S|M=T,S|C=0}.
Moreover, it is readily verified that
P5(x)=2-inf(Su: £ (x+z)<u€ X,z € M}

holds for all x € X and § € E(P, T). Thus the assertion follows from
Theorem 2.2.

We now apply Theorem 2.2 to prove a new result concerning extreme
contractions into spaces of continuous functions. This subject was started
by Blumenthal et al. [2].

Let X be a normed vector space and Y = C(H), where H is an
extremally disconnected compact space. Recall that a compact space is
extremally disconnected (i.e. open subsets have an open closure) if and
only if the space of continuous real valued functions is order complete (cf.
[16,I1. 7.7]). X’ denotes the continuous dual of X, U( X) is the unit ball of
X’ and U(X, C(H)) is the unit ball of L(X, C(H)). An operator S €
U( X, C(H)) is called almost nice, if S": H — U(X’) defined by S’(h) =
0, o S maps a dense subset of H into ex U( X").

It is immediate from Theorem 2.2 (with M = {0} and P(x) = || x||)
that x” € U(X") is an extreme point of this set if and only if

inf{llu + xll + llu — x|l + 2x"(u): u € X} =0

for each x € X. (Incidentally, this characterization may be used to prove
the well known result that ex U(C'(K)) = {ad,: |a|= 1, k € K}, where
K is a compact space [4,V.8.6]). Furthermore, let us point out that an
almost nice operator S in U(X, C(H)) is an extreme point of this set,
since S’ is weak* continuous [4, VI.7.1]. The converse does not hold in
general (cf. Remark 3.1). In addition, we note (cf. Oates [14, Theorem 1.2])
that U(X, C(H)) is the closed convex hull of its extreme points with
respect to the strong (or equivalently weak) operator topology on the
space of all continuous linear operators from X into C(H). More general
Krein-Milman type theorems may be found in Morris and Phelps [13] and
(without proofs) in Levashov [9).

A2. Let X be a separable normed space and let H be an extremally
disconnected compact space. Then S € U(X, C(H)) is an extreme point
of this set if and only if S is almost nice.
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Proof. We only have to show the “only if” part. Suppose S €
ex U(X, C(H)). By Theorem 2.2 (with M = {0} and P(x) = lx|l1,), we
have

inf{llu + xllly + llu—xll1;, —2Su:u€ X} =0
for each x € X. Let ¢: X X H — R be defined by
o(x, h) = inf{llu + x|l + llu — x|l — 28,(Su): u € X}.

The set {@(x,-) >0} C H is meager for each x € X, since the lattice
infimum and the point infimum in C(H) differ on a meager subset (cf.
Stone [20]). If 4 is a countable dense subset of X, then

K= N {g(x,-)=0)
xEA
is a dense subset of H by Baire’s category theorem. Since ¢(-, /) is
continuous for all # € H, we obtain ¢(-, ) = 0 for all # € K. Thus by
Theorem 2.2 T is almost nice.

Without proof we note the following slight generalization of A2.

A3. Let X be a separable normed space, M a vector subspace of X and
T € U(M, C(H)), where H is an extremally disconnected compact space.
Then

Se{ReU(X,C(H)):R|M =T}
is an extreme point of this set if and only if
S'(h) €ex{x’ € U(X): x"|M=T'(h)}

for all /4 in some dense subset of H.

REMARK 3.1. A2 and A3 fail for non-separable normed spaces X.
Indeed, let H be a compact extremally disconnected space such that the
set H, of isolated points of H is not dense (e.g. if (2, &, p) is a positive
o-finite non-atomic measure space and 9U the ideal of y-null sets, then the
Stone representation space of @/9U is extremally disconnected and has no
isolated points [18,p. 28 and p. 86]). By virtue of a result due to
Blumenthal et al. [2, Theorem 2] there is a (non-separable) Banach space X
and an operator S € ex U(X, C(H)) such that {(h € H: S'(h) €
ex U(X')} = H,. Hence S is not almost nice.

Nevertheless, the separability of X can be removed if X = C(K) for
some compact space K. More generally, the separability assumption in A2
can be replaced by the assumption that ex U( X’) is weak* closed. This
result is due to Sharir [17] and it may also be proved by an application of
Theorem 2.2 and Theorem 2.7.
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4. Generalizations. In this section the preceding results are gener-
alized to P-dominated extensions, which are positive on a (pointed con-
vex) cone C C X. With P: X - Y sublinear and a cone C C X we
associate the map P.: X - Y U {—o0} defined by

P.(x) = inf{P(x + u): u € C}
and, given T € L(M, Y), we put
E(P,T,C)={SE€E(P,T):S|C=0}.

LEMMA 4.1. Let C be a cone in X.
(a) The following conditions are equivalent.
@HP|C=0,
(ii) P-(0) > —o0,
(iii) P.: X — Y is sublinear.
(b) Suppose S € L(X,Y). Then S<P and S|C =0 if and only if
S<P.

The simple proof will be omitted (for Y = R compare Anger and
Lembcke [1, Lemma 1.9, Lemma 3.2]). In view of the preceding lemma the
following corollary is merely a restatement of Theorem 2.2.

COROLLARY 4.2. Let T € L(M, Y) and C be a cone in X.

(a) If (and only if) T < P-| M, then ex E(P,T,C) # 2.

