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WEAK APPROXIMATION OF STRATEGIES
IN MEASURABLE GAMBLING

VICTOR C. PESTIEN

In a measurable gambling house, the measurable strategies available
at a fortune/are weakly dense in the collection of all strategies available
at/.

1. Background. In §2.16 of their monograph on the theory of

gambling, Dubins and Savage [3] showed how the imposition of regularity

conditions on a gambling problem yields regularity properties about its

solution. In particular, they established certain continuity conditions

which guarantee the existence of Borel-measurable, nearly-optimal strate-

gies. Strauch [9] defined the notion of measurable gambling house and

showed that if a measurable house is leavable, then the optimal return

function is universally measurable and good measurable strategies exist.

Without assuming leavability, Sudderth [10] investigated measurable gam-

bling problems and showed, among other things, that if the gambler's

payoff, or utility, under a strategy σ is fgdσ, where g is a bounded,

finitary function, then the gambler may, without loss, restrict himself to

measurable strategies.

However, the question of adequacy of measurable strategies for

measurable problems — with a strategic utility function of the type intro-

duced by Dubins and Savage — remained unanswered. (See remarks in

[5].) Recently, though, Purves and Sudderth [8] established certain ap-

proximation results which provide a greater understanding of the optimal

return function and, at least in some cases, imply its universal measurabil-

ity.

In this note, we clarify the position of the set of measurable strategies

available at a fortune / within the set of all strategies available at / by

showing that the former set is "weakly dense" in the latter. This density

property, however, is not strong enough to answer the question of ade-

quacy of measurable strategies.

We avoid entirely any discussion of optimality and, instead, examine

the strategic measures directly. We demonstrate that if Al9 A2,...,An are

finitary, Borel subsets of the space of histories, and if σ is an available

strategy, then there is an available measurable strategy σ which makes
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\o(Ak) — σ(Ak)\ simultaneously small for each k, \<k<n. Precise

definitions follow in the next section.

2. Terminology. Let F (the fortune space) be a Polish space and %

be the σ-algebra of its Borel subsets. Let PF be the set of all countably

additive probability measures defined on (/%<$), with the weak topology.

To each element / of F assign a non-empty set Γ(/) of gambles (finitely

additive probability measures defined on all subsets of F), and let p(y)

denote the restriction of a gamble γ to 6 1 . Assume that Γ is a Borel

gambling house; that is, for every/ E F and γ E Γ(/) , p(y) is countably

additive and {(/, p(y)): γ G Γ(/)} is a Borel subset of F X PF. This

definition of Borel gambling house is the same as that of "measurable

gambling house" in [9].

Let //, the space of histories, be the Cartesian product of countably

many copies of the Polish space F. Designate the product topology on H

by Π. Also define a second topology, Δ, on H by ignoring the Polish-space

structure of F and letting Δ be the product topology on H induced by

giving F the discrete topology.

Let/ E F. A strategy available at fis a sequence

σ = ( σ 0 , σ l 9 σ 2 , . . . )

where σ() E Γ(/) and for n > 1, σn is a map from F" to gambles on F such

that for each (/ , / 2,.. .,/,) E F\ σ,2(/, / 2 , . . . ,/„) lies in Γ(/w). A strategy

σ is (^-measurable if for each positive integer n, the map

is measurable with respect to the σ-algebra generated by the analytic

subsets of Fn. An (immeasurable strategy σ induces a countably additive

probability measure p(σ) on the Π-Borel subsets of H (see [1], Prop. 7.45

and Cor. 7.42.1). Further, as described in ([3], Chapter 2), any strategy σ

determines a finitely additive probability measure (also denoted by σ) on

the Δ-clopen, or finitary, subsets of H. It follows from ([10], § 2), or is

easily seen by induction, that if σ is an (ί-measurable strategy, then/?(σ)

coincides, on the finitary Π-Borel sets, with the measure described in ([3],

Chapter 2).

3. The Main Theorem. Let 9H be the set of finitely additive

probability measures on the algebra of finitary Π-Borel subsets of H. For

any positive integer n, any μ in 91L and any finitary Π-Borel sets
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A λ , A2,...,An,\et

N(μ, A λ , A2,...,An, ε)

= {μ' G 9 1 1 : \μ'(Ak) - μ(A k ) \ < ε for all k, \<k<n).

It is routinely verified that the sets of the form N(μ, Ax, A2,.. ,An9 ε)

form a neighborhood system for a weak topology on 9H.

In the theorem to follow, we identify a strategy with the probability

measure it induces, restricted to the finitary Π-Borel sets.

THEOREM 1. Let f lie in F and let σ be a strategy available at f in the

Borel gambling house Γ. Then σ lies in the weak closure of the set of

(^measurable strategies available at f.

The proof of Theorem 1 is preceded by four lemmas; Lemma 1 is a

well-known measure-theoretic fact, Lemma 2 is a refinement of Lemma 1,

and Lemmas 3 and 4 are garnered from the literature of the theory of

gambling. An early version of Theorem 1 appeared in ([6], Chapter 5).

Suppose G E l A partition of G is a finite collection (Al9...9An) of

disjoint subsets of G such that U £ = 1 Ak — G. A Borel partition of G is a

partition (Al9... ,An) of G such that each Ak(\ < k < n) is Borel. A Borel

cover of G is a finite collection of Borel subsets of G whose union is G. A

countably-additive measure λ on the Borel subsets of G is non-atomic if

~ 0 for each element/in G.

LEMMA 1. Let G E ®, and let λ be a finite, non-atomic, countably-addi-

tive measure on the Borel subsets of G, n be a positive integer, and

Tj,, ?] 2 , . . . ,ηn be non-negative real numbers such that Σ£ = 1 ηk — λ(G). Then

there exists a Borel partition {Bx,... ,Bn) of G such that for each k,

Proof. The lemma is a direct consequence of Lyapunov's Convexity

Theorem. For details, see ([4], §5). D

LEMMA 2. Let G E ®, and let λ be a finitely-additive measure, defined

on all subsets of G, whose restriction to the Borel subsets of G is countably-

additive. If {Sλ,... ,Sn) is a partition of G and (Cλ,... ,Cn) is a Borel cover

of G such that Sk C Ck for all k, then there exists a Borel partition

( £ , , . . . , £ „ ) of G such that for all k,Bk C Ckandλ(Bk) = λ(Sk).
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Proof. Assume temporarily that the restriction of λ to the Borel
subsets of G is non-atomic. Begin by converting the Borel cover (C,,.. ., Cn)
to a Borel partition: let/*= (jl9... Jn) be a binary π-tuple (that Ίs9jk = 0
oτjk — 1 for each k), and let

Dj*= c / 1 n c{2 n ••• n ς / %

where for each k,

CJk=[ck ifΛ=i,

The collection of sets ZH, as /ranges over binary ^-tuples, forms a Borel
partition of G.

Now subdivide each Dj+'m the appropriate proportions, as follows:
Using Lemma 1, for each binary «-tuple f, obtain a Borel partition
(βf9. .. ,B,f) of Dj* such that for each k (1 < k < Λ),

and such that 5/ = 0 for those fc where ŷ  = 0. (Notice that DyC\Sk = 0
for those k wherejk — 0, because by hypothesis, Sk Q_Ck.)

Next, for each k, let 5^ be the union of all B{ as j ranges over all
binary /^-tuples. Then (Bu... ,Bn) is a Borel partition of G, and for each
k, Bk c C* and λ(5^) = λ(5^). This completes the proof of the lemma,
under the extra assumption of non-atomicity.

For the proof of the general case, let Ek consist of those λ-atoms that
lie in Sk\ that is,

Ek=\J { / e G : λ ( { / } ) > 0 a n d / G S , } .

Also, let E = Un

k=ιEk. Then apply the preceding argument to the Borel
cover (CX\E9... 9Cn\E) of G\E to obtain a Borel partition (Bx,...,Bn)
of G\E with ^ C Ck\E and λ ( ^ ) = λ(Sk\E) for all A:. Finally, let
Bk = Bk U £^, and (Bl9... ,Bn) is the desired partition of G. D

As in [5], let

Γ°°(/) = (σ: σ is an immeasurable strategy available at/}.

Let PH be the set of all countably additive probability measures on the
Π-Borel subsets of H; endow PH with the weak topology. Then the space
PH9 as well as the space PF defined earlier, is a Polish space ([1], Prop.
7.20, 7.23). If A C H and / G F, let Af be the set of all histories
(/i> f2, f3> •) i n H such that (/, fx, f2>. . . ) G i
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LEMMA 3 ([5], Lemma 4.1).

is a Borel subset of F X PH. D

LEMMA 4. If A is a U-Borel subset of H, then

(f9p(σ))-+δ(Af)

is a Borel-measurable function from F X PH to R.

Proof. Apply the lemma in ([10], §5). D

In the proof of the theorem, we employ the notions of conditional
strategy (σ[/]), structure of a finitary mapping, and integral of a bounded,
finitary mapping as presented in [3].