(b) An operator S € E(P, T, C) is an extreme point of this set if and
only if (P;)5(x) = 0 for each x € X.

REMARK 4.3. Lemma 2.3 yields equivalent assertions for the statement
T < P-| M. Furthermore, T < P.| M yields

E(P, T, C) = E(Pc’ T) = E(PTa C) = E(PTC),

where P;. stands for both (coinciding) operators (P.); and (Pr)c.
Finally, we note that T < P. | M readily implies T< P | M, T|M N C =0,
P| C =0, but the converse does not hold in general. Indeed, let X = R?,
M=RX {0}, C={0} XR, Y=R, P((x,, x;)) =|x, +x,| for all
(x,, x,) € X and T(x,,0) = x, for all (x,,0) € M and note that P.| M =
0.

An application of Corollary 4.2 yields a refinement of a result due to
Luxemburg and Zaanen.

A4. (Luxemburg and Zaanen; cf. [6, 2.6.3]). Suppose that X is a vector
lattice with positive cone C, M is a vector sublattice, and P is lattice-in-
creasing, i.e. | x, |=<| x, | implies P(x,) =< P(x,),x; € X.LetT € L(M,Y).

@UfT<P|MandT|MNC=0,thenex E(P,T,C) # &.
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(b) An operator S € E(P, T, C) is extreme in this set if and only if
inf{P((u+z+x)+) +P((u—z—x)")—28u:zEM,u €X}=0

for each x € X.

Proof. First note that P.(x) = P(x") holds for all x € X. Indeed,
x < x” implies P-(x) < P(x™"); conversely, x < u € X implies x* < u*,
and since P is lattice-increasing we obtain P(x*) < P(u") < P(u) whence
P(x*) < P.(x). Moreover, we have Tz < Tz" < P(z*) for all z € M.
Hence the assertions follow from Corollary 4.2.

In the remaining part of this section we deal with invariant P-
dominated extensions. Let § be a set of mappings from X into X. A linear
operator S: X — Y is called invariant if SV = § for all V € §. The vector
space of all invariant linear operators from X into Y is denoted by
L(X,Y)gand, given T € L(M, Y), we put

E(P,T)y=E(P,T) N L(X,Y)s,.

Furthermore, let G denote the linear hull of the set {(Vx — x: VE§, x €
X}. Obviously, § € L(X,Y) is invariant if and only if S|G =0, i.e.
G C ker S.

AS5.Let T € L(M, Y) and § be a set of mappings from X into X.
(a) If (and only if) T < P;| M, then ex E(P,T)s # .
(b) S € E(P, T),is an extreme point of this set if and only if

inf{(P—S)(u+z+x)+(P—S)u—2z—x):
zEM+G,ueX} =0
for each x € X.
Proof. Obviously, E(P,T)s = E(P,T,G), and it is easily seen that
(P;)S = (P5)g holds for all S € E(P, T, G). Hence the assertions follow
from Corollary 4.2.

A6. Let T and § be as in A5. Assume that there exists an operator
R e L(X, X)suchthat RM C M, PR<=Pand P, < P.

(@IfTR=TonMand T<P|M,thenex E(P,T)s +* O.

(b) If additionally R is a projection with P, = P, then an operator
S in E(P, T)g is an extreme point of this set if and only if PS(x) = 0 for
each x in the fixed space of R.

Proof. (a) For z€ M and u € kerR we get Tz = TRz =< P(Rz) =
P(R(z +u)) = P(z+ u) whence T=< P, | M. The assertion follows
from AS.
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(b). Suppose S € E(P,T)g. Then S < P; = P, implies SR=S
whence (PR)® = PSR. Furthermore, it is readily verified that PR = P, __ .
Therefore (P;)S = PSR. By virtue of Corollary 4.2 S is an extreme point
of E(P, T)g if and only if PS(Rx) = 0 for each x € X, i.e. PS(x) = 0 for
each x in the fixed space of R.

We conclude our considerations by applying this result to a topologi-
cal setting. A similar result for positive invariant extensions was stated by
the first-named author in [12].

A7. Suppose that X is a locally convex space, that § is a mean ergodic
semigroup of continuous linear operators on X [16,II1.7.1] and that the
order complete vector lattice Y is a topological vector space with a closed
normal positive cone (e.g. we may assume that Y is an order complete
topological vector lattice). Let M be a closed subspace and let P be
continuous such that VM C M and PV <P for all V €§. Suppose
TEL(M,Y).

(a) If T'is invariant and T < P | M, thenex E(P, T)s # 9.

(b) An operator S in E(P, T)g is an extreme point of this set if and
only if PS(x) = 0 for each x in the fixed space of §.

Proof. Let R be the zero element of the closed convex hull of § in the
space of all continuous linear operators on X equipped with the topology
of pointwise convergence. R is a continuous linear projection onto the
fixed space of § with kernel the closure of G [16,II1.7.2]. In view of the
properties of P and § we obtain P, . = P;, PR<P and RM C M.
Furthermore, each S € E(P) is continuous since P is continuous and the
positive cone of Y is normal. Thus 7 is continuous by virtue of E(P, T) #
& and employing the invariance of 7 we obtain 7R = T on M. The
assertions follow now from A6.

REMARK 4.4. If § is a set of mappings from X into X, then invariant
versions of A2 and A3 are valid.
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