Proof of Theorem 1. Fix n a positive integer. We must show:

For each/in i7, each strategy σ available at/,

each ε > 0 and each H-tuple (Aλ9...,An) of finitary

Π-Borel subsets of //, there exists an immeasurable
strategy σ available at / such that for each k between
1 and n,

\σ(Ak)-σ(Ak)\<ε.

(3.1)

We demonstrate (3.1) by transfinite induction on the maximum structure
of the indicators of the finitary events Al9...9An. Assume (3.1) holds for
all /, σ, ε, and all Av...,An such that the maximum structure of the
indicators of Al9... ,An is less than the ordinal number a. Next, let/0 E F,
ε > 0, let σ be available at /0, and suppose the maximum structure of
Aχ9... 9An is a. Let m be a positive integer such that 2/m < ε. For each
«-tuple (JΊ, . .. Jn) of integers such that 0 <jk < m for all /c, 1 < k < ft, let

for each k, 1 < & < «}.

The sets S( } form a partition of F. Let

H/7i Λ ) = {(/, p(σ)): σ E Γ°°(/) and for each/:,
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a n d let C{jχ jn) b e t h e pro ject ion of W(hJn) o n t o t h e first c o o r d i n a t e .

By i n d u c t i v e hypothes i s ,

x, ..jnr

Applying Lemmas 3 and 4, W(J^ 7 ) is a Borel set. Then C{)χ Λ ) , being

the projection of a Borel set, is analytic and hence measurable with respect

to the completion of σ0 ([1], §7.6.2). Thus there exists a Borel cover

such that σ0(CO i h>)) = σo(C(, /π)) and C ( / | Λ ) 2 CO|,...,Λ, for each
H-tuple (y,,... j n ) . By Lemma 2, there is a Borel partition

such that

σo(5(/,, . ,/„)) = σ o ( 5 ' ( , 1

and

for each «-tuple (y,,... Jn).

Using the Jankov-von Neumann Selection Theorem ([1], Prop. 7.49),

for each (y*,,... Jn) there is an (ί-measurable map ψ(;. }: F ^ PH such

that i f/G C(/i y ) , then

We are now in a position to define an (^measurable strategy σ which is

available at/() and which approximates σ; let

% — σo

and

whenever/ G ί
( / r
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Fix k between 1 and n. Employing Theorem 2.8.1 of [3], calculate:

σ(Ak)=fσ[f](AJ)do0(f)

= Σ ••• Σ / o[f\(Akf)dσ0(f)
0 = ( ) * % )

m m

Λ,=0 y,=0

Λ = 0 71=0

^ 1 + Σ ••• Σ
.Λ, = 0 /,=0

Analogously,

— Z ''' Z m

 σ o\^(/ , , . . ,/„)/

Ί m m

m Λ,=0 y ,=0^ ( , , . ,„>

We conclude

\σ(Ak)-σ(Ak)\<:2/m<ε. D

4. Remarks and Extensions. Theorem 1 shows that one can find a
measurable strategy available at / which "does nearly as well as" σ
simultaneously on each of the sets A,,... ,An. A theorem of Sudderth ([10],
Theorem 6.4) implied that this phenomenon held in the special case where
n — 1. We paraphrase Sudderth's theorem as a corollary:

COROLLARY. // g is a bounded, finitary, and Yί-Borel measurable
junction, then for each f in F,

sup < I g dσ: σ is a strategy available at f

= sup^ Igdσ: σ is an (^measurablestrategy available at f>.
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Proof. Approximate g by a simple function and apply Theorem 1. D

If σ is a strategy, then following Dubins [2], the restriction of the

inner measure of σ to the Δ-open sets is additive and hence can be

extended in a unique way to a finitely additive probability measure σL on

the algebra generated by the Δ-open sets. Let % be the algebra of sets

which can be approximated from outside by an open set and from the

inside by a closed set in such a way that the σ7 -measure of their difference

is small. Denote the natural extension of σL to % by σ7. Purves and

Sudderth [7] have shown that the Δ-Borel subsets of H lie within %. If B is

an arbitrary Π-Borel (and hence Δ-Borel) subset of //, and e > 0, the

author does not know whether there exists an available measurable

strategy σ such that \ό(B) — σL(B)\ < ε. Does the fact that σ can be

approximated weakly by measurable strategies imply that σL(B) can be

approximated in an appropriate way? The answer is not clear, even in the

particular case where B = AXAXAX---, and A is a Borel subset

of F.
